opm-simulators/examples/problems/richardslensproblem.hh
Andreas Lauser ec4b6c82dd fix most pedantic compiler warnings in the basic infrastructure
i.e., using clang 3.8 to compile the test suite with the following
flags:

```
-Weverything
-Wno-documentation
-Wno-documentation-unknown-command
-Wno-c++98-compat
-Wno-c++98-compat-pedantic
-Wno-undef
-Wno-padded
-Wno-global-constructors
-Wno-exit-time-destructors
-Wno-weak-vtables
-Wno-float-equal
```

should not produce any warnings anymore. In my opinion the only flag
which would produce beneficial warnings is -Wdocumentation. This has
not been fixed in this patch because writing documentation is left for
another day (or, more likely, year).

note that this patch consists of a heavy dose of the OPM_UNUSED macro
and plenty of static_casts (to fix signedness issues). Fixing the
singedness issues were quite a nightmare and the fact that the Dune
API is quite inconsistent in that regard was not exactly helpful. :/

Finally this patch includes quite a few formatting changes (e.g., all
occurences of 'T &t' should be changed to `T& t`) and some fixes for
minor issues which I've found during the excercise.

I've made sure that all unit tests the test suite still pass
successfully and I've made sure that flow_ebos still works for Norne
and that it did not regress w.r.t. performance.

(Note that this patch does not fix compiler warnings triggered `ebos`
and `flow_ebos` but only those caused by the basic infrastructure or
the unit tests.)

v2: fix the warnings that occur if the dune-localfunctions module is
    not available. thanks to [at]atgeirr for testing.
v3: fix dune 2.3 build issue
2016-11-09 14:54:22 +01:00

