mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-16 17:41:56 -06:00
3313 lines
127 KiB
C++
3313 lines
127 KiB
C++
/*
|
|
Copyright 2016 - 2019 SINTEF Digital, Mathematics & Cybernetics.
|
|
Copyright 2016 - 2018 Equinor ASA.
|
|
Copyright 2017 Dr. Blatt - HPC-Simulation-Software & Services
|
|
Copyright 2016 - 2018 Norce AS
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <opm/simulators/utils/DeferredLoggingErrorHelpers.hpp>
|
|
#include <opm/core/props/phaseUsageFromDeck.hpp>
|
|
|
|
#include <opm/parser/eclipse/Units/UnitSystem.hpp>
|
|
|
|
#include <algorithm>
|
|
#include <utility>
|
|
#include <fmt/format.h>
|
|
|
|
namespace Opm {
|
|
template<typename TypeTag>
|
|
BlackoilWellModel<TypeTag>::
|
|
BlackoilWellModel(Simulator& ebosSimulator)
|
|
: ebosSimulator_(ebosSimulator),
|
|
phase_usage_(phaseUsageFromDeck(ebosSimulator_.vanguard().eclState())),
|
|
active_well_state_(phase_usage_.num_phases),
|
|
last_valid_well_state_(phase_usage_.num_phases),
|
|
nupcol_well_state_(phase_usage_.num_phases)
|
|
{
|
|
terminal_output_ = false;
|
|
if (ebosSimulator.gridView().comm().rank() == 0)
|
|
terminal_output_ = EWOMS_GET_PARAM(TypeTag, bool, EnableTerminalOutput);
|
|
|
|
// Create the guide rate container.
|
|
guideRate_.reset(new GuideRate (ebosSimulator_.vanguard().schedule()));
|
|
|
|
local_num_cells_ = ebosSimulator_.gridView().size(0);
|
|
// Number of cells the global grid view
|
|
global_num_cells_ = ebosSimulator_.vanguard().globalNumCells();
|
|
|
|
// Set up cartesian mapping.
|
|
const auto& grid = ebosSimulator_.vanguard().grid();
|
|
const auto& cartDims = Opm::UgGridHelpers::cartDims(grid);
|
|
setupCartesianToCompressed_(Opm::UgGridHelpers::globalCell(grid),
|
|
cartDims[0]*cartDims[1]*cartDims[2]);
|
|
auto& parallel_wells = ebosSimulator.vanguard().parallelWells();
|
|
parallel_well_info_.assign(parallel_wells.begin(), parallel_wells.end());
|
|
const auto& pwell_info = parallel_well_info_;
|
|
std::size_t numProcs = ebosSimulator.gridView().comm().size();
|
|
not_on_process_ = [&pwell_info, numProcs](const Well& well) {
|
|
if (well.getStatus() == Well::Status::SHUT)
|
|
return true;
|
|
if (numProcs == 1u)
|
|
return false;
|
|
std::pair<std::string, bool> value{well.name(), true}; // false indicate not active!
|
|
auto candidate = std::lower_bound(pwell_info.begin(),
|
|
pwell_info.end(),
|
|
value);
|
|
return candidate == pwell_info.end() || *candidate != value;
|
|
};
|
|
|
|
alternative_well_rate_init_ = EWOMS_GET_PARAM(TypeTag, bool, AlternativeWellRateInit);
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
init()
|
|
{
|
|
extractLegacyCellPvtRegionIndex_();
|
|
extractLegacyDepth_();
|
|
|
|
gravity_ = ebosSimulator_.problem().gravity()[2];
|
|
|
|
initial_step_ = true;
|
|
|
|
// add the eWoms auxiliary module for the wells to the list
|
|
ebosSimulator_.model().addAuxiliaryModule(this);
|
|
|
|
is_cell_perforated_.resize(local_num_cells_, false);
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
addNeighbors(std::vector<NeighborSet>& neighbors) const
|
|
{
|
|
if (!param_.matrix_add_well_contributions_) {
|
|
return;
|
|
}
|
|
|
|
// Create cartesian to compressed mapping
|
|
const auto& schedule_wells = schedule().getWellsatEnd();
|
|
|
|
// initialize the additional cell connections introduced by wells.
|
|
for (const auto& well : schedule_wells)
|
|
{
|
|
std::vector<int> wellCells;
|
|
// All possible connections of the well
|
|
const auto& connectionSet = well.getConnections();
|
|
wellCells.reserve(connectionSet.size());
|
|
|
|
for ( size_t c=0; c < connectionSet.size(); c++ )
|
|
{
|
|
const auto& connection = connectionSet.get(c);
|
|
int compressed_idx = cartesian_to_compressed_
|
|
.at(connection.global_index());
|
|
|
|
if ( compressed_idx >= 0 ) { // Ignore connections in inactive/remote cells.
|
|
wellCells.push_back(compressed_idx);
|
|
}
|
|
}
|
|
|
|
for (int cellIdx : wellCells) {
|
|
neighbors[cellIdx].insert(wellCells.begin(),
|
|
wellCells.end());
|
|
}
|
|
}
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
linearize(SparseMatrixAdapter& jacobian, GlobalEqVector& res)
|
|
{
|
|
if (!localWellsActive())
|
|
return;
|
|
|
|
if (!param_.matrix_add_well_contributions_) {
|
|
// if the well contributions are not supposed to be included explicitly in
|
|
// the matrix, we only apply the vector part of the Schur complement here.
|
|
for (const auto& well: well_container_) {
|
|
// r = r - duneC_^T * invDuneD_ * resWell_
|
|
well->apply(res);
|
|
}
|
|
return;
|
|
}
|
|
|
|
for (const auto& well: well_container_) {
|
|
well->addWellContributions(jacobian);
|
|
|
|
// applying the well residual to reservoir residuals
|
|
// r = r - duneC_^T * invDuneD_ * resWell_
|
|
well->apply(res);
|
|
}
|
|
}
|
|
|
|
|
|
/// Return true if any well has a THP constraint.
|
|
template<typename TypeTag>
|
|
bool
|
|
BlackoilWellModel<TypeTag>::
|
|
hasTHPConstraints() const
|
|
{
|
|
int local_result = false;
|
|
const auto& summaryState = ebosSimulator_.vanguard().summaryState();
|
|
for (const auto& well : well_container_) {
|
|
if (well->wellHasTHPConstraints(summaryState)) {
|
|
local_result=true;
|
|
}
|
|
}
|
|
return grid().comm().max(local_result);
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Return true if the well was found and shut.
