mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-13 01:41:55 -06:00
4e9403b8f8
Make sure that the reservoar volumes always stays positive. i.e. we can not remove more dissolved gas from the rate than the total volume amout of gas.
864 lines
32 KiB
C++
864 lines
32 KiB
C++
/*
|
|
Copyright 2014, 2015 SINTEF ICT, Applied Mathematics.
|
|
Copyright 2014, 2015 Statoil ASA.
|
|
Copyright 2017, IRIS
|
|
|
|
This file is part of the Open Porous Media Project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef OPM_RATECONVERTER_HPP_HEADER_INCLUDED
|
|
#define OPM_RATECONVERTER_HPP_HEADER_INCLUDED
|
|
|
|
#include <opm/core/props/BlackoilPhases.hpp>
|
|
#include <opm/core/simulator/BlackoilState.hpp>
|
|
#include <opm/grid/utility/RegionMapping.hpp>
|
|
#include <opm/core/linalg/ParallelIstlInformation.hpp>
|
|
|
|
#include <dune/grid/common/gridenums.hh>
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include <memory>
|
|
#include <stdexcept>
|
|
#include <type_traits>
|
|
#include <unordered_map>
|
|
#include <utility>
|
|
#include <vector>
|
|
/**
|
|
* \file
|
|
* Facility for converting component rates at surface conditions to
|
|
* phase (voidage) rates at reservoir conditions.
|
|
*
|
|
* This uses the average hydrocarbon pressure to define fluid
|
|
* properties. The facility is intended to support Reservoir Voidage
|
|
* rates only ('RESV').
|
|
*/
|
|
|
|
namespace Opm {
|
|
namespace RateConverter {
|
|
/**
|
|
* Convenience tools for implementing the rate conversion
|
|
* facility.
|
|
*/
|
|
namespace Details {
|
|
namespace Select {
|
|
template <class RegionID, bool>
|
|
struct RegionIDParameter
|
|
{
|
|
using type =
|
|
typename std::remove_reference<RegionID>::type &;
|
|
};
|
|
|
|
template <class RegionID>
|
|
struct RegionIDParameter<RegionID, true>
|
|
{
|
|
using type = RegionID;
|
|
};
|
|
} // Select
|
|
|
|
/**
|
|
* \brief Computes the temperature, pressure, and counter increment.
|
|
*
|
|
* In a parallel run only cells owned contribute to the cell average.
|
|
* \tparam is_parallel Whether this is a parallel run.
|
|
*/
|
|
template<bool is_parallel>
|
|
struct AverageIncrementCalculator
|
|
{
|
|
/**
|
|
* \brief Computes the temperature, pressure, and counter increment.
|
|
* \param pressure The pressure.
|
|
* \param temperature The temperature.
|
|
* \param rs The rs.
|
|
* \param rv The rv.
|
|
* \param cell The current cell index.
|
|
* \param ownership A vector indicating whether a cell is owned
|
|
* by this process (value 1), or not (value 0).
|
|
* \param cell The cell index.
|
|
*/
|
|
std::tuple<double, double, double, double, int>
|
|
operator()(const std::vector<double>& pressure,
|
|
const std::vector<double>& temperature,
|
|
const std::vector<double>& rs,
|
|
const std::vector<double>& rv,
|
|
const std::vector<double>& ownership,
|
|
std::size_t cell){
|
|
if ( ownership[cell] )
|
|
{
|
|
return std::make_tuple(pressure[cell],
|
|
temperature[cell],
|
|
rs[cell],
|
|
rv[cell],
|
|
1);
|
|
}
|
|
else
|
|
{
|
|
return std::make_tuple(0, 0, 0, 0, 0);
|
|
}
|
|
}
|
|
};
|
|
template<>
|
|
struct AverageIncrementCalculator<false>
|
|
{
|
|
std::tuple<double, double, double, double, int>
|
|
operator()(const std::vector<double>& pressure,
|
|
const std::vector<double>& temperature,
|
|
const std::vector<double>& rs,
|
|
const std::vector<double>& rv,
|
|
const std::vector<double>&,
|
|
std::size_t cell){
|
|
return std::make_tuple(pressure[cell],
|
|
temperature[cell],
|
|
rs[cell],
|
|
rv[cell],
|
|
1);
|
|
}
|
|
};
|
|
/**
|
|
* Provide mapping from Region IDs to user-specified collection
|
|
* of per-region attributes.
