mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-11-26 03:00:17 -06:00
419 lines
19 KiB
C++
419 lines
19 KiB
C++
/*
|
|
Copyright 2014 SINTEF ICT, Applied Mathematics.
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef OPM_THRESHOLDPRESSURES_HEADER_INCLUDED
|
|
#define OPM_THRESHOLDPRESSURES_HEADER_INCLUDED
|
|
|
|
#include <opm/core/props/BlackoilPropertiesFromDeck.hpp>
|
|
#include <opm/core/props/BlackoilPhases.hpp>
|
|
|
|
#include <vector>
|
|
#include <opm/parser/eclipse/EclipseState/SimulationConfig/SimulationConfig.hpp>
|
|
#include <opm/parser/eclipse/EclipseState/SimulationConfig/ThresholdPressure.hpp>
|
|
#include <opm/parser/eclipse/EclipseState/EclipseState.hpp>
|
|
#include <opm/parser/eclipse/Deck/Deck.hpp>
|
|
#include <opm/parser/eclipse/EclipseState/Grid/NNC.hpp>
|
|
|
|
|
|
namespace Opm
|
|
{
|
|
/// \brief Compute the maximum gravity corrected pressure difference of all
|
|
/// equilibration regions given a reservoir state.
|
|
/// \tparam Grid Type of grid object (UnstructuredGrid or CpGrid).
|
|
/// \param[out] maxDp The resulting pressure difference between equilibration regions
|
|
/// \param[in] deck Input deck, EQLOPTS and THPRES are accessed from it.
|
|
/// \param[in] eclipseState Processed eclipse state, EQLNUM is accessed from it.
|
|
/// \param[in] grid The grid to which the thresholds apply.
|
|
/// \param[in] initialState The state of the reservoir
|
|
/// \param[in] props The object which calculates fluid properties
|
|
/// \param[in] gravity The gravity constant
|
|
template <class Grid>
|
|
void computeMaxDp(std::map<std::pair<int, int>, double>& maxDp,
|
|
const DeckConstPtr& deck,
|
|
EclipseStateConstPtr eclipseState,
|
|
const Grid& grid,
|
|
const BlackoilState& initialState,
|
|
const BlackoilPropertiesFromDeck& props,
|
|
const double gravity)
|
|
{
|
|
|
|
const PhaseUsage& pu = props.phaseUsage();
|
|
|
|
const auto& eqlnum = eclipseState->get3DProperties().getIntGridProperty("EQLNUM");
|
|
const auto& eqlnumData = eqlnum.getData();
|
|
|
|
const int numPhases = initialState.numPhases();
|
|
const int numCells = UgGridHelpers::numCells(grid);
|
|
const int numPvtRegions = deck->getKeyword("TABDIMS").getRecord(0).getItem("NTPVT").get< int >(0);
|
|
|
|
// retrieve the minimum (residual!?) and the maximum saturations for all cells
|
|
std::vector<double> minSat(numPhases*numCells);
|
|
std::vector<double> maxSat(numPhases*numCells);
|
|
std::vector<int> allCells(numCells);
|
|
for (int cellIdx = 0; cellIdx < numCells; ++cellIdx) {
|
|
allCells[cellIdx] = cellIdx;
|
|
}
|
|
props.satRange(numCells, allCells.data(), minSat.data(), maxSat.data());
|
|
|
|
// retrieve the surface densities
|
|
std::vector<std::vector<double> > surfaceDensity(numPvtRegions);
|
|
const auto& densityKw = deck->getKeyword("DENSITY");
|
|
for (int regionIdx = 0; regionIdx < numPvtRegions; ++regionIdx) {
|
|
surfaceDensity[regionIdx].resize(numPhases);
|
|
|
|
if (pu.phase_used[BlackoilPhases::Aqua]) {
|
|
const int wpos = pu.phase_pos[BlackoilPhases::Aqua];
|
|
surfaceDensity[regionIdx][wpos] =
|
|
densityKw.getRecord(regionIdx).getItem("WATER").getSIDouble(0);
|
|
}
|
|
|
|
if (pu.phase_used[BlackoilPhases::Liquid]) {
|
|
const int opos = pu.phase_pos[BlackoilPhases::Liquid];
|
|
surfaceDensity[regionIdx][opos] =
|
|
densityKw.getRecord(regionIdx).getItem("OIL").getSIDouble(0);
|
|
}
|
|
|
|
if (pu.phase_used[BlackoilPhases::Vapour]) {
|
|
const int gpos = pu.phase_pos[BlackoilPhases::Vapour];
|
|
surfaceDensity[regionIdx][gpos] =
|
|
densityKw.getRecord(regionIdx).getItem("GAS").getSIDouble(0);
|
|
}
|
|
}
|
|
|
|
// retrieve the PVT region of each cell. note that we need c++ instead of
|
|
// Fortran indices.
|
|
const int* gc = UgGridHelpers::globalCell(grid);
|
|
std::vector<int> pvtRegion(numCells);
|
|
const auto& cartPvtRegion = eclipseState->get3DProperties().getIntGridProperty("PVTNUM").getData();
|
|
for (int cellIdx = 0; cellIdx < numCells; ++cellIdx) {
|
|
const int cartCellIdx = gc ? gc[cellIdx] : cellIdx;
|
|
pvtRegion[cellIdx] = std::max(0, cartPvtRegion[cartCellIdx] - 1);
|
|
}
|
|
|
|
// compute the initial "phase presence" of each cell (required to calculate
|
|
// the inverse formation volume factors
|
|
std::vector<PhasePresence> cond(numCells);
|
|
for (int cellIdx = 0; cellIdx < numCells; ++cellIdx) {
|
|
if (pu.phase_used[BlackoilPhases::Aqua]) {
|
|
const double sw = initialState.saturation()[numPhases*cellIdx + pu.phase_pos[BlackoilPhases::Aqua]];
|
|
if (sw > 0.0) {
|
|
cond[cellIdx].setFreeWater();
|
|
}
|
|
}
|
|
|
|
if (pu.phase_used[BlackoilPhases::Liquid]) {
|
|
const double so = initialState.saturation()[numPhases*cellIdx + pu.phase_pos[BlackoilPhases::Liquid]];
|
|
if (so > 0.0) {
|
|
cond[cellIdx].setFreeOil();
|
|
}
|
|
}
|
|
|
|
if (pu.phase_used[BlackoilPhases::Vapour]) {
|
|
const double sg = initialState.saturation()[numPhases*cellIdx + pu.phase_pos[BlackoilPhases::Vapour]];
|
|
if (sg > 0.0) {
|
|
cond[cellIdx].setFreeGas();
|
|
}
|
|
}
|
|
}
|
|
|
|
// calculate the initial fluid densities for the gravity correction.
|
|
std::vector<std::vector<double>> rho(numPhases);
|
|
for (int phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
rho[phaseIdx].resize(numCells);
|
|
}
|
|
|
|
// compute the capillary pressures of the active phases
|
|
std::vector<double> capPress(numCells*numPhases);
|
|
std::vector<int> cellIdxArray(numCells);
|
|
for (int cellIdx = 0; cellIdx < numCells; ++ cellIdx) {
|
|
cellIdxArray[cellIdx] = cellIdx;
|
|
}
|
|
props.capPress(numCells, initialState.saturation().data(), cellIdxArray.data(), capPress.data(), NULL);
|
|
|
|
// compute the absolute pressure of each active phase: for some reason, E100
|
|
// defines the capillary pressure for the water phase as p_o - p_w while it
|
|
// uses p_g - p_o for the gas phase. (it would be more consistent to use the
|
|
// oil pressure as reference for both the other phases.) probably this is
|
|
// done to always have a positive number for the capillary pressure (as long
|
|
// as the medium is hydrophilic)
|
|
std::vector<std::vector<double> > phasePressure(numPhases);
|
|
for (int phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
phasePressure[phaseIdx].resize(numCells);
|
|
}
|
|
|
|
for (int cellIdx = 0; cellIdx < numCells; ++ cellIdx) {
|
|
// we currently hard-code the oil phase as the reference phase!
|
|
assert(pu.phase_used[BlackoilPhases::Liquid]);
|
|
|
|
const int opos = pu.phase_pos[BlackoilPhases::Liquid];
|
|
phasePressure[opos][cellIdx] = initialState.pressure()[cellIdx];
|
|
|
|
if (pu.phase_used[BlackoilPhases::Aqua]) {
|
|
const int wpos = pu.phase_pos[BlackoilPhases::Aqua];
|
|
phasePressure[wpos][cellIdx] =
|
|
initialState.pressure()[cellIdx]
|
|
+ (capPress[cellIdx*numPhases + opos] - capPress[cellIdx*numPhases + wpos]);
|
|
}
|
|
|
|
if (pu.phase_used[BlackoilPhases::Vapour]) {
|
|
const int gpos = pu.phase_pos[BlackoilPhases::Vapour];
|
|
phasePressure[gpos][cellIdx] =
|
|
initialState.pressure()[cellIdx]
|
|
+ (capPress[cellIdx*numPhases + gpos] - capPress[cellIdx*numPhases + opos]);
|
|
}
|
|
}
|
|
|
|
// calculate the densities of the active phases for each cell
|
|
if (pu.phase_used[BlackoilPhases::Aqua]) {
|
|
const int wpos = pu.phase_pos[BlackoilPhases::Aqua];
|
|
const auto& pvtw = props.waterPvt();
|
|
for (int cellIdx = 0; cellIdx < numCells; ++ cellIdx) {
|
|
int pvtRegionIdx = pvtRegion[cellIdx];
|
|
|
|
double T = initialState.temperature()[cellIdx];
|
|
double p = initialState.pressure()[cellIdx];
|
|
double b = pvtw.inverseFormationVolumeFactor(pvtRegionIdx, T, p);
|
|
|
|
rho[wpos][cellIdx] = surfaceDensity[pvtRegionIdx][wpos]*b;
|
|
}
|
|
}
|
|
|
|
if (pu.phase_used[BlackoilPhases::Liquid]) {
|
|
const int opos = pu.phase_pos[BlackoilPhases::Liquid];
|
|
const auto& pvto = props.oilPvt();
|
|
for (int cellIdx = 0; cellIdx < numCells; ++ cellIdx) {
|
|
int pvtRegionIdx = pvtRegion[cellIdx];
|
|
|
|
double T = initialState.temperature()[cellIdx];
|
|
double p = initialState.pressure()[cellIdx];
|
|
double Rs = initialState.gasoilratio()[cellIdx];
|
|
double RsSat = pvto.saturatedGasDissolutionFactor(pvtRegionIdx, T, p);
|
|
|
|
if (Rs >= RsSat) {
|
|
double b = pvto.saturatedInverseFormationVolumeFactor(pvtRegionIdx, T, p);
|
|
rho[opos][cellIdx] = surfaceDensity[pvtRegionIdx][opos]*b;
|
|
}
|
|
else {
|
|
double b = pvto.inverseFormationVolumeFactor(pvtRegionIdx, T, p, Rs);
|
|
rho[opos][cellIdx] = surfaceDensity[pvtRegionIdx][opos]*b;
|
|
if (pu.phase_used[BlackoilPhases::Vapour]) {
|
|
int gpos = pu.phase_pos[BlackoilPhases::Vapour];
|
|
rho[opos][cellIdx] += surfaceDensity[pvtRegionIdx][gpos]*Rs*b;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (pu.phase_used[BlackoilPhases::Vapour]) {
|
|
const int gpos = pu.phase_pos[BlackoilPhases::Vapour];
|
|
const auto& pvtg = props.gasPvt();
|
|
for (int cellIdx = 0; cellIdx < numCells; ++ cellIdx) {
|
|
int pvtRegionIdx = pvtRegion[cellIdx];
|
|
|
|
double T = initialState.temperature()[cellIdx];
|
|
double p = initialState.pressure()[cellIdx];
|
|
double Rv = initialState.rv()[cellIdx];
|
|
double RvSat = pvtg.saturatedOilVaporizationFactor(pvtRegionIdx, T, p);
|
|
|
|
if (Rv >= RvSat) {
|
|
double b = pvtg.saturatedInverseFormationVolumeFactor(pvtRegionIdx, T, p);
|
|
rho[gpos][cellIdx] = surfaceDensity[pvtRegionIdx][gpos]*b;
|
|
}
|
|
else {
|
|
double b = pvtg.inverseFormationVolumeFactor(pvtRegionIdx, T, p, Rv);
|
|
rho[gpos][cellIdx] = surfaceDensity[pvtRegionIdx][gpos]*b;
|
|
|
|
if (pu.phase_used[BlackoilPhases::Liquid]) {
|
|
int opos = pu.phase_pos[BlackoilPhases::Liquid];
|
|
rho[gpos][cellIdx] += surfaceDensity[pvtRegionIdx][opos]*Rv*b;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Calculate the maximum pressure potential difference between all PVT region
|
|
// transitions of the initial solution.
|
|
const int num_faces = UgGridHelpers::numFaces(grid);
|
|
const auto& fc = UgGridHelpers::faceCells(grid);
|
|
for (int face = 0; face < num_faces; ++face) {
|
|
const int c1 = fc(face, 0);
|
|
const int c2 = fc(face, 1);
|
|
if (c1 < 0 || c2 < 0) {
|
|
// Boundary face, skip this.
|
|
continue;
|
|
}
|
|
const int gc1 = (gc == 0) ? c1 : gc[c1];
|
|
const int gc2 = (gc == 0) ? c2 : gc[c2];
|
|
const int eq1 = eqlnumData[gc1];
|
|
const int eq2 = eqlnumData[gc2];
|
|
|
|
if (eq1 == eq2) {
|
|
// not an equilibration region boundary. skip this.
|
|
continue;
|
|
}
|
|
|
|
// update the maximum pressure potential difference between the two
|
|
// regions
|
|
const auto barrierId = std::make_pair(eq1, eq2);
|
|
if (maxDp.count(barrierId) == 0) {
|
|
maxDp[barrierId] = 0.0;
|
|
}
|
|
|
|
for (int phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
const double z1 = UgGridHelpers::cellCenterDepth(grid, c1);
|
|
const double z2 = UgGridHelpers::cellCenterDepth(grid, c2);
|
|
const double zAvg = (z1 + z2)/2; // average depth
|
|
|
|
const double rhoAvg = (rho[phaseIdx][c1] + rho[phaseIdx][c2])/2;
|
|
|
|
const double s1 = initialState.saturation()[numPhases*c1 + phaseIdx];
|
|
const double s2 = initialState.saturation()[numPhases*c2 + phaseIdx];
|
|
|
|
const double sResid1 = minSat[numPhases*c1 + phaseIdx];
|
|
const double sResid2 = minSat[numPhases*c2 + phaseIdx];
|
|
|
|
// compute gravity corrected pressure potentials at the average depth
|
|
const double p1 = phasePressure[phaseIdx][c1] + rhoAvg*gravity*(zAvg - z1);
|
|
const double p2 = phasePressure[phaseIdx][c2] + rhoAvg*gravity*(zAvg - z2);
|
|
|
|
if ((p1 > p2 && s1 > sResid1) || (p2 > p1 && s2 > sResid2))
|
|
maxDp[barrierId] = std::max(maxDp[barrierId], std::abs(p1 - p2));
|
|
}
|
|
}
|
|
}
|
|
|
|
/// \brief Get a vector of pressure thresholds from EclipseState.
|
|
/// This function looks at EQLOPTS, THPRES and EQLNUM to determine
|
|
/// pressure thresholds. It does not consider the case where the
|
|
/// threshold values are defaulted, in which case they should be
|
|
/// determined from the initial, equilibrated simulation state.
|
|
/// \tparam Grid Type of grid object (UnstructuredGrid or CpGrid).
|
|
/// \param[in] deck Input deck, EQLOPTS and THPRES are accessed from it.
|
|
/// \param[in] eclipseState Processed eclipse state, EQLNUM is accessed from it.
|
|
/// \param[in] maxDp The maximum gravity corrected pressure differences between
|
|
/// the equilibration regions.
|
|
/// \param[in] grid The grid to which the thresholds apply.
|
|
/// \return A vector of pressure thresholds, one
|
|
/// for each face in the grid. A value
|
|
/// of zero means no threshold for that
|
|
/// particular face. An empty vector is
|
|
/// returned if there is no THPRES
|
|
/// feature used in the deck.
|
|
|
|
|
|
|
|
template <class Grid>
|
|
std::vector<double> thresholdPressures(const DeckConstPtr& /* deck */,
|
|
EclipseStateConstPtr eclipseState,
|
|
const Grid& grid,
|
|
const std::map<std::pair<int, int>, double>& maxDp)
|
|
{
|
|
SimulationConfigConstPtr simulationConfig = eclipseState->getSimulationConfig();
|
|
std::vector<double> thpres_vals;
|
|
if (simulationConfig->hasThresholdPressure()) {
|
|
std::shared_ptr<const ThresholdPressure> thresholdPressure = simulationConfig->getThresholdPressure();
|
|
const auto& eqlnum = eclipseState->get3DProperties().getIntGridProperty("EQLNUM");
|
|
const auto& eqlnumData = eqlnum.getData();
|
|
|
|
// Set threshold pressure values for each cell face.
|
|
const int num_faces = UgGridHelpers::numFaces(grid);
|
|
const auto& fc = UgGridHelpers::faceCells(grid);
|
|
const int* gc = UgGridHelpers::globalCell(grid);
|
|
thpres_vals.resize(num_faces, 0.0);
|
|
for (int face = 0; face < num_faces; ++face) {
|
|
const int c1 = fc(face, 0);
|
|
const int c2 = fc(face, 1);
|
|
if (c1 < 0 || c2 < 0) {
|
|
// Boundary face, skip it.
|
|
continue;
|
|
}
|
|
const int gc1 = (gc == 0) ? c1 : gc[c1];
|
|
const int gc2 = (gc == 0) ? c2 : gc[c2];
|
|
const int eq1 = eqlnumData[gc1];
|
|
const int eq2 = eqlnumData[gc2];
|
|
|
|
if (thresholdPressure->hasRegionBarrier(eq1,eq2)) {
|
|
if (thresholdPressure->hasThresholdPressure(eq1,eq2)) {
|
|
thpres_vals[face] = thresholdPressure->getThresholdPressure(eq1,eq2);
|
|
}
|
|
else {
|
|
// set the threshold pressure for faces of PVT regions where the third item
|
|
// has been defaulted to the maximum pressure potential difference between
|
|
// these regions
|
|
const auto barrierId = std::make_pair(eq1, eq2);
|
|
thpres_vals[face] = maxDp.at(barrierId);
|
|
}
|
|
}
|
|
|
|
}
|
|
}
|
|
return thpres_vals;
|
|
}
|
|
|
|
/// \brief Get a vector of pressure thresholds from either EclipseState
|
|
/// or maxDp (for defaulted values) for all Non-neighbour connections (NNCs).
|
|
/// \param[in] nnc The NNCs,
|
|
/// \param[in] eclipseState Processed eclipse state, EQLNUM is accessed from it.
|
|
/// \param[in] maxDp The maximum gravity corrected pressure differences between
|
|
/// the equilibration regions.
|
|
/// \return A vector of pressure thresholds, one
|
|
/// for each NNC in the grid. A value
|
|
/// of zero means no threshold for that
|
|
/// particular connection. An empty vector is
|
|
/// returned if there is no THPRES
|
|
/// feature used in the deck.
|
|
std::vector<double> thresholdPressuresNNC(EclipseStateConstPtr eclipseState,
|
|
const NNC& nnc,
|
|
const std::map<std::pair<int, int>, double>& maxDp)
|
|
{
|
|
SimulationConfigConstPtr simulationConfig = eclipseState->getSimulationConfig();
|
|
std::vector<double> thpres_vals;
|
|
if (simulationConfig->hasThresholdPressure()) {
|
|
std::shared_ptr<const ThresholdPressure> thresholdPressure = simulationConfig->getThresholdPressure();
|
|
const auto& eqlnum = eclipseState->get3DProperties().getIntGridProperty("EQLNUM");
|
|
const auto& eqlnumData = eqlnum.getData();
|
|
|
|
// Set values for each NNC
|
|
|
|
thpres_vals.resize(nnc.numNNC(), 0.0);
|
|
for (size_t i = 0 ; i < nnc.numNNC(); ++i) {
|
|
const int gc1 = nnc.nncdata()[i].cell1;
|
|
const int gc2 = nnc.nncdata()[i].cell2;
|
|
const int eq1 = eqlnumData[gc1];
|
|
const int eq2 = eqlnumData[gc2];
|
|
|
|
if (thresholdPressure->hasRegionBarrier(eq1,eq2)) {
|
|
if (thresholdPressure->hasThresholdPressure(eq1,eq2)) {
|
|
thpres_vals[i] = thresholdPressure->getThresholdPressure(eq1,eq2);
|
|
} else {
|
|
// set the threshold pressure for NNC of PVT regions where the third item
|
|
// has been defaulted to the maximum pressure potential difference between
|
|
// these regions
|
|
const auto barrierId = std::make_pair(eq1, eq2);
|
|
thpres_vals[i] = maxDp.at(barrierId);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return thpres_vals;
|
|
}
|
|
}
|
|
|
|
#endif // OPM_THRESHOLDPRESSURES_HEADER_INCLUDED
|