mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-02-25 18:55:30 -06:00
i.e., using clang 3.8 to compile the test suite with the following flags: ``` -Weverything -Wno-documentation -Wno-documentation-unknown-command -Wno-c++98-compat -Wno-c++98-compat-pedantic -Wno-undef -Wno-padded -Wno-global-constructors -Wno-exit-time-destructors -Wno-weak-vtables -Wno-float-equal ``` should not produce any warnings anymore. In my opinion the only flag which would produce beneficial warnings is -Wdocumentation. This has not been fixed in this patch because writing documentation is left for another day (or, more likely, year). note that this patch consists of a heavy dose of the OPM_UNUSED macro and plenty of static_casts (to fix signedness issues). Fixing the singedness issues were quite a nightmare and the fact that the Dune API is quite inconsistent in that regard was not exactly helpful. :/ Finally this patch includes quite a few formatting changes (e.g., all occurences of 'T &t' should be changed to `T& t`) and some fixes for minor issues which I've found during the excercise. I've made sure that all unit tests the test suite still pass successfully and I've made sure that flow_ebos still works for Norne and that it did not regress w.r.t. performance. (Note that this patch does not fix compiler warnings triggered `ebos` and `flow_ebos` but only those caused by the basic infrastructure or the unit tests.) v2: fix the warnings that occur if the dune-localfunctions module is not available. thanks to [at]atgeirr for testing. v3: fix dune 2.3 build issue
473 lines
16 KiB
C++
473 lines
16 KiB
C++
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
// vi: set et ts=4 sw=4 sts=4:
|
|
/*
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Consult the COPYING file in the top-level source directory of this
|
|
module for the precise wording of the license and the list of
|
|
copyright holders.
|
|
*/
|
|
/*!
|
|
* \file
|
|
*
|
|
* \copydoc Ewoms::RichardsLensProblem
|
|
*/
|
|
#ifndef EWOMS_RICHARDS_LENS_PROBLEM_HH
|
|
#define EWOMS_RICHARDS_LENS_PROBLEM_HH
|
|
|
|
#include <ewoms/models/richards/richardsmodel.hh>
|
|
|
|
#include <opm/material/components/SimpleH2O.hpp>
|
|
#include <opm/material/fluidsystems/LiquidPhase.hpp>
|
|
#include <opm/material/fluidmatrixinteractions/RegularizedVanGenuchten.hpp>
|
|
#include <opm/material/fluidmatrixinteractions/LinearMaterial.hpp>
|
|
#include <opm/material/fluidmatrixinteractions/EffToAbsLaw.hpp>
|
|
#include <opm/material/fluidmatrixinteractions/MaterialTraits.hpp>
|
|
#include <opm/material/common/Unused.hpp>
|
|
|
|
#include <dune/grid/yaspgrid.hh>
|
|
#include <dune/grid/io/file/dgfparser/dgfyasp.hh>
|
|
|
|
#include <dune/common/version.hh>
|
|
#include <dune/common/fvector.hh>
|
|
#include <dune/common/fmatrix.hh>
|
|
|
|
namespace Ewoms {
|
|
template <class TypeTag>
|
|
class RichardsLensProblem;
|
|
|
|
namespace Properties {
|
|
NEW_TYPE_TAG(RichardsLensProblem, INHERITS_FROM(Richards));
|
|
|
|
// Use 2d YaspGrid
|
|
SET_TYPE_PROP(RichardsLensProblem, Grid, Dune::YaspGrid<2>);