|
|
*
|
|
* \tparam RegionId Region identifier type. Must be hashable by
|
|
* \code std::hash<> \endcode. Typically a built-in integer
|
|
* type--e.g., \c int.
|
|
*
|
|
* \tparam Attributes User-defined type that represents
|
|
* collection of attributes that have meaning in a per-region
|
|
* aggregate sense. Must be copy-constructible.
|
|
*/
|
|
template <typename RegionId, class Attributes>
|
|
class RegionAttributes
|
|
{
|
|
public:
|
|
/**
|
|
* Expose \c RegionId as a vocabulary type for use in query
|
|
* methods.
|
|
*/
|
|
using RegionID =
|
|
typename Select::RegionIDParameter
|
|
<RegionId, std::is_integral<RegionId>::value>::type;
|
|
|
|
/**
|
|
* Constructor.
|
|
*
|
|
* \tparam RMap Class type that implements the RegionMapping
|
|
* protocol. Typically an instantiation of \code
|
|
* Opm::RegionMapping<> \endcode.
|
|
*
|
|
* \param[in] rmap Specific region mapping that provides
|
|
* reverse lookup from regions to cells.
|
|
*
|
|
* \param[in] attr Pre-constructed initialiser for \c
|
|
* Attributes.
|
|
*/
|
|
template <class RMap>
|
|
RegionAttributes(const RMap& rmap,
|
|
const Attributes& attr)
|
|
{
|
|
using VT = typename AttributeMap::value_type;
|
|
|
|
for (const auto& r : rmap.activeRegions()) {
|
|
auto v = std::unique_ptr<Value>(new Value(attr));
|
|
|
|
const auto stat = attr_.insert(VT(r, std::move(v)));
|
|
|
|
if (stat.second) {
|
|
// New value inserted.
|
|
const auto& cells = rmap.cells(r);
|
|
|
|
assert (! cells.empty());
|
|
|
|
// Region's representative cell.
|
|
stat.first->second->cell_ = cells[0];
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Retrieve representative cell in region.
|
|
*
|
|
* \param[in] reg Specific region.
|
|
*
|
|
* \return Representative cell in region \p reg.
|
|
*/
|
|
int cell(const RegionID reg) const
|
|
{
|
|
return this->find(reg).cell_;
|
|
}
|
|
|
|
/**
|
|
* Request read-only access to region's attributes.
|
|
*
|
|
* \param[in] reg Specific region.
|
|
*
|
|
* \return Read-only access to region \p reg's per-region
|
|
* attributes.
|
|
*/
|
|
const Attributes& attributes(const RegionID reg) const
|
|
{
|
|
return this->find(reg).attr_;
|
|
}
|
|
|
|
/**
|
|
* Request modifiable access to region's attributes.
|
|
*
|
|
* \param[in] reg Specific region.
|
|
*
|
|
* \return Read-write access to region \p reg's per-region
|
|
* attributes.
|
|
*/
|
|
Attributes& attributes(const RegionID reg)
|
|
{
|
|
return this->find(reg).attr_;
|
|
}
|
|
|
|
private:
|
|
/**
|
|
* Aggregate per-region attributes along with region's
|
|
* representative cell.