|
|
template<typename TypeTag>
|
|
bool
|
|
BlackoilWellModel<TypeTag>::
|
|
forceShutWellByNameIfPredictionMode(const std::string& wellname,
|
|
const double simulation_time)
|
|
{
|
|
// Only add the well to the closed list on the
|
|
// process that owns it.
|
|
int well_was_shut = 0;
|
|
for (const auto& well : well_container_) {
|
|
if (well->name() == wellname && !well->wellIsStopped()) {
|
|
if (well->underPredictionMode()) {
|
|
wellTestState_.closeWell(wellname, WellTestConfig::Reason::PHYSICAL, simulation_time);
|
|
well_was_shut = 1;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Communicate across processes if a well was shut.
|
|
well_was_shut = ebosSimulator_.vanguard().grid().comm().max(well_was_shut);
|
|
|
|
// Only log a message on the output rank.
|
|
if (terminal_output_ && well_was_shut) {
|
|
const std::string msg = "Well " + wellname
|
|
+ " will be shut because it cannot get converged.";
|
|
OpmLog::info(msg);
|
|
}
|
|
|
|
return (well_was_shut == 1);
|
|
}
|
|
|
|
|
|
template<typename TypeTag>
|
|
std::vector< Well >
|
|
BlackoilWellModel<TypeTag>::
|
|
getLocalWells(const int timeStepIdx, int& globalNumWells) const
|
|
{
|
|
auto w = schedule().getWells(timeStepIdx);
|
|
globalNumWells = w.size();
|
|
w.erase(std::remove_if(w.begin(), w.end(), not_on_process_), w.end());
|
|
return w;
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
std::vector< ParallelWellInfo* >
|
|
BlackoilWellModel<TypeTag>::createLocalParallelWellInfo(const std::vector<Well>& wells)
|
|
{
|
|
std::vector< ParallelWellInfo* > local_parallel_well_info;
|
|
local_parallel_well_info.reserve(wells.size());
|
|
for (const auto& well : wells)
|
|
{
|
|
auto wellPair = std::make_pair(well.name(), true);
|
|
auto pwell = std::lower_bound(parallel_well_info_.begin(),
|
|
parallel_well_info_.end(),
|
|
wellPair);
|
|
assert(pwell != parallel_well_info_.end() &&
|
|
*pwell == wellPair);
|
|
local_parallel_well_info.push_back(&(*pwell));
|
|
}
|
|
return local_parallel_well_info;
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
beginReportStep(const int timeStepIdx)
|
|
{
|
|
Opm::DeferredLogger local_deferredLogger;
|
|
report_step_starts_ = true;
|
|
|
|
const Grid& grid = ebosSimulator_.vanguard().grid();
|
|
const auto& summaryState = ebosSimulator_.vanguard().summaryState();
|
|
int globalNumWells = 0;
|
|
// Make wells_ecl_ contain only this partition's wells.
|
|
wells_ecl_ = getLocalWells(timeStepIdx, globalNumWells);
|
|
local_parallel_well_info_ = createLocalParallelWellInfo(wells_ecl_);
|
|
|
|
// The well state initialize bhp with the cell pressure in the top cell.
|
|
// We must therefore provide it with updated cell pressures
|
|
this->initializeWellPerfData();
|
|
this->initializeWellState(timeStepIdx, globalNumWells, summaryState);
|
|
|
|
// Wells are active if they are active wells on at least
|
|
// one process.
|
|
wells_active_ = localWellsActive() ? 1 : 0;
|
|
wells_active_ = grid.comm().max(wells_active_);
|
|
|
|
// handling MS well related
|
|
if (param_.use_multisegment_well_&& anyMSWellOpenLocal()) { // if we use MultisegmentWell model
|
|
this->wellState().initWellStateMSWell(wells_ecl_, phase_usage_, &this->prevWellState());
|
|
}
|
|
|
|
const Group& fieldGroup = schedule().getGroup("FIELD", timeStepIdx);
|
|
WellGroupHelpers::setCmodeGroup(fieldGroup, schedule(), summaryState, timeStepIdx, this->wellState());
|
|
|
|
// Compute reservoir volumes for RESV controls.
|
|
rateConverter_.reset(new RateConverterType (phase_usage_,
|
|
std::vector<int>(local_num_cells_, 0)));
|
|
rateConverter_->template defineState<ElementContext>(ebosSimulator_);
|
|
|
|
{
|
|
const auto& sched_state = this->schedule()[timeStepIdx];
|
|
// update VFP properties
|
|
vfp_properties_.reset(new VFPProperties( sched_state.vfpinj(), sched_state.vfpprod()) );
|
|
this->initializeWellProdIndCalculators();
|
|
if (sched_state.events().hasEvent(ScheduleEvents::Events::WELL_PRODUCTIVITY_INDEX)) {
|
|
this->runWellPIScaling(timeStepIdx, local_deferredLogger);
|
|
}
|
|
}
|
|
|
|
// Store the current well state, to be able to recover in the case of failed iterations
|
|
this->commitWellState();
|
|
}
|
|
|
|
|
|
// called at the beginning of a time step
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
beginTimeStep()
|
|
{
|
|
updatePerforationIntensiveQuantities();
|
|
updateAverageFormationFactor();
|
|
|
|
Opm::DeferredLogger local_deferredLogger;
|
|
|
|
this->resetWellState();
|
|
updateAndCommunicateGroupData();
|
|
this->wellState().gliftTimeStepInit();
|
|
const int reportStepIdx = ebosSimulator_.episodeIndex();
|
|
const double simulationTime = ebosSimulator_.time();
|
|
std::string exc_msg;
|
|
auto exc_type = ExceptionType::NONE;
|
|
try {
|
|
// test wells
|
|
wellTesting(reportStepIdx, simulationTime, local_deferredLogger);
|
|
|
|
// create the well container
|
|
well_container_ = createWellContainer(reportStepIdx);
|
|
|
|
// do the initialization for all the wells
|
|
// TODO: to see whether we can postpone of the intialization of the well containers to
|
|
// optimize the usage of the following several member variables
|
|
for (auto& well : well_container_) {
|
|
well->init(&phase_usage_, depth_, gravity_, local_num_cells_, B_avg_);
|
|
}
|
|
|