|
|
|
|
// Set the physical problem to be solved
|
|
SET_TYPE_PROP(RichardsLensProblem, Problem, Ewoms::RichardsLensProblem<TypeTag>);
|
|
|
|
// Set the wetting phase
|
|
SET_PROP(RichardsLensProblem, WettingFluid)
|
|
{
|
|
private:
|
|
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
|
|
|
public:
|
|
typedef Opm::LiquidPhase<Scalar, Opm::SimpleH2O<Scalar> > type;
|
|
};
|
|
|
|
// Set the material Law
|
|
SET_PROP(RichardsLensProblem, MaterialLaw)
|
|
{
|
|
private:
|
|
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
|
|
enum { wettingPhaseIdx = FluidSystem::wettingPhaseIdx };
|
|
enum { nonWettingPhaseIdx = FluidSystem::nonWettingPhaseIdx };
|
|
|
|
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
|
typedef Opm::TwoPhaseMaterialTraits<Scalar,
|
|
/*wettingPhaseIdx=*/FluidSystem::wettingPhaseIdx,
|
|
/*nonWettingPhaseIdx=*/FluidSystem::nonWettingPhaseIdx>
|
|
Traits;
|
|
|
|
// define the material law which is parameterized by effective
|
|
// saturations
|
|
typedef Opm::RegularizedVanGenuchten<Traits> EffectiveLaw;
|
|
|
|
public:
|
|
// define the material law parameterized by absolute saturations
|
|
typedef Opm::EffToAbsLaw<EffectiveLaw> type;
|
|
};
|
|
|
|
// Enable gravitational acceleration
|
|
SET_BOOL_PROP(RichardsLensProblem, EnableGravity, true);
|
|
|
|
// Use central differences to approximate the Jacobian matrix
|
|
SET_INT_PROP(RichardsLensProblem, NumericDifferenceMethod, 0);
|
|
|
|
// Set the maximum number of newton iterations of a time step
|
|
SET_INT_PROP(RichardsLensProblem, NewtonMaxIterations, 28);
|
|
|
|
// Set the "desireable" number of newton iterations of a time step
|
|
SET_INT_PROP(RichardsLensProblem, NewtonTargetIterations, 18);
|
|
|
|
// Do not write the intermediate results of the newton method
|
|
SET_BOOL_PROP(RichardsLensProblem, NewtonWriteConvergence, false);
|
|
|
|
// The default for the end time of the simulation
|
|
SET_SCALAR_PROP(RichardsLensProblem, EndTime, 3000);
|
|
|
|
// The default for the initial time step size of the simulation
|
|
SET_SCALAR_PROP(RichardsLensProblem, InitialTimeStepSize, 100);
|
|
|
|
// The default DGF file to load
|
|
SET_STRING_PROP(RichardsLensProblem, GridFile, "./data/richardslens_24x16.dgf");
|
|
} // namespace Properties
|
|
|
|
/*!
|
|
* \ingroup TestProblems
|
|
*
|
|
* \brief A water infiltration problem with a low-permeability lens
|
|
* embedded into a high-permeability domain.
|
|
*
|
|
* The domain is rectangular. The left and right boundaries are
|
|
* free-flow boundaries with fixed water pressure which corresponds to
|
|
* a fixed saturation of \f$S_w = 0\f$ in the Richards model, the
|
|
* bottom boundary is closed. The top boundary is also closed except
|
|
* for an infiltration section, where water is infiltrating into an
|
|
* initially unsaturated porous medium. This problem is very similar
|
|
* the \c LensProblem, with the main difference being that the domain
|
|
* is initally fully saturated by gas instead of water and water
|
|
* instead of a \c DNAPL infiltrates from the top.