|
|
*/
|
|
struct Value {
|
|
Value(const Attributes& attr)
|
|
: attr_(attr)
|
|
, cell_(-1)
|
|
{}
|
|
|
|
Attributes attr_;
|
|
int cell_;
|
|
};
|
|
|
|
using ID =
|
|
typename std::remove_reference<RegionId>::type;
|
|
|
|
using AttributeMap =
|
|
std::unordered_map<ID, std::unique_ptr<Value>>;
|
|
|
|
AttributeMap attr_;
|
|
|
|
/**
|
|
* Read-only access to region's properties.
|
|
*/
|
|
const Value& find(const RegionID reg) const
|
|
{
|
|
const auto& i = attr_.find(reg);
|
|
|
|
if (i == attr_.end()) {
|
|
throw std::invalid_argument("Unknown region ID");
|
|
}
|
|
|
|
return *i->second;
|
|
}
|
|
|
|
/**
|
|
* Read-write access to region's properties.
|
|
*/
|
|
Value& find(const RegionID reg)
|
|
{
|
|
const auto& i = attr_.find(reg);
|
|
|
|
if (i == attr_.end()) {
|
|
throw std::invalid_argument("Unknown region ID");
|
|
}
|
|
|
|
return *i->second;
|
|
}
|
|
};
|
|
|
|
/**
|
|
* Convenience functions for querying presence/absence of
|
|
* active phases.
|
|
*/
|
|
namespace PhaseUsed {
|
|
/**
|
|
* Active water predicate.
|
|
*
|
|
* \param[in] pu Active phase object.
|
|
*
|
|
* \return Whether or not water is an active phase.
|
|
*/
|
|
inline bool
|
|
water(const PhaseUsage& pu)
|
|
{
|
|
return pu.phase_used[ BlackoilPhases::Aqua ] != 0;
|
|
}
|
|
|
|
/**
|
|
* Active oil predicate.
|
|
*
|
|
* \param[in] pu Active phase object.
|
|
*
|
|
* \return Whether or not oil is an active phase.
|
|
*/
|
|
inline bool
|
|
oil(const PhaseUsage& pu)
|
|
{
|
|
return pu.phase_used[ BlackoilPhases::Liquid ] != 0;
|
|
}
|
|
|
|
/**
|
|
* Active gas predicate.
|
|
*
|
|
* \param[in] pu Active phase object.
|
|
*
|
|
* \return Whether or not gas is an active phase.
|
|
*/
|
|
inline bool
|
|
gas(const PhaseUsage& pu)
|
|
{
|
|
return pu.phase_used[ BlackoilPhases::Vapour ] != 0;
|
|
}
|
|
} // namespace PhaseUsed
|
|
|
|
/**
|
|
* Convenience functions for querying numerical IDs
|
|
* ("positions") of active phases.
|
|
*/
|
|
namespace PhasePos {
|
|
/**
|
|
* Numerical ID of active water phase.
|
|
*
|
|
* \param[in] pu Active phase object.
|
|
*
|
|
* \return Non-negative index/position of water if
|
|
* active, -1 if not.
|
|
*/
|
|
inline int
|
|
water(const PhaseUsage& pu)
|
|
{
|
|
int p = -1;
|
|
|
|
if (PhaseUsed::water(pu)) {
|
|
p = pu.phase_pos[ BlackoilPhases::Aqua ];
|
|
}
|
|
|
|
return p;
|
|
}
|
|
|
|
/**
|
|
* Numerical ID of active oil phase.
|
|
*
|
|
* \param[in] pu Active phase object.
|
|
*
|
|
* \return Non-negative index/position of oil if
|
|
* active, -1 if not.
|
|
*/
|
|
inline int
|
|
oil(const PhaseUsage& pu)
|
|
{
|
|
int p = -1;
|
|
|
|
if (PhaseUsed::oil(pu)) {
|
|
p = pu.phase_pos[ BlackoilPhases::Liquid ];
|
|
}
|
|
|
|
return p;
|
|
}
|
|
|
|
/**
|
|
* Numerical ID of active gas phase.