473 lines
16 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Ewoms::RichardsLensProblem
*/
#ifndef EWOMS_RICHARDS_LENS_PROBLEM_HH
#define EWOMS_RICHARDS_LENS_PROBLEM_HH
#include <ewoms/models/richards/richardsmodel.hh>
#include <opm/material/components/SimpleH2O.hpp>
#include <opm/material/fluidsystems/LiquidPhase.hpp>
#include <opm/material/fluidmatrixinteractions/RegularizedVanGenuchten.hpp>
#include <opm/material/fluidmatrixinteractions/LinearMaterial.hpp>
#include <opm/material/fluidmatrixinteractions/EffToAbsLaw.hpp>
#include <opm/material/fluidmatrixinteractions/MaterialTraits.hpp>
#include <opm/material/common/Unused.hpp>
#include <dune/grid/yaspgrid.hh>
#include <dune/grid/io/file/dgfparser/dgfyasp.hh>
#include <dune/common/version.hh>
#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>
namespace Ewoms {
template <class TypeTag>
class RichardsLensProblem;
namespace Properties {
NEW_TYPE_TAG(RichardsLensProblem, INHERITS_FROM(Richards));
// Use 2d YaspGrid
SET_TYPE_PROP(RichardsLensProblem, Grid, Dune::YaspGrid<2>);
// Set the physical problem to be solved
SET_TYPE_PROP(RichardsLensProblem, Problem, Ewoms::RichardsLensProblem<TypeTag>);
// Set the wetting phase
SET_PROP(RichardsLensProblem, WettingFluid)
{
private:
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
public:
typedef Opm::LiquidPhase<Scalar, Opm::SimpleH2O<Scalar> > type;
};
// Set the material Law
SET_PROP(RichardsLensProblem, MaterialLaw)
{
private:
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
enum { wettingPhaseIdx = FluidSystem::wettingPhaseIdx };
enum { nonWettingPhaseIdx = FluidSystem::nonWettingPhaseIdx };
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef Opm::TwoPhaseMaterialTraits<Scalar,
/*wettingPhaseIdx=*/FluidSystem::wettingPhaseIdx,
/*nonWettingPhaseIdx=*/FluidSystem::nonWettingPhaseIdx>
Traits;
// define the material law which is parameterized by effective
// saturations
typedef Opm::RegularizedVanGenuchten<Traits> EffectiveLaw;
public:
// define the material law parameterized by absolute saturations
typedef Opm::EffToAbsLaw<EffectiveLaw> type;
};
// Enable gravitational acceleration
SET_BOOL_PROP(RichardsLensProblem, EnableGravity, true);
// Use central differences to approximate the Jacobian matrix
SET_INT_PROP(RichardsLensProblem, NumericDifferenceMethod, 0);
// Set the maximum number of newton iterations of a time step
SET_INT_PROP(RichardsLensProblem, NewtonMaxIterations, 28);
// Set the "desireable" number of newton iterations of a time step
SET_INT_PROP(RichardsLensProblem, NewtonTargetIterations, 18);
// Do not write the intermediate results of the newton method
SET_BOOL_PROP(RichardsLensProblem, NewtonWriteConvergence, false);
// The default for the end time of the simulation
SET_SCALAR_PROP(RichardsLensProblem, EndTime, 3000);
// The default for the initial time step size of the simulation
SET_SCALAR_PROP(RichardsLensProblem, InitialTimeStepSize, 100);
// The default DGF file to load
SET_STRING_PROP(RichardsLensProblem, GridFile, "./data/richardslens_24x16.dgf");
} // namespace Properties
/*!
* \ingroup TestProblems
*
* \brief A water infiltration problem with a low-permeability lens
* embedded into a high-permeability domain.
*
* The domain is rectangular. The left and right boundaries are
* free-flow boundaries with fixed water pressure which corresponds to
* a fixed saturation of \f$S_w = 0\f$ in the Richards model, the
* bottom boundary is closed. The top boundary is also closed except
* for an infiltration section, where water is infiltrating into an
* initially unsaturated porous medium. This problem is very similar
* the \c LensProblem, with the main difference being that the domain
* is initally fully saturated by gas instead of water and water
* instead of a \c DNAPL infiltrates from the top.
*/
template <class TypeTag>
class RichardsLensProblem : public GET_PROP_TYPE(TypeTag, BaseProblem)
{
typedef typename GET_PROP_TYPE(TypeTag, BaseProblem) ParentType;
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
typedef typename GET_PROP_TYPE(TypeTag, EqVector) EqVector;
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