|
|
*/
|
|
template <class TypeTag>
|
|
class RichardsLensProblem : public GET_PROP_TYPE(TypeTag, BaseProblem)
|
|
{
|
|
typedef typename GET_PROP_TYPE(TypeTag, BaseProblem) ParentType;
|
|
|
|
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
|
|
typedef typename GET_PROP_TYPE(TypeTag, EqVector) EqVector;
|
|
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
|
|
typedef typename GET_PROP_TYPE(TypeTag, BoundaryRateVector) BoundaryRateVector;
|
|
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
|
|
typedef typename GET_PROP_TYPE(TypeTag, Stencil) Stencil;
|
|
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
|
|
typedef typename GET_PROP_TYPE(TypeTag, Model) Model;
|
|
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
|
|
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
|
|
|
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
|
|
enum {
|
|
// copy some indices for convenience
|
|
pressureWIdx = Indices::pressureWIdx,
|
|
contiEqIdx = Indices::contiEqIdx,
|
|
wettingPhaseIdx = FluidSystem::wettingPhaseIdx,
|
|
nonWettingPhaseIdx = FluidSystem::nonWettingPhaseIdx,
|
|
numPhases = FluidSystem::numPhases,
|
|
|
|
// Grid and world dimension
|
|
dimWorld = GridView::dimensionworld
|
|
};
|
|
|
|
// get the material law from the property system
|
|
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
|
|
//! The parameters of the material law to be used
|
|
typedef typename MaterialLaw::Params MaterialLawParams;
|
|
|
|
typedef typename GridView::ctype CoordScalar;
|
|
typedef Dune::FieldVector<CoordScalar, dimWorld> GlobalPosition;
|
|
typedef Dune::FieldVector<Scalar, numPhases> PhaseVector;
|
|
typedef Dune::FieldMatrix<Scalar, dimWorld, dimWorld> DimMatrix;
|
|
|
|
public:
|
|
/*!
|
|
* \copydoc Doxygen::defaultProblemConstructor
|
|
*/
|
|
RichardsLensProblem(Simulator& simulator)
|
|
: ParentType(simulator)
|
|
, pnRef_(1e5)
|
|
{
|
|
dofIsInLens_.resize(simulator.model().numGridDof());
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::finishInit
|
|
*/
|
|
void finishInit()
|
|
{
|
|
ParentType::finishInit();
|
|
|
|
eps_ = 3e-6;
|
|
pnRef_ = 1e5;
|
|
|
|
lensLowerLeft_[0] = 1.0;
|
|
lensLowerLeft_[1] = 2.0;
|
|
|
|
lensUpperRight_[0] = 4.0;
|
|
lensUpperRight_[1] = 3.0;
|
|
|
|
// parameters for the Van Genuchten law
|
|
// alpha and n
|
|
lensMaterialParams_.setVgAlpha(0.00045);
|
|
lensMaterialParams_.setVgN(7.3);
|
|
lensMaterialParams_.finalize();
|
|
|
|
outerMaterialParams_.setVgAlpha(0.0037);
|
|
outerMaterialParams_.setVgN(4.7);
|
|
outerMaterialParams_.finalize();
|
|
|
|
// parameters for the linear law
|
|
// minimum and maximum pressures
|
|
// lensMaterialParams_.setEntryPC(0);
|
|
// outerMaterialParams_.setEntryPC(0);
|
|
// lensMaterialParams_.setMaxPC(0);
|
|
// outerMaterialParams_.setMaxPC(0);
|
|
|
|
lensK_ = this->toDimMatrix_(1e-12);
|
|
outerK_ = this->toDimMatrix_(5e-12);
|
|
|
|
// determine which degrees of freedom are in the lens
|
|
Stencil stencil(this->gridView(), this->simulator().model().dofMapper() );
|
|
auto elemIt = this->gridView().template begin</*codim=*/0>();
|
|
auto elemEndIt = this->gridView().template end</*codim=*/0>();
|
|
for (; elemIt != elemEndIt; ++elemIt) {
|
|
stencil.update(*elemIt);
|
|
for (unsigned dofIdx = 0; dofIdx < stencil.numPrimaryDof(); ++ dofIdx) {
|
|
unsigned globalDofIdx = stencil.globalSpaceIndex(dofIdx);
|
|
const auto& dofPos = stencil.subControlVolume(dofIdx).center();
|
|
dofIsInLens_[globalDofIdx] = isInLens_(dofPos);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* \name Problem parameters
|
|
*/
|
|
//! \{
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::name
|
|
*/
|
|
std::string name() const
|
|
{
|
|
std::ostringstream oss;
|
|
oss << "lens_richards_"
|
|
<< Model::discretizationName();
|
|
return oss.str();
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::endTimeStep