|
|
*
|
|
* \param[in] pu Active phase object.
|
|
*
|
|
* \return Non-negative index/position of gas if
|
|
* active, -1 if not.
|
|
*/
|
|
inline int
|
|
gas(const PhaseUsage& pu)
|
|
{
|
|
int p = -1;
|
|
|
|
if (PhaseUsed::gas(pu)) {
|
|
p = pu.phase_pos[ BlackoilPhases::Vapour ];
|
|
}
|
|
|
|
return p;
|
|
}
|
|
} // namespace PhasePos
|
|
} // namespace Details
|
|
|
|
/**
|
|
* Convert component rates at surface conditions to phase
|
|
* (voidage) rates at reservoir conditions.
|
|
*
|
|
* The conversion uses fluid properties evaluated at average
|
|
* hydrocarbon pressure in regions or field.
|
|
*
|
|
* \tparam FluidSystem Fluid system class. Expected to be a BlackOilFluidSystem
|
|
*
|
|
* \tparam Region Type of a forward region mapping. Expected
|
|
* to provide indexed access through \code operator[]()
|
|
* \endcode as well as inner types \c value_type, \c
|
|
* size_type, and \c const_iterator. Typically \code
|
|
* std::vector<int> \endcode.
|
|
*/
|
|
template <class FluidSystem, class Region>
|
|
class SurfaceToReservoirVoidage {
|
|
public:
|
|
/**
|
|
* Constructor.
|
|
*
|
|
* \param[in] region Forward region mapping. Often
|
|
* corresponds to the "FIPNUM" mapping of an ECLIPSE input
|
|
* deck.
|
|
*/
|
|
SurfaceToReservoirVoidage(const PhaseUsage& phaseUsage,
|
|
const Region& region)
|
|
: phaseUsage_(phaseUsage)
|
|
, rmap_ (region)
|
|
, attr_ (rmap_, Attributes())
|
|
{
|
|
}
|
|
|
|
/**
|
|
* Compute average hydrocarbon pressure and maximum
|
|
* dissolution and evaporation at average hydrocarbon
|
|
* pressure in all regions in field.
|
|
*
|
|
* Fluid properties are evaluated at average hydrocarbon
|
|
* pressure for purpose of conversion from surface rate to
|
|
* reservoir voidage rate.
|
|
*
|
|
* \param[in] state Dynamic reservoir state.
|
|
* \param[in] any The information and communication utilities
|
|
* about/of the parallelization. in any parallel
|
|
* it wraps a ParallelISTLInformation. Parameter
|
|
* is optional.
|
|
*/
|
|
void
|
|
defineState(const BlackoilState& state,
|
|
const boost::any& info = boost::any())
|
|
{
|
|
#if HAVE_MPI
|
|
if( info.type() == typeid(ParallelISTLInformation) )
|
|
{
|
|
const auto& ownership =
|
|
boost::any_cast<const ParallelISTLInformation&>(info)
|
|
.updateOwnerMask(state.pressure());
|
|
calcAverages<true>(state, info, ownership);
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
std::vector<double> dummyOwnership; // not actually used
|
|
calcAverages<false>(state, info, dummyOwnership);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Compute pore volume averaged hydrocarbon state pressure, rs and rv.
|
|
*
|
|
* Fluid properties are evaluated at average hydrocarbon
|
|
* state for purpose of conversion from surface rate to
|
|
* reservoir voidage rate.