typedef typename GET_PROP_TYPE(TypeTag, BoundaryRateVector) BoundaryRateVector;
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
typedef typename GET_PROP_TYPE(TypeTag, Stencil) Stencil;
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, Model) Model;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
enum {
// copy some indices for convenience
pressureWIdx = Indices::pressureWIdx,
contiEqIdx = Indices::contiEqIdx,
wettingPhaseIdx = FluidSystem::wettingPhaseIdx,
nonWettingPhaseIdx = FluidSystem::nonWettingPhaseIdx,
numPhases = FluidSystem::numPhases,
// Grid and world dimension
dimWorld = GridView::dimensionworld
};
// get the material law from the property system
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
//! The parameters of the material law to be used
typedef typename MaterialLaw::Params MaterialLawParams;
typedef typename GridView::ctype CoordScalar;
typedef Dune::FieldVector<CoordScalar, dimWorld> GlobalPosition;
typedef Dune::FieldVector<Scalar, numPhases> PhaseVector;
typedef Dune::FieldMatrix<Scalar, dimWorld, dimWorld> DimMatrix;
public:
/*!
* \copydoc Doxygen::defaultProblemConstructor
*/
RichardsLensProblem(Simulator& simulator)
: ParentType(simulator)
, pnRef_(1e5)
{
dofIsInLens_.resize(simulator.model().numGridDof());
}
/*!
* \copydoc FvBaseProblem::finishInit
*/
void finishInit()
{
ParentType::finishInit();
eps_ = 3e-6;
pnRef_ = 1e5;
lensLowerLeft_[0] = 1.0;
lensLowerLeft_[1] = 2.0;
lensUpperRight_[0] = 4.0;
lensUpperRight_[1] = 3.0;
// parameters for the Van Genuchten law
// alpha and n
lensMaterialParams_.setVgAlpha(0.00045);
lensMaterialParams_.setVgN(7.3);
lensMaterialParams_.finalize();
outerMaterialParams_.setVgAlpha(0.0037);
outerMaterialParams_.setVgN(4.7);
outerMaterialParams_.finalize();
// parameters for the linear law
// minimum and maximum pressures
// lensMaterialParams_.setEntryPC(0);
// outerMaterialParams_.setEntryPC(0);
// lensMaterialParams_.setMaxPC(0);
// outerMaterialParams_.setMaxPC(0);
lensK_ = this->toDimMatrix_(1e-12);
outerK_ = this->toDimMatrix_(5e-12);
// determine which degrees of freedom are in the lens
Stencil stencil(this->gridView(), this->simulator().model().dofMapper() );
auto elemIt = this->gridView().template begin</*codim=*/0>();
auto elemEndIt = this->gridView().template end</*codim=*/0>();
for (; elemIt != elemEndIt; ++elemIt) {
stencil.update(*elemIt);
for (unsigned dofIdx = 0; dofIdx < stencil.numPrimaryDof(); ++ dofIdx) {
unsigned globalDofIdx = stencil.globalSpaceIndex(dofIdx);
const auto& dofPos = stencil.subControlVolume(dofIdx).center();
dofIsInLens_[globalDofIdx] = isInLens_(dofPos);
}
}
}
/*!
* \name Problem parameters
*/
//! \{
/*!
* \copydoc FvBaseProblem::name
*/
std::string name() const
{
std::ostringstream oss;
oss << "lens_richards_"
<< Model::discretizationName();
return oss.str();
}
/*!
* \copydoc FvBaseProblem::endTimeStep
*/
void endTimeStep()
{
#ifndef NDEBUG
this->model().checkConservativeness();
// Calculate storage terms
EqVector storage;
this->model().globalStorage(storage);
// Write mass balance information for rank 0
if (this->gridView().comm().rank() == 0) {
std::cout << "Storage: " << storage << std::endl << std::flush;
}
#endif // NDEBUG
}
/*!
* \copydoc FvBaseMultiPhaseProblem::temperature
*/
template <class Context>
Scalar temperature(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{ return temperature(context.globalSpaceIndex(spaceIdx, timeIdx), timeIdx); }
Scalar temperature(unsigned OPM_UNUSED globalSpaceIdx, unsigned OPM_UNUSED timeIdx) const
{ return 273.15 + 10; } // -> 10°C
/*!
* \copydoc FvBaseMultiPhaseProblem::intrinsicPermeability
*/
template <class Context>
const DimMatrix& intrinsicPermeability(const Context& context,
unsigned spaceIdx,
unsigned timeIdx) const
{
const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
if (isInLens_(pos))
return lensK_;
return outerK_;
}
/*!
* \copydoc FvBaseMultiPhaseProblem::porosity
*/
template <class Context>
Scalar porosity(const Context& OPM_UNUSED context,
unsigned OPM_UNUSED spaceIdx,
unsigned OPM_UNUSED timeIdx) const
{ return 0.4; }
/*!