|
|
*/
|
|
void endTimeStep()
|
|
{
|
|
#ifndef NDEBUG
|
|
this->model().checkConservativeness();
|
|
|
|
// Calculate storage terms
|
|
EqVector storage;
|
|
this->model().globalStorage(storage);
|
|
|
|
// Write mass balance information for rank 0
|
|
if (this->gridView().comm().rank() == 0) {
|
|
std::cout << "Storage: " << storage << std::endl << std::flush;
|
|
}
|
|
#endif // NDEBUG
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::temperature
|
|
*/
|
|
template <class Context>
|
|
Scalar temperature(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
|
|
{ return temperature(context.globalSpaceIndex(spaceIdx, timeIdx), timeIdx); }
|
|
|
|
Scalar temperature(unsigned OPM_UNUSED globalSpaceIdx, unsigned OPM_UNUSED timeIdx) const
|
|
{ return 273.15 + 10; } // -> 10°C
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::intrinsicPermeability
|
|
*/
|
|
template <class Context>
|
|
const DimMatrix& intrinsicPermeability(const Context& context,
|
|
unsigned spaceIdx,
|
|
unsigned timeIdx) const
|
|
{
|
|
const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
|
|
if (isInLens_(pos))
|
|
return lensK_;
|
|
return outerK_;
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::porosity
|
|
*/
|
|
template <class Context>
|
|
Scalar porosity(const Context& OPM_UNUSED context,
|
|
unsigned OPM_UNUSED spaceIdx,
|
|
unsigned OPM_UNUSED timeIdx) const
|
|
{ return 0.4; }
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::materialLawParams
|
|
*/
|
|
template <class Context>
|
|
const MaterialLawParams& materialLawParams(const Context& context,
|
|
unsigned spaceIdx,
|
|
unsigned timeIdx) const
|
|
{
|
|
unsigned globalSpaceIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
|
|
return materialLawParams(globalSpaceIdx, timeIdx);
|
|
}
|
|
|
|
const MaterialLawParams& materialLawParams(unsigned globalSpaceIdx,
|
|
unsigned OPM_UNUSED timeIdx) const
|
|
{
|
|
if (dofIsInLens_[globalSpaceIdx])
|
|
return lensMaterialParams_;
|
|
return outerMaterialParams_;
|
|
}
|
|
|
|
/*!
|
|
* \brief Return the reference pressure [Pa] of the wetting phase.
|
|
*
|
|
* \copydetails Doxygen::contextParams
|
|
*/
|
|
template <class Context>
|
|
Scalar referencePressure(const Context& context,
|
|
unsigned spaceIdx,
|
|
unsigned timeIdx) const
|
|
{ return referencePressure(context.globalSpaceIndex(spaceIdx, timeIdx), timeIdx); }
|
|
|
|
// the Richards model does not have an element context available at all places
|
|
// where the reference pressure is required...
|
|
Scalar referencePressure(unsigned OPM_UNUSED globalSpaceIdx,
|
|
unsigned OPM_UNUSED timeIdx) const
|
|
{ return pnRef_; }
|
|
|
|
//! \}
|
|
|
|
/*!
|
|
* \name Boundary conditions
|
|
*/
|
|
//! \{
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::boundary
|
|
*/
|
|
template <class Context>
|
|
void boundary(BoundaryRateVector& values,
|
|
const Context& context,
|
|
unsigned spaceIdx,
|
|
unsigned timeIdx) const
|
|
{
|
|
const auto& pos = context.pos(spaceIdx, timeIdx);
|
|
|
|
if (onLeftBoundary_(pos) || onRightBoundary_(pos)) {
|
|
const auto& materialParams = this->materialLawParams(context, spaceIdx, timeIdx);
|
|
|
|
Scalar Sw = 0.0;
|
|
Opm::ImmiscibleFluidState<Scalar, FluidSystem> fs;
|
|
fs.setSaturation(wettingPhaseIdx, Sw);
|
|
fs.setSaturation(nonWettingPhaseIdx, 1.0 - Sw);
|
|
|
|
PhaseVector pC;
|
|
MaterialLaw::capillaryPressures(pC, materialParams, fs);
|
|
fs.setPressure(wettingPhaseIdx, pnRef_ + pC[wettingPhaseIdx] - pC[nonWettingPhaseIdx]);
|
|
fs.setPressure(nonWettingPhaseIdx, pnRef_);
|
|
|
|
values.setFreeFlow(context, spaceIdx, timeIdx, fs);
|
|
}
|
|
else if (onInlet_(pos)) {
|
|
RateVector massRate(0.0);
|
|
|
|
// inflow of water
|
|
massRate[contiEqIdx] = -0.04; // kg / (m * s)
|
|
|
|
values.setMassRate(massRate);
|
|
}
|
|
else
|
|
values.setNoFlow();
|
|
}
|
|
|
|
//! \}
|
|
|
|
/*!
|
|
* \name Volumetric terms
|
|
*/
|
|
//! \{
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::initial
|
|
*/
|
|
template <class Context>
|
|
void initial(PrimaryVariables& values,
|
|
const Context& context,
|
|
unsigned spaceIdx,
|
|
unsigned timeIdx) const
|
|
{
|
|
const auto& materialParams = this->materialLawParams(context, spaceIdx, timeIdx);
|
|
|
|
Scalar Sw = 0.0;
|
|
Opm::ImmiscibleFluidState<Scalar, FluidSystem> fs;
|
|
fs.setSaturation(wettingPhaseIdx, Sw);
|
|
fs.setSaturation(nonWettingPhaseIdx, 1.0 - Sw);
|
|
|
|
PhaseVector pC;
|
|
MaterialLaw::capillaryPressures(pC, materialParams, fs);
|
|
values[pressureWIdx] = pnRef_ + (pC[wettingPhaseIdx] - pC[nonWettingPhaseIdx]);
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::source
|
|
*
|
|
* For this problem, the source term of all components is 0
|
|
* everywhere.
|
|
*/
|
|
template <class Context>
|
|
void source(RateVector& rate,
|
|
const Context& OPM_UNUSED context,
|
|
unsigned OPM_UNUSED spaceIdx,
|
|
unsigned OPM_UNUSED timeIdx) const
|
|
{ rate = Scalar(0.0); }
|
|
|
|
//! \}
|
|
|
|
private:
|
|
bool onLeftBoundary_(const GlobalPosition& pos) const
|
|
{ return pos[0] < this->boundingBoxMin()[0] + eps_; }
|
|
|
|
bool onRightBoundary_(const GlobalPosition& pos) const
|
|
{ return pos[0] > this->boundingBoxMax()[0] - eps_; }
|
|
|
|
bool onLowerBoundary_(const GlobalPosition& pos) const
|
|
{ return pos[1] < this->boundingBoxMin()[1] + eps_; }
|
|
|
|
bool onUpperBoundary_(const GlobalPosition& pos) const
|
|
{ return pos[1] > this->boundingBoxMax()[1] - eps_; }
|
|
|
|
bool onInlet_(const GlobalPosition& pos) const
|
|
{
|
|
Scalar width = this->boundingBoxMax()[0] - this->boundingBoxMin()[0];
|
|
Scalar lambda = (this->boundingBoxMax()[0] - pos[0]) / width;
|
|
return onUpperBoundary_(pos) && 0.5 < lambda && lambda < 2.0 / 3.0;
|
|
}
|
|
|
|
bool isInLens_(const GlobalPosition& pos) const
|
|
{
|
|
for (unsigned i = 0; i < dimWorld; ++i) {
|
|
if (pos[i] < lensLowerLeft_[i] || pos[i] > lensUpperRight_[i])
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
GlobalPosition lensLowerLeft_;
|
|
GlobalPosition lensUpperRight_;
|
|
|
|
DimMatrix lensK_;
|
|
DimMatrix outerK_;
|
|
MaterialLawParams lensMaterialParams_;
|
|
MaterialLawParams outerMaterialParams_;
|
|
|
|
std::vector<bool> dofIsInLens_;
|
|
|
|
Scalar eps_;
|
|
Scalar pnRef_;
|
|
};
|
|
} // namespace Ewoms
|
|
|
|
#endif
|