|
|
*
|
|
*/
|
|
template <typename ElementContext, class EbosSimulator>
|
|
void defineState(const EbosSimulator& simulator)
|
|
{
|
|
|
|
// create map from cell to region
|
|
// and set all attributes to zero
|
|
const auto& grid = simulator.vanguard().grid();
|
|
const unsigned numCells = grid.size(/*codim=*/0);
|
|
std::vector<int> cell2region(numCells, -1);
|
|
for (const auto& reg : rmap_.activeRegions()) {
|
|
for (const auto& cell : rmap_.cells(reg)) {
|
|
cell2region[cell] = reg;
|
|
}
|
|
auto& ra = attr_.attributes(reg);
|
|
ra.pressure = 0.0;
|
|
ra.temperature = 0.0;
|
|
ra.rs = 0.0;
|
|
ra.rv = 0.0;
|
|
ra.pv = 0.0;
|
|
|
|
}
|
|
|
|
ElementContext elemCtx( simulator );
|
|
const auto& gridView = simulator.gridView();
|
|
const auto& comm = gridView.comm();
|
|
|
|
const auto& elemEndIt = gridView.template end</*codim=*/0>();
|
|
for (auto elemIt = gridView.template begin</*codim=*/0>();
|
|
elemIt != elemEndIt;
|
|
++elemIt)
|
|
{
|
|
|
|
const auto& elem = *elemIt;
|
|
if (elem.partitionType() != Dune::InteriorEntity)
|
|
continue;
|
|
|
|
elemCtx.updatePrimaryStencil(elem);
|
|
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
|
|
const unsigned cellIdx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
|
|
const auto& intQuants = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
|
|
const auto& fs = intQuants.fluidState();
|
|
// use pore volume weighted averages.
|
|
const double pv_cell =
|
|
simulator.model().dofTotalVolume(cellIdx)
|
|
* intQuants.porosity().value();
|
|
|
|
// only count oil and gas filled parts of the domain
|
|
double hydrocarbon = 1.0;
|
|
const auto& pu = phaseUsage_;
|
|
if (Details::PhaseUsed::water(pu)) {
|
|
hydrocarbon -= fs.saturation(FluidSystem::waterPhaseIdx).value();
|
|
}
|
|
|
|
int reg = cell2region[cellIdx];
|
|
assert(reg >= 0);
|
|
auto& ra = attr_.attributes(reg);
|
|
auto& p = ra.pressure;
|
|
auto& T = ra.temperature;
|
|
auto& rs = ra.rs;
|
|
auto& rv = ra.rv;
|
|
auto& pv = ra.pv;
|
|
|
|
// sum p, rs, rv, and T.
|
|
double hydrocarbonPV = pv_cell*hydrocarbon;
|
|
pv += hydrocarbonPV;
|
|
p += fs.pressure(FluidSystem::oilPhaseIdx).value()*hydrocarbonPV;
|
|
rs += fs.Rs().value()*hydrocarbonPV;
|
|
rv += fs.Rv().value()*hydrocarbonPV;
|
|
T += fs.temperature(FluidSystem::oilPhaseIdx).value()*hydrocarbonPV;
|
|
}
|
|
|
|
for (const auto& reg : rmap_.activeRegions()) {
|
|
auto& ra = attr_.attributes(reg);
|
|
auto& p = ra.pressure;
|
|
auto& T = ra.temperature;
|
|
auto& rs = ra.rs;
|
|
auto& rv = ra.rv;
|
|
auto& pv = ra.pv;
|
|
// communicate sums
|
|
p = comm.sum(p);
|
|
T = comm.sum(T);
|
|
rs = comm.sum(rs);
|
|
rv = comm.sum(rv);
|
|
pv = comm.sum(pv);
|
|
// compute average
|
|
p /= pv;
|
|
T /= pv;
|
|
rs /= pv;
|
|
rv /= pv;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Region identifier.
|
|
*
|
|
* Integral type.
|
|
*/
|
|
typedef typename RegionMapping<Region>::RegionId RegionId;
|
|
|
|
/**
|
|
* Compute coefficients for surface-to-reservoir voidage
|
|
* conversion.
|
|
*
|
|
* \tparam Input Type representing contiguous collection
|
|
* of component rates at surface conditions. Must support
|
|
* direct indexing through \code operator[]()\endcode.