* \copydoc FvBaseMultiPhaseProblem::materialLawParams
*/
template <class Context>
const MaterialLawParams& materialLawParams(const Context& context,
unsigned spaceIdx,
unsigned timeIdx) const
{
unsigned globalSpaceIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
return materialLawParams(globalSpaceIdx, timeIdx);
}
const MaterialLawParams& materialLawParams(unsigned globalSpaceIdx,
unsigned OPM_UNUSED timeIdx) const
{
if (dofIsInLens_[globalSpaceIdx])
return lensMaterialParams_;
return outerMaterialParams_;
}
/*!
* \brief Return the reference pressure [Pa] of the wetting phase.
*
* \copydetails Doxygen::contextParams
*/
template <class Context>
Scalar referencePressure(const Context& context,
unsigned spaceIdx,
unsigned timeIdx) const
{ return referencePressure(context.globalSpaceIndex(spaceIdx, timeIdx), timeIdx); }
// the Richards model does not have an element context available at all places
// where the reference pressure is required...
Scalar referencePressure(unsigned OPM_UNUSED globalSpaceIdx,
unsigned OPM_UNUSED timeIdx) const
{ return pnRef_; }
//! \}
/*!
* \name Boundary conditions
*/
//! \{
/*!
* \copydoc FvBaseProblem::boundary
*/
template <class Context>
void boundary(BoundaryRateVector& values,
const Context& context,
unsigned spaceIdx,
unsigned timeIdx) const
{
const auto& pos = context.pos(spaceIdx, timeIdx);
if (onLeftBoundary_(pos) || onRightBoundary_(pos)) {
const auto& materialParams = this->materialLawParams(context, spaceIdx, timeIdx);
Scalar Sw = 0.0;
Opm::ImmiscibleFluidState<Scalar, FluidSystem> fs;
fs.setSaturation(wettingPhaseIdx, Sw);
fs.setSaturation(nonWettingPhaseIdx, 1.0 - Sw);
PhaseVector pC;
MaterialLaw::capillaryPressures(pC, materialParams, fs);
fs.setPressure(wettingPhaseIdx, pnRef_ + pC[wettingPhaseIdx] - pC[nonWettingPhaseIdx]);
fs.setPressure(nonWettingPhaseIdx, pnRef_);
values.setFreeFlow(context, spaceIdx, timeIdx, fs);
}
else if (onInlet_(pos)) {
RateVector massRate(0.0);
// inflow of water
massRate[contiEqIdx] = -0.04; // kg / (m * s)
values.setMassRate(massRate);
}
else
values.setNoFlow();
}
//! \}
/*!
* \name Volumetric terms
*/
//! \{
/*!
* \copydoc FvBaseProblem::initial
*/
template <class Context>
void initial(PrimaryVariables& values,
const Context& context,
unsigned spaceIdx,
unsigned timeIdx) const
{
const auto& materialParams = this->materialLawParams(context, spaceIdx, timeIdx);
Scalar Sw = 0.0;
Opm::ImmiscibleFluidState<Scalar, FluidSystem> fs;
fs.setSaturation(wettingPhaseIdx, Sw);
fs.setSaturation(nonWettingPhaseIdx, 1.0 - Sw);
PhaseVector pC;
MaterialLaw::capillaryPressures(pC, materialParams, fs);
values[pressureWIdx] = pnRef_ + (pC[wettingPhaseIdx] - pC[nonWettingPhaseIdx]);
}
/*!
* \copydoc FvBaseProblem::source
*
* For this problem, the source term of all components is 0
* everywhere.
*/
template <class Context>
void source(RateVector& rate,
const Context& OPM_UNUSED context,
unsigned OPM_UNUSED spaceIdx,
unsigned OPM_UNUSED timeIdx) const
{ rate = Scalar(0.0); }
//! \}
private:
bool onLeftBoundary_(const GlobalPosition& pos) const
{ return pos[0] < this->boundingBoxMin()[0] + eps_; }
bool onRightBoundary_(const GlobalPosition& pos) const
{ return pos[0] > this->boundingBoxMax()[0] - eps_; }
bool onLowerBoundary_(const GlobalPosition& pos) const
{ return pos[1] < this->boundingBoxMin()[1] + eps_; }
bool onUpperBoundary_(const GlobalPosition& pos) const
{ return pos[1] > this->boundingBoxMax()[1] - eps_; }
bool onInlet_(const GlobalPosition& pos) const
{
Scalar width = this->boundingBoxMax()[0] - this->boundingBoxMin()[0];
Scalar lambda = (this->boundingBoxMax()[0] - pos[0]) / width;
return onUpperBoundary_(pos) && 0.5 < lambda && lambda < 2.0 / 3.0;
}
bool isInLens_(const GlobalPosition& pos) const
{
for (unsigned i = 0; i < dimWorld; ++i) {
if (pos[i] < lensLowerLeft_[i] || pos[i] > lensUpperRight_[i])
return false;
}
return true;
}
GlobalPosition lensLowerLeft_;
GlobalPosition lensUpperRight_;
DimMatrix lensK_;
DimMatrix outerK_;
MaterialLawParams lensMaterialParams_;
MaterialLawParams outerMaterialParams_;
std::vector<bool> dofIsInLens_;
Scalar eps_;
Scalar pnRef_;
};
} // namespace Ewoms
#endif