|
// update the updated cell flag
|
|
std::fill(is_cell_perforated_.begin(), is_cell_perforated_.end(), false);
|
|
for (auto& well : well_container_) {
|
|
well->updatePerforatedCell(is_cell_perforated_);
|
|
}
|
|
|
|
// calculate the efficiency factors for each well
|
|
calculateEfficiencyFactors(reportStepIdx);
|
|
|
|
if constexpr (has_polymer_)
|
|
{
|
|
if (PolymerModule::hasPlyshlog() || getPropValue<TypeTag, Properties::EnablePolymerMW>() ) {
|
|
setRepRadiusPerfLength();
|
|
}
|
|
}
|
|
} catch (const std::runtime_error& e) {
|
|
exc_type = ExceptionType::RUNTIME_ERROR;
|
|
exc_msg = e.what();
|
|
} catch (const std::invalid_argument& e) {
|
|
exc_type = ExceptionType::INVALID_ARGUMENT;
|
|
exc_msg = e.what();
|
|
} catch (const std::logic_error& e) {
|
|
exc_type = ExceptionType::LOGIC_ERROR;
|
|
exc_msg = e.what();
|
|
} catch (const std::exception& e) {
|
|
exc_type = ExceptionType::DEFAULT;
|
|
exc_msg = e.what();
|
|
}
|
|
|
|
logAndCheckForExceptionsAndThrow(local_deferredLogger, exc_type, "beginTimeStep() failed: " + exc_msg, terminal_output_);
|
|
|
|
for (auto& well : well_container_) {
|
|
well->setVFPProperties(vfp_properties_.get());
|
|
well->setGuideRate(guideRate_.get());
|
|
}
|
|
|
|
// Close completions due to economical reasons
|
|
for (auto& well : well_container_) {
|
|
well->closeCompletions(wellTestState_);
|
|
}
|
|
|
|
// calculate the well potentials
|
|
try {
|
|
std::vector<double> well_potentials;
|
|
computeWellPotentials(well_potentials, reportStepIdx, local_deferredLogger);
|
|
} catch ( std::runtime_error& e ) {
|
|
const std::string msg = "A zero well potential is returned for output purposes. ";
|
|
local_deferredLogger.warning("WELL_POTENTIAL_CALCULATION_FAILED", msg);
|
|
}
|
|
|
|
if (alternative_well_rate_init_) {
|
|
// Update the well rates of well_state_, if only single-phase rates, to
|
|
// have proper multi-phase rates proportional to rates at bhp zero.
|
|
// This is done only for producers, as injectors will only have a single
|
|
// nonzero phase anyway.
|
|
for (auto& well : well_container_) {
|
|
if (well->isProducer()) {
|
|
well->updateWellStateRates(ebosSimulator_, this->wellState(), local_deferredLogger);
|
|
}
|
|
}
|
|
}
|
|
|
|
//update guide rates
|
|
const auto& comm = ebosSimulator_.vanguard().grid().comm();
|
|
const auto& summaryState = ebosSimulator_.vanguard().summaryState();
|
|
std::vector<double> pot(numPhases(), 0.0);
|
|
const Group& fieldGroup = schedule().getGroup("FIELD", reportStepIdx);
|
|
WellGroupHelpers::updateGuideRateForProductionGroups(fieldGroup, schedule(), phase_usage_, reportStepIdx, simulationTime, this->wellState(), comm, guideRate_.get(), pot);
|
|
WellGroupHelpers::updateGuideRatesForInjectionGroups(fieldGroup, schedule(), summaryState, phase_usage_, reportStepIdx, this->wellState(), guideRate_.get(), local_deferredLogger);
|
|
WellGroupHelpers::updateGuideRatesForWells(schedule(), phase_usage_, reportStepIdx, simulationTime, this->wellState(), comm, guideRate_.get());
|
|
|
|
try {
|
|
// Compute initial well solution for new wells and injectors that change injection type i.e. WAG.
|
|
for (auto& well : well_container_) {
|
|
const uint64_t effective_events_mask = ScheduleEvents::WELL_STATUS_CHANGE
|
|
+ ScheduleEvents::INJECTION_TYPE_CHANGED
|
|
+ ScheduleEvents::NEW_WELL;
|
|
|
|
const auto& events = schedule()[reportStepIdx].wellgroup_events();
|
|
const bool event = report_step_starts_ && events.hasEvent(well->name(), effective_events_mask);
|
|
if (event) {
|
|
try {
|
|
well->calculateExplicitQuantities(ebosSimulator_, this->wellState(), local_deferredLogger);
|
|
well->solveWellEquation(ebosSimulator_, this->wellState(), local_deferredLogger);
|
|
} catch (const std::exception& e) {
|
|
const std::string msg = "Compute initial well solution for new well " + well->name() + " failed. Continue with zero initial rates";
|
|
local_deferredLogger.warning("WELL_INITIAL_SOLVE_FAILED", msg);
|
|
}
|
|
}
|
|
}
|
|
} catch (const std::runtime_error& e) {
|
|
exc_type = ExceptionType::RUNTIME_ERROR;
|
|
exc_msg = e.what();
|
|
} catch (const std::invalid_argument& e) {
|
|
exc_type = ExceptionType::INVALID_ARGUMENT;
|
|
exc_msg = e.what();
|
|
} catch (const std::logic_error& e) {
|
|
exc_type = ExceptionType::LOGIC_ERROR;
|
|
exc_msg = e.what();
|
|
} catch (const std::exception& e) {
|
|
exc_type = ExceptionType::DEFAULT;
|
|
exc_msg = e.what();
|
|
}
|
|
|
|
if (exc_type != ExceptionType::NONE) {
|
|
const std::string msg = "Compute initial well solution for new wells failed. Continue with zero initial rates";
|
|
local_deferredLogger.warning("WELL_INITIAL_SOLVE_FAILED", msg);
|
|
}
|
|
|
|
logAndCheckForExceptionsAndThrow(local_deferredLogger,
|
|
exc_type, "beginTimeStep() failed: " + exc_msg, terminal_output_);
|
|
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::gliftDebug(
|
|
const std::string &msg, Opm::DeferredLogger &deferred_logger) const
|
|
{
|
|
if (this->glift_debug) {
|
|
const std::string message = fmt::format(
|
|
" GLIFT (DEBUG) : BlackoilWellModel : {}", msg);
|
|
deferred_logger.info(message);
|
|
}
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::wellTesting(const int timeStepIdx,
|
|
const double simulationTime,
|
|
Opm::DeferredLogger& deferred_logger)
|
|
{
|
|
const auto& wtest_config = schedule()[timeStepIdx].wtest_config();
|
|
if (wtest_config.size() != 0) { // there is a WTEST request
|
|
const auto wellsForTesting = wellTestState_
|
|
.updateWells(wtest_config, wells_ecl_, simulationTime);
|
|
|
|
for (const auto& testWell : wellsForTesting) {
|
|
const std::string& well_name = testWell.first;
|
|
|
|
// this is the well we will test
|
|
WellInterfacePtr well = createWellForWellTest(well_name, timeStepIdx, deferred_logger);
|
|
|
|
// some preparation before the well can be used
|
|
well->init(&phase_usage_, depth_, gravity_, local_num_cells_, B_avg_);
|
|
const Well& wellEcl = schedule().getWell(well_name, timeStepIdx);
|
|
double well_efficiency_factor = wellEcl.getEfficiencyFactor();
|
|
WellGroupHelpers::accumulateGroupEfficiencyFactor(schedule().getGroup(wellEcl.groupName(), timeStepIdx),
|
|
schedule(), timeStepIdx, well_efficiency_factor);
|
|
|
|
well->setWellEfficiencyFactor(well_efficiency_factor);
|
|
well->setVFPProperties(vfp_properties_.get());
|
|
well->setGuideRate(guideRate_.get());
|
|
|
|
const WellTestConfig::Reason testing_reason = testWell.second;
|
|
|
|
well->wellTesting(ebosSimulator_, simulationTime, timeStepIdx,
|
|
testing_reason, this->wellState(), wellTestState_, deferred_logger);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// called at the end of a report step
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
endReportStep()
|
|
{
|
|
// Clear the communication data structures for above values.
|
|
for (auto&& pinfo : local_parallel_well_info_)
|
|
{
|
|
pinfo->clear();
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// called at the end of a report step
|
|
template<typename TypeTag>
|
|
const SimulatorReportSingle&
|
|
BlackoilWellModel<TypeTag>::
|
|
lastReport() const {return last_report_; }
|
|
|
|
|
|
|
|
|
|
|
|
// called at the end of a time step
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
timeStepSucceeded(const double& simulationTime, const double dt)
|
|
{
|
|
this->closed_this_step_.clear();
|
|
|
|
// time step is finished and we are not any more at the beginning of an report step
|
|
report_step_starts_ = false;
|
|
const int reportStepIdx = ebosSimulator_.episodeIndex();
|
|
|
|
Opm::DeferredLogger local_deferredLogger;
|
|
for (const auto& well : well_container_) {
|
|
if (getPropValue<TypeTag, Properties::EnablePolymerMW>() && well->isInjector()) {
|
|
well->updateWaterThroughput(dt, this->wellState());
|
|
}
|
|
}
|
|
updateWellTestState(simulationTime, wellTestState_);
|
|
|
|
// update the rate converter with current averages pressures etc in
|
|
rateConverter_->template defineState<ElementContext>(ebosSimulator_);
|
|
|
|
// calculate the well potentials
|
|
try {
|
|
std::vector<double> well_potentials;
|
|
|
|
computeWellPotentials(well_potentials, reportStepIdx, local_deferredLogger);
|
|
} catch ( std::runtime_error& e ) {
|
|
const std::string msg = "A zero well potential is returned for output purposes. ";
|
|
local_deferredLogger.warning("WELL_POTENTIAL_CALCULATION_FAILED", msg);
|
|
}
|
|
|
|
// check group sales limits at the end of the timestep
|
|
const Group& fieldGroup = schedule().getGroup("FIELD", reportStepIdx);
|
|
checkGconsaleLimits(fieldGroup, this->wellState(), local_deferredLogger);
|
|
|
|
this->calculateProductivityIndexValues(local_deferredLogger);
|
|
|
|
this->commitWellState();
|
|
|
|
Opm::DeferredLogger global_deferredLogger = gatherDeferredLogger(local_deferredLogger);
|
|
if (terminal_output_) {
|
|
global_deferredLogger.logMessages();
|
|
}
|
|
|
|
//reporting output temperatures
|
|
this->computeWellTemperature();
|
|
}
|
|
|
|
|
|
template<typename TypeTag>
|
|
template <class Context>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
computeTotalRatesForDof(RateVector& rate,
|
|
const Context& context,
|
|
unsigned spaceIdx,
|
|
unsigned timeIdx) const
|
|
{
|
|
rate = 0;
|
|
int elemIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
|
|
|
|
if (!is_cell_perforated_[elemIdx])
|
|
return;
|
|
|
|
for (const auto& well : well_container_)
|
|
well->addCellRates(rate, elemIdx);
|
|
}
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
typename BlackoilWellModel<TypeTag>::WellInterfacePtr
|
|
BlackoilWellModel<TypeTag>::
|
|
well(const std::string& wellName) const
|
|
{
|
|
for (const auto& well : well_container_) {
|
|
if (well->name() == wellName) {
|
|
return well;
|
|
}
|
|
}
|
|
OPM_THROW(std::invalid_argument, "The well with name " + wellName + " is not in the well Container");
|
|
return nullptr;
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
initFromRestartFile(const RestartValue& restartValues)
|
|
{
|
|
// The restart step value is used to identify wells present at the given
|
|
// time step. Wells that are added at the same time step as RESTART is initiated
|
|
// will not be present in a restart file. Use the previous time step to retrieve
|
|
// wells that have information written to the restart file.
|
|
const int report_step = std::max(eclState().getInitConfig().getRestartStep() - 1, 0);
|
|
const auto& summaryState = ebosSimulator_.vanguard().summaryState();
|
|
int globalNumWells = 0;
|
|
// wells_ecl_ should only contain wells on this processor.
|
|
wells_ecl_ = getLocalWells(report_step, globalNumWells);
|
|
local_parallel_well_info_ = createLocalParallelWellInfo(wells_ecl_);
|
|
|
|
this->initializeWellProdIndCalculators();
|
|
initializeWellPerfData();
|
|
|
|
const int nw = wells_ecl_.size();
|
|
if (nw > 0) {
|
|
const auto phaseUsage = phaseUsageFromDeck(eclState());
|
|
const size_t numCells = Opm::UgGridHelpers::numCells(grid());
|
|
const bool handle_ms_well = (param_.use_multisegment_well_ && anyMSWellOpenLocal());
|
|
this->wellState().resize(wells_ecl_, local_parallel_well_info_, schedule(), handle_ms_well, numCells, phaseUsage, well_perf_data_, summaryState, globalNumWells); // Resize for restart step
|
|
loadRestartData(restartValues.wells, restartValues.grp_nwrk, phaseUsage, handle_ms_well, this->wellState());
|
|
}
|
|
|
|
this->commitWellState();
|
|
initial_step_ = false;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
initializeWellProdIndCalculators()
|
|
{
|
|
this->prod_index_calc_.clear();
|
|
this->prod_index_calc_.reserve(this->wells_ecl_.size());
|
|
for (const auto& well : this->wells_ecl_) {
|
|
this->prod_index_calc_.emplace_back(well);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
initializeWellPerfData()
|
|
{
|
|
well_perf_data_.resize(wells_ecl_.size());
|
|
int well_index = 0;
|
|
for (const auto& well : wells_ecl_) {
|
|
int completion_index = 0;
|
|
// INVALID_ECL_INDEX marks no above perf available
|
|
int completion_index_above = ParallelWellInfo::INVALID_ECL_INDEX;
|
|
well_perf_data_[well_index].clear();
|
|
well_perf_data_[well_index].reserve(well.getConnections().size());
|
|
CheckDistributedWellConnections checker(well, *local_parallel_well_info_[well_index]);
|
|
bool hasFirstPerforation = false;
|
|
bool firstOpenCompletion = true;
|
|
auto& parallelWellInfo = *local_parallel_well_info_[well_index];
|
|
parallelWellInfo.beginReset();
|
|
|
|
for (const auto& completion : well.getConnections()) {
|
|
const int active_index =
|
|
cartesian_to_compressed_[completion.global_index()];
|
|
if (completion.state() == Connection::State::OPEN) {
|
|
if (active_index >= 0) {
|
|
if (firstOpenCompletion)
|
|
{
|
|
hasFirstPerforation = true;
|
|
}
|
|
checker.connectionFound(completion_index);
|
|
PerforationData pd;
|
|
pd.cell_index = active_index;
|
|
pd.connection_transmissibility_factor = completion.CF();
|
|
pd.satnum_id = completion.satTableId();
|
|
pd.ecl_index = completion_index;
|
|
well_perf_data_[well_index].push_back(pd);
|
|
parallelWellInfo.pushBackEclIndex(completion_index_above,
|
|
completion_index);
|
|
}
|
|
firstOpenCompletion = false;
|
|
// Next time this index is the one above as each open completion is
|
|
// is stored somehwere.
|
|
completion_index_above = completion_index;
|
|
} else {
|
|
checker.connectionFound(completion_index);
|
|
if (completion.state() != Connection::State::SHUT) {
|
|
OPM_THROW(std::runtime_error,
|
|
"Completion state: " << Connection::State2String(completion.state()) << " not handled");
|
|
}
|
|
}
|
|
// Note: we rely on the connections being filtered! I.e. there are only connections
|
|
// to active cells in the global grid.
|
|
++completion_index;
|
|
}
|
|
parallelWellInfo.endReset();
|
|
checker.checkAllConnectionsFound();
|
|
parallelWellInfo.communicateFirstPerforation(hasFirstPerforation);
|
|
++well_index;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
initializeWellState(const int timeStepIdx,
|
|
const int globalNumWells,
|
|
const SummaryState& summaryState)
|
|
{
|
|
std::vector<double> cellPressures(this->local_num_cells_, 0.0);
|
|
ElementContext elemCtx(ebosSimulator_);
|
|
|
|
const auto& gridView = ebosSimulator_.vanguard().gridView();
|
|
const auto& elemEndIt = gridView.template end</*codim=*/0>();
|
|
for (auto elemIt = gridView.template begin</*codim=*/0>();
|
|
elemIt != elemEndIt;
|
|
++elemIt)
|
|
{
|
|
if (elemIt->partitionType() != Dune::InteriorEntity) {
|
|
continue;
|
|
}
|
|
|
|
elemCtx.updatePrimaryStencil(*elemIt);
|
|
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
|
|
|
|
const auto& fs = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0).fluidState();
|
|
// copy of get perfpressure in Standard well except for value
|
|
double& perf_pressure = cellPressures[elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0)];
|
|
if (Indices::oilEnabled) {
|
|
perf_pressure = fs.pressure(FluidSystem::oilPhaseIdx).value();
|
|
} else if (Indices::waterEnabled) {
|
|
perf_pressure = fs.pressure(FluidSystem::waterPhaseIdx).value();
|
|
} else {
|
|
perf_pressure = fs.pressure(FluidSystem::gasPhaseIdx).value();
|
|
}
|
|
}
|
|
|
|
this->wellState().init(cellPressures, schedule(), wells_ecl_, local_parallel_well_info_, timeStepIdx,
|
|
&this->prevWellState(), phase_usage_, well_perf_data_,
|
|
summaryState, globalNumWells);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
std::vector<typename BlackoilWellModel<TypeTag>::WellInterfacePtr >
|
|
BlackoilWellModel<TypeTag>::
|
|
createWellContainer(const int time_step)
|
|
{
|
|
std::vector<WellInterfacePtr> well_container;
|
|
|
|
Opm::DeferredLogger local_deferredLogger;
|
|
|
|
const int nw = numLocalWells();
|
|
|
|
if (nw > 0) {
|
|
well_container.reserve(nw);
|
|
|
|
for (int w = 0; w < nw; ++w) {
|
|
const Well& well_ecl = wells_ecl_[w];
|
|
const std::string& well_name = well_ecl.name();
|
|
const auto well_status = this->schedule()
|
|
.getWell(well_name, time_step).getStatus();
|
|
|
|
if ((well_ecl.getStatus() == Well::Status::SHUT) ||
|
|
(well_status == Well::Status::SHUT))
|
|
{
|
|
// Due to ACTIONX the well might have been closed behind our back.
|
|
if (well_ecl.getStatus() != Well::Status::SHUT) {
|
|
this->closed_this_step_.insert(well_name);
|
|
this->wellState().shutWell(w);
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
// A new WCON keywords can re-open a well that was closed/shut due to Physical limit
|
|
if (this->wellTestState_.hasWellClosed(well_name)) {
|
|
// TODO: more checking here, to make sure this standard more specific and complete
|
|
// maybe there is some WCON keywords will not open the well
|
|
if (this->wellState().effectiveEventsOccurred(w)) {
|
|
if (wellTestState_.lastTestTime(well_name) == ebosSimulator_.time()) {
|
|
// The well was shut this timestep, we are most likely retrying
|
|
// a timestep without the well in question, after it caused
|
|
// repeated timestep cuts. It should therefore not be opened,
|
|
// even if it was new or received new targets this report step.
|
|
this->wellState().setEffectiveEventsOccurred(w, false);
|
|
} else {
|
|
wellTestState_.openWell(well_name);
|
|
}
|
|
}
|
|
}
|
|
|
|
// TODO: should we do this for all kinds of closing reasons?
|
|
// something like wellTestState_.hasWell(well_name)?
|
|
bool wellIsStopped = false;
|
|
if (wellTestState_.hasWellClosed(well_name, WellTestConfig::Reason::ECONOMIC) ||
|
|
wellTestState_.hasWellClosed(well_name, WellTestConfig::Reason::PHYSICAL))
|
|
{
|
|
if (well_ecl.getAutomaticShutIn()) {
|
|
// shut wells are not added to the well container
|
|
this->wellState().shutWell(w);
|
|
continue;
|
|
} else {
|
|
// stopped wells are added to the container but marked as stopped
|
|
this->wellState().stopWell(w);
|
|
wellIsStopped = true;
|
|
}
|
|
}
|
|
|
|
// If a production well disallows crossflow and its
|
|
// (prediction type) rate control is zero, then it is effectively shut.
|
|
if (!well_ecl.getAllowCrossFlow() && well_ecl.isProducer() && well_ecl.predictionMode()) {
|
|
const auto& summaryState = ebosSimulator_.vanguard().summaryState();
|
|
const auto prod_controls = well_ecl.productionControls(summaryState);
|
|
|
|
auto is_zero = [](const double x)
|
|
{
|
|
return std::isfinite(x) && !std::isnormal(x);
|
|
};
|
|
|
|
bool zero_rate_control = false;
|
|
switch (prod_controls.cmode) {
|
|
case Well::ProducerCMode::ORAT:
|
|
zero_rate_control = is_zero(prod_controls.oil_rate);
|
|
break;
|
|
|
|
case Well::ProducerCMode::WRAT:
|
|
zero_rate_control = is_zero(prod_controls.water_rate);
|
|
break;
|
|
|
|
case Well::ProducerCMode::GRAT:
|
|
zero_rate_control = is_zero(prod_controls.gas_rate);
|
|
break;
|
|
|
|
case Well::ProducerCMode::LRAT:
|
|
zero_rate_control = is_zero(prod_controls.liquid_rate);
|
|
break;
|
|
|
|
case Well::ProducerCMode::RESV:
|
|
zero_rate_control = is_zero(prod_controls.resv_rate);
|
|
break;
|
|
|
|
default:
|
|
// Might still have zero rate controls, but is pressure controlled.
|
|
zero_rate_control = false;
|
|
break;
|
|
}
|
|
|
|
if (zero_rate_control) {
|
|
// Treat as shut, do not add to container.
|
|
local_deferredLogger.info(" Well shut due to zero rate control and disallowing crossflow: " + well_ecl.name());
|
|
this->wellState().shutWell(w);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (well_status == Well::Status::STOP) {
|
|
this->wellState().stopWell(w);
|
|
wellIsStopped = true;
|
|
}
|
|
|
|
well_container.emplace_back(this->createWellPointer(w, time_step));
|
|
|
|
if (wellIsStopped)
|
|
well_container.back()->stopWell();
|
|
}
|
|
}
|
|
|
|
// Collect log messages and print.
|
|
Opm::DeferredLogger global_deferredLogger = gatherDeferredLogger(local_deferredLogger);
|
|
if (terminal_output_) {
|
|
global_deferredLogger.logMessages();
|
|
}
|
|
|
|
return well_container;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
typename BlackoilWellModel<TypeTag>::WellInterfacePtr
|
|
BlackoilWellModel<TypeTag>::
|
|
createWellPointer(const int wellID, const int time_step) const
|
|
{
|
|
const auto is_multiseg = this->wells_ecl_[wellID].isMultiSegment();
|
|
|
|
if (! (this->param_.use_multisegment_well_ && is_multiseg)) {
|
|
return this->template createTypedWellPointer<StandardWell<TypeTag>>(wellID, time_step);
|
|
}
|
|
else {
|
|
return this->template createTypedWellPointer<MultisegmentWell<TypeTag>>(wellID, time_step);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
template <typename WellType>
|
|
std::unique_ptr<WellType>
|
|
BlackoilWellModel<TypeTag>::
|
|
createTypedWellPointer(const int wellID, const int time_step) const
|
|
{
|
|
// Use the pvtRegionIdx from the top cell
|
|
const auto& perf_data = this->well_perf_data_[wellID];
|
|
|
|
// Cater for case where local part might have no perforations.
|
|
const auto pvtreg = perf_data.empty()
|
|
? 0 : pvt_region_idx_[perf_data.front().cell_index];
|
|
|
|
const auto& parallel_well_info = *local_parallel_well_info_[wellID];
|
|
const auto global_pvtreg = parallel_well_info.broadcastFirstPerforationValue(pvtreg);
|
|
|
|
return std::make_unique<WellType>(this->wells_ecl_[wellID],
|
|
parallel_well_info,
|
|
time_step,
|
|
this->param_,
|
|
*this->rateConverter_,
|
|
global_pvtreg,
|
|
this->numComponents(),
|
|
this->numPhases(),
|
|
wellID,
|
|
this->wellState().firstPerfIndex()[wellID],
|
|
perf_data);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
typename BlackoilWellModel<TypeTag>::WellInterfacePtr
|
|
BlackoilWellModel<TypeTag>::
|
|
createWellForWellTest(const std::string& well_name,
|
|
const int report_step,
|
|
Opm::DeferredLogger& deferred_logger) const
|
|
{
|
|
// Finding the location of the well in wells_ecl
|
|
const int nw_wells_ecl = wells_ecl_.size();
|
|
int index_well_ecl = 0;
|
|
for (; index_well_ecl < nw_wells_ecl; ++index_well_ecl) {
|
|
if (well_name == wells_ecl_[index_well_ecl].name()) {
|
|
break;
|
|
}
|
|
}
|
|
// It should be able to find in wells_ecl.
|
|
if (index_well_ecl == nw_wells_ecl) {
|
|
OPM_DEFLOG_THROW(std::logic_error, "Could not find well " << well_name << " in wells_ecl ", deferred_logger);
|
|
}
|
|
|
|
return this->createWellPointer(index_well_ecl, report_step);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
assemble(const int iterationIdx,
|
|
const double dt)
|
|
{
|
|
|
|
Opm::DeferredLogger local_deferredLogger;
|
|
if (this->glift_debug) {
|
|
const std::string msg = fmt::format(
|
|
"assemble() : iteration {}" , iterationIdx);
|
|
gliftDebug(msg, local_deferredLogger);
|
|
}
|
|
last_report_ = SimulatorReportSingle();
|
|
Dune::Timer perfTimer;
|
|
perfTimer.start();
|
|
|
|
if ( ! wellsActive() ) {
|
|
return;
|
|
}
|
|
|
|
|
|
updatePerforationIntensiveQuantities();
|
|
|
|
auto exc_type = ExceptionType::NONE;
|
|
std::string exc_msg;
|
|
try {
|
|
if (iterationIdx == 0) {
|
|
calculateExplicitQuantities(local_deferredLogger);
|
|
prepareTimeStep(local_deferredLogger);
|
|
}
|
|
updateWellControls(local_deferredLogger, /* check group controls */ true);
|
|
|
|
// Set the well primary variables based on the value of well solutions
|
|
initPrimaryVariablesEvaluation();
|
|
|
|
if (param_.solve_welleq_initially_ && iterationIdx == 0) {
|
|
for (auto& well : well_container_) {
|
|
well->solveWellEquation(ebosSimulator_, this->wellState(), local_deferredLogger);
|
|
}
|
|
updateWellControls(local_deferredLogger, /* check group controls */ false);
|
|
}
|
|
|
|
maybeDoGasLiftOptimize(local_deferredLogger);
|
|
assembleWellEq(dt, local_deferredLogger);
|
|
} catch (const std::runtime_error& e) {
|
|
exc_type = ExceptionType::RUNTIME_ERROR;
|
|
exc_msg = e.what();
|
|
} catch (const std::invalid_argument& e) {
|
|
exc_type = ExceptionType::INVALID_ARGUMENT;
|
|
exc_msg = e.what();
|
|
} catch (const std::logic_error& e) {
|
|
exc_type = ExceptionType::LOGIC_ERROR;
|
|
exc_msg = e.what();
|
|
} catch (const std::exception& e) {
|
|
exc_type = ExceptionType::DEFAULT;
|
|
exc_msg = e.what();
|
|
}
|
|
logAndCheckForExceptionsAndThrow(local_deferredLogger, exc_type, "assemble() failed: " + exc_msg, terminal_output_);
|
|
last_report_.converged = true;
|
|
last_report_.assemble_time_well += perfTimer.stop();
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
maybeDoGasLiftOptimize(Opm::DeferredLogger& deferred_logger)
|
|
{
|
|
this->wellState().enableGliftOptimization();
|
|
GLiftOptWells glift_wells;
|
|
GLiftProdWells prod_wells;
|
|
GLiftWellStateMap state_map;
|
|
// Stage1: Optimize single wells not checking any group limits
|
|
for (auto& well : well_container_) {
|
|
well->gasLiftOptimizationStage1(
|
|
this->wellState(), ebosSimulator_, deferred_logger,
|
|
prod_wells, glift_wells, state_map);
|
|
}
|
|
gasLiftOptimizationStage2(deferred_logger, prod_wells, glift_wells, state_map);
|
|
if (this->glift_debug) gliftDebugShowALQ(deferred_logger);
|
|
this->wellState().disableGliftOptimization();
|
|
}
|
|
|
|
// If a group has any production rate constraints, and/or a limit
|
|
// on its total rate of lift gas supply, allocate lift gas
|
|
// preferentially to the wells that gain the most benefit from
|
|
// it. Lift gas increments are allocated in turn to the well that
|
|
// currently has the largest weighted incremental gradient. The
|
|
// procedure takes account of any limits on the group production
|
|
// rate or lift gas supply applied to any level of group.
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
gasLiftOptimizationStage2(Opm::DeferredLogger& deferred_logger,
|
|
GLiftProdWells &prod_wells, GLiftOptWells &glift_wells,
|
|
GLiftWellStateMap &glift_well_state_map)
|
|
{
|
|
|
|
GasLiftStage2 glift {*this, ebosSimulator_, deferred_logger, this->wellState(),
|
|
prod_wells, glift_wells, glift_well_state_map};
|
|
glift.runOptimize();
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
gliftDebugShowALQ(Opm::DeferredLogger& deferred_logger)
|
|
{
|
|
for (auto& well : this->well_container_) {
|
|
if (well->isProducer()) {
|
|
auto alq = this->wellState().getALQ(well->name());
|
|
const std::string msg = fmt::format("ALQ_REPORT : {} : {}",
|
|
well->name(), alq);
|
|
gliftDebug(msg, deferred_logger);
|
|
}
|
|
}
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
assembleWellEq(const double dt, Opm::DeferredLogger& deferred_logger)
|
|
{
|
|
for (auto& well : well_container_) {
|
|
well->assembleWellEq(ebosSimulator_, dt, this->wellState(), deferred_logger);
|
|
}
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
apply( BVector& r) const
|
|
{
|
|
if ( ! localWellsActive() ) {
|
|
return;
|
|
}
|
|
|
|
for (auto& well : well_container_) {
|
|
well->apply(r);
|
|
}
|
|
}
|
|
|
|
|
|
// Ax = A x - C D^-1 B x
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
apply(const BVector& x, BVector& Ax) const
|
|
{
|
|
// TODO: do we still need localWellsActive()?
|
|
if ( ! localWellsActive() ) {
|
|
return;
|
|
}
|
|
|
|
for (auto& well : well_container_) {
|
|
well->apply(x, Ax);
|
|
}
|
|
}
|
|
|
|
#if HAVE_CUDA || HAVE_OPENCL
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
getWellContributions(WellContributions& wellContribs) const
|
|
{
|
|
// prepare for StandardWells
|
|
wellContribs.setBlockSize(StandardWell<TypeTag>::numEq, StandardWell<TypeTag>::numStaticWellEq);
|
|
|
|
for(unsigned int i = 0; i < well_container_.size(); i++){
|
|
auto& well = well_container_[i];
|
|
std::shared_ptr<StandardWell<TypeTag> > derived = std::dynamic_pointer_cast<StandardWell<TypeTag> >(well);
|
|
if (derived) {
|
|
unsigned int numBlocks;
|
|
derived->getNumBlocks(numBlocks);
|
|
wellContribs.addNumBlocks(numBlocks);
|
|
}
|
|
}
|
|
|
|
// allocate memory for data from StandardWells
|
|
wellContribs.alloc();
|
|
|
|
for(unsigned int i = 0; i < well_container_.size(); i++){
|
|
auto& well = well_container_[i];
|
|
// maybe WellInterface could implement addWellContribution()
|
|
auto derived_std = std::dynamic_pointer_cast<StandardWell<TypeTag> >(well);
|
|
if (derived_std) {
|
|
derived_std->addWellContribution(wellContribs);
|
|
} else {
|
|
auto derived_ms = std::dynamic_pointer_cast<MultisegmentWell<TypeTag> >(well);
|
|
if (derived_ms) {
|
|
derived_ms->addWellContribution(wellContribs);
|
|
} else {
|
|
OpmLog::warning("Warning unknown type of well");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// Ax = Ax - alpha * C D^-1 B x
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
applyScaleAdd(const Scalar alpha, const BVector& x, BVector& Ax) const
|
|
{
|
|
if ( ! localWellsActive() ) {
|
|
return;
|
|
}
|
|
|
|
if( scaleAddRes_.size() != Ax.size() ) {
|
|
scaleAddRes_.resize( Ax.size() );
|
|
}
|
|
|
|
scaleAddRes_ = 0.0;
|
|
// scaleAddRes_ = - C D^-1 B x
|
|
apply( x, scaleAddRes_ );
|
|
// Ax = Ax + alpha * scaleAddRes_
|
|
Ax.axpy( alpha, scaleAddRes_ );
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
recoverWellSolutionAndUpdateWellState(const BVector& x)
|
|
{
|
|
Opm::DeferredLogger local_deferredLogger;
|
|
auto exc_type = ExceptionType::NONE;
|
|
std::string exc_msg;
|
|
try {
|
|
if (localWellsActive()) {
|
|
for (auto& well : well_container_) {
|
|
well->recoverWellSolutionAndUpdateWellState(x, this->wellState(), local_deferredLogger);
|
|
}
|
|
}
|
|
} catch (const std::runtime_error& e) {
|
|
exc_type = ExceptionType::RUNTIME_ERROR;
|
|
exc_msg = e.what();
|
|
} catch (const std::invalid_argument& e) {
|
|
exc_type = ExceptionType::INVALID_ARGUMENT;
|
|
exc_msg = e.what();
|
|
} catch (const std::logic_error& e) {
|
|
exc_type = ExceptionType::LOGIC_ERROR;
|
|
exc_msg = e.what();
|
|
} catch (const std::exception& e) {
|
|
exc_type = ExceptionType::DEFAULT;
|
|
exc_msg = e.what();
|
|
}
|
|
logAndCheckForExceptionsAndThrow(local_deferredLogger, exc_type, "recoverWellSolutionAndUpdateWellState() failed: " + exc_msg, terminal_output_);
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
bool
|
|
BlackoilWellModel<TypeTag>::
|
|
wellsActive() const
|
|
{
|
|
return wells_active_;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
setWellsActive(const bool wells_active)
|
|
{
|
|
wells_active_ = wells_active;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
bool
|
|
BlackoilWellModel<TypeTag>::
|
|
localWellsActive() const
|
|
{
|
|
return numLocalWells() > 0;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
initPrimaryVariablesEvaluation() const
|
|
{
|
|
for (auto& well : well_container_) {
|
|
well->initPrimaryVariablesEvaluation();
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
ConvergenceReport
|
|
BlackoilWellModel<TypeTag>::
|
|
getWellConvergence(const std::vector<Scalar>& B_avg, bool checkGroupConvergence) const
|
|
{
|
|
|
|
Opm::DeferredLogger local_deferredLogger;
|
|
// Get global (from all processes) convergence report.
|
|
ConvergenceReport local_report;
|
|
for (const auto& well : well_container_) {
|
|
if (well->isOperable() ) {
|
|
local_report += well->getWellConvergence(this->wellState(), B_avg, local_deferredLogger);
|
|
}
|
|
}
|
|
Opm::DeferredLogger global_deferredLogger = gatherDeferredLogger(local_deferredLogger);
|
|
if (terminal_output_) {
|
|
global_deferredLogger.logMessages();
|
|
}
|
|
|
|
ConvergenceReport report = gatherConvergenceReport(local_report);
|
|
|
|
// Log debug messages for NaN or too large residuals.
|
|
if (terminal_output_) {
|
|
for (const auto& f : report.wellFailures()) {
|
|
if (f.severity() == ConvergenceReport::Severity::NotANumber) {
|
|
OpmLog::debug("NaN residual found with phase " + std::to_string(f.phase()) + " for well " + f.wellName());
|
|
} else if (f.severity() == ConvergenceReport::Severity::TooLarge) {
|
|
OpmLog::debug("Too large residual found with phase " + std::to_string(f.phase()) + " for well " + f.wellName());
|
|
}
|
|
}
|
|
}
|
|
|
|
if (checkGroupConvergence) {
|
|
const int reportStepIdx = ebosSimulator_.episodeIndex();
|
|
const Group& fieldGroup = schedule().getGroup("FIELD", reportStepIdx);
|
|
bool violated = checkGroupConstraints(fieldGroup, global_deferredLogger);
|
|
report.setGroupConverged(!violated);
|
|
}
|
|
return report;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
calculateExplicitQuantities(Opm::DeferredLogger& deferred_logger) const
|
|
{
|
|
// TODO: checking isOperable() ?
|
|
for (auto& well : well_container_) {
|
|
well->calculateExplicitQuantities(ebosSimulator_, this->wellState(), deferred_