|
|
*
|
|
* \tparam Coeff Type representing contiguous collection
|
|
* of surface-to-reservoir conversion coefficients. Must
|
|
* support direct indexing through \code operator[]()
|
|
* \endcode.
|
|
*
|
|
*
|
|
* \param[in] r Fluid-in-place region of the well
|
|
* \param[in] pvtRegionIdx PVT region of the well
|
|
*
|
|
*
|
|
* \param[out] coeff Surface-to-reservoir conversion
|
|
* coefficients that can be used to compute total reservoir
|
|
* volumes from surface volumes with the formula
|
|
* q_{rT} = \sum_p coeff[p] q_{sp}.
|
|
* However, individual phase reservoir volumes cannot be calculated from
|
|
* these coefficients (i.e. q_{rp} is not equal to coeff[p] q_{sp})
|
|
* since they can depend on more than one surface volume rate when
|
|
* we have dissolved gas or vaporized oil.
|
|
*/
|
|
template <class Coeff>
|
|
void
|
|
calcCoeff(const RegionId r, const int pvtRegionIdx, Coeff& coeff) const
|
|
{
|
|
const auto& pu = phaseUsage_;
|
|
const auto& ra = attr_.attributes(r);
|
|
const double p = ra.pressure;
|
|
const double T = ra.temperature;
|
|
|
|
const int iw = Details::PhasePos::water(pu);
|
|
const int io = Details::PhasePos::oil (pu);
|
|
const int ig = Details::PhasePos::gas (pu);
|
|
|
|
std::fill(& coeff[0], & coeff[0] + phaseUsage_.num_phases, 0.0);
|
|
|
|
if (Details::PhaseUsed::water(pu)) {
|
|
// q[w]_r = q[w]_s / bw
|
|
|
|
const double bw = FluidSystem::waterPvt().inverseFormationVolumeFactor(pvtRegionIdx, T, p);
|
|
|
|
coeff[iw] = 1.0 / bw;
|
|
}
|
|
|
|
// Actual Rs and Rv:
|
|
double Rs = ra.rs;
|
|
double Rv = ra.rv;
|
|
|
|
// Determinant of 'R' matrix
|
|
const double detR = 1.0 - (Rs * Rv);
|
|
|
|
if (Details::PhaseUsed::oil(pu)) {
|
|
// q[o]_r = 1/(bo * (1 - rs*rv)) * (q[o]_s - rv*q[g]_s)
|
|
|
|
const double bo = FluidSystem::oilPvt().inverseFormationVolumeFactor(pvtRegionIdx, T, p, Rs);
|
|
const double den = bo * detR;
|
|
|
|
coeff[io] += 1.0 / den;
|
|
|
|
if (Details::PhaseUsed::gas(pu)) {
|
|
coeff[ig] -= ra.rv / den;
|
|
}
|
|
}
|
|
|
|
if (Details::PhaseUsed::gas(pu)) {
|
|
// q[g]_r = 1/(bg * (1 - rs*rv)) * (q[g]_s - rs*q[o]_s)
|
|
|
|
const double bg = FluidSystem::gasPvt().inverseFormationVolumeFactor(pvtRegionIdx, T, p, Rv);
|
|
const double den = bg * detR;
|
|
|
|
coeff[ig] += 1.0 / den;
|
|
|
|
if (Details::PhaseUsed::oil(pu)) {
|
|
coeff[io] -= ra.rs / den;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Converting surface volume rates to reservoir voidage rates
|
|
*
|
|
* \tparam Rates Type representing contiguous collection
|
|
* of surface-to-reservoir conversion coefficients. Must
|
|
* support direct indexing through \code operator[]()
|
|
* \endcode.
|
|
*
|
|
*
|
|
* \param[in] r Fluid-in-place region of the well
|
|
* \param[in] pvtRegionIdx PVT region of the well
|
|
* \param[in] surface_rates surface voluem rates for
|
|
* all active phases
|
|
*
|
|
* \param[out] voidage_rates reservoir volume rates for
|
|
* all active phases
|
|
*/
|
|
template <class Rates >
|
|
void
|
|
calcReservoirVoidageRates(const RegionId r, const int pvtRegionIdx, const Rates& surface_rates,
|
|
Rates& voidage_rates) const
|
|
{
|
|
assert(voidage_rates.size() == surface_rates.size());
|
|
|
|
std::fill(voidage_rates.begin(), voidage_rates.end(), 0.0);
|
|
|
|
const auto& pu = phaseUsage_;
|
|
const auto& ra = attr_.attributes(r);
|
|
const double p = ra.pressure;
|
|
const double T = ra.temperature;
|
|
|
|
const int iw = Details::PhasePos::water(pu);
|
|
const int io = Details::PhasePos::oil (pu);
|
|
const int ig = Details::PhasePos::gas (pu);
|
|
|
|
if (Details::PhaseUsed::water(pu)) {
|
|
// q[w]_r = q[w]_s / bw
|
|
|
|
const double bw = FluidSystem::waterPvt().inverseFormationVolumeFactor(pvtRegionIdx, T, p);
|
|
|
|
voidage_rates[iw] = surface_rates[iw] / bw;
|
|
}
|
|
|
|
// Use average Rs and Rv:
|
|
double Rs = std::min(ra.rs, surface_rates[ig]/(surface_rates[io]+1.0e-15));
|
|
double Rv = std::min(ra.rv, surface_rates[io]/(surface_rates[ig]+1.0e-15));
|
|
|
|
// Determinant of 'R' matrix
|
|
const double detR = 1.0 - (Rs * Rv);
|
|
|
|
if (Details::PhaseUsed::oil(pu)) {
|
|
// q[o]_r = 1/(bo * (1 - rs*rv)) * (q[o]_s - rv*q[g]_s)
|
|
|
|
const double bo = FluidSystem::oilPvt().inverseFormationVolumeFactor(pvtRegionIdx, T, p, Rs);
|
|
const double den = bo * detR;
|
|
|
|
voidage_rates[io] = surface_rates[io];
|
|
|
|
if (Details::PhaseUsed::gas(pu)) {
|
|
voidage_rates[io] -= Rv * surface_rates[ig];
|
|
}
|
|
|
|
voidage_rates[io] /= den;
|
|
}
|
|
|
|
if (Details::PhaseUsed::gas(pu)) {
|
|
// q[g]_r = 1/(bg * (1 - rs*rv)) * (q[g]_s - rs*q[o]_s)
|
|
|
|
const double bg = FluidSystem::gasPvt().inverseFormationVolumeFactor(pvtRegionIdx, T, p, Rv);
|
|
const double den = bg * detR;
|
|
|
|
voidage_rates[ig] = surface_rates[ig];
|
|
|
|
if (Details::PhaseUsed::oil(pu)) {
|
|
voidage_rates[ig] -= Rs * surface_rates[io];
|
|
}
|
|
|
|
voidage_rates[ig] /= den;
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Compute coefficients for surface-to-reservoir voidage
|
|
* conversion for solvent.
|
|
*
|
|
*
|
|
* \param[in] r Fluid-in-place region of the well
|
|
* \param[in] pvtRegionIdx PVT region of the well
|
|
*
|
|
*
|
|
* \param[out] double Surface-to-reservoir conversion
|
|
* coefficients for solvent.
|
|
*/
|
|
template <class SolventModule>
|
|
void
|
|
calcCoeffSolvent(const RegionId r, const int pvtRegionIdx, double& coeff) const
|
|
{
|
|
const auto& ra = attr_.attributes(r);
|
|
const double p = ra.pressure;
|
|
const double T = ra.temperature;
|
|
const auto& solventPvt = SolventModule::solventPvt();
|
|
const double bs = solventPvt.inverseFormationVolumeFactor(pvtRegionIdx, T, p);
|
|
coeff = 1.0 / bs;
|
|
}
|
|
|
|
private:
|
|
/**
|
|
* Fluid property object.
|
|
*/
|
|
const PhaseUsage phaseUsage_;
|
|
|
|
/**
|
|
* "Fluid-in-place" region mapping (forward and reverse).
|
|
*/
|
|
const RegionMapping<Region> rmap_;
|
|
|
|
/**
|
|
* Derived property attributes for each active region.
|
|
*/
|
|
struct Attributes {
|
|
Attributes()
|
|
: pressure (0.0)
|
|
, temperature(0.0)
|
|
, rs(0.0)
|
|
, rv(0.0)
|
|
, pv(0.0)
|
|
{}
|
|
|
|
double pressure;
|
|
double temperature;
|
|
double rs;
|
|
double rv;
|
|
double pv;
|
|
};
|
|
|
|
Details::RegionAttributes<RegionId, Attributes> attr_;
|
|
|
|
|
|
/**
|
|
* Compute average hydrocarbon pressure and temperatures in all
|
|
* regions.
|
|
*
|
|
* \param[in] state Dynamic reservoir state.
|
|
* \param[in] info The information and communication utilities
|
|
* about/of the parallelization.
|
|
* \param[in] ownership In a parallel run this is vector containing
|
|
* 1 for every owned unknown, zero otherwise.
|
|
* Not used in a sequential run.
|
|
* \tparam is_parallel True if the run is parallel. In this case
|
|
* info has to contain a ParallelISTLInformation
|
|
* object.
|
|
*/
|
|
template<bool is_parallel>
|
|
void
|
|
calcAverages(const BlackoilState& state, const boost::any& info,
|
|
const std::vector<double>& ownerShip)
|
|
{
|
|
const auto& press = state.pressure();
|
|
const auto& temp = state.temperature();
|
|
const auto& Rv = state.rv();
|
|
const auto& Rs = state.gasoilratio();
|
|
|
|
for (const auto& reg : rmap_.activeRegions()) {
|
|
auto& ra = attr_.attributes(reg);
|
|
auto& p = ra.pressure;
|
|
auto& T = ra.temperature;
|
|
auto& rs = ra.rs;
|
|
auto& rv = ra.rv;
|
|
|
|
std::size_t n = 0;
|
|
p = T = 0.0;
|
|
for (const auto& cell : rmap_.cells(reg)) {
|
|
auto increment = Details::
|
|
AverageIncrementCalculator<is_parallel>()(press, temp, Rs, Rv,
|
|
ownerShip,
|
|
cell);
|
|
p += std::get<0>(increment);
|
|
T += std::get<1>(increment);
|
|
rs += std::get<2>(increment);
|
|
rv += std::get<3>(increment);
|
|
n += std::get<4>(increment);
|
|
}
|
|
std::size_t global_n = n;
|
|
double global_p = p;
|
|
double global_T = T;
|
|
double global_rs = rs;
|
|
double global_rv = rv;
|
|
#if HAVE_MPI
|
|
if ( is_parallel )
|
|
{
|
|
const auto& real_info = boost::any_cast<const ParallelISTLInformation&>(info);
|
|
global_n = real_info.communicator().sum(n);
|
|
global_p = real_info.communicator().sum(p);
|
|
global_rs = real_info.communicator().sum(rs);
|
|
global_rv = real_info.communicator().sum(rv);
|
|
global_T = real_info.communicator().sum(T);
|
|
}
|
|
#endif
|
|
p = global_p / global_n;
|
|
rs = global_rs / global_n;
|
|
rv = global_rv / global_n;
|
|
T = global_T / global_n;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
};
|
|
} // namespace RateConverter
|
|
} // namespace Opm
|
|
|
|
#endif /* OPM_RATECONVERTER_HPP_HEADER_INCLUDED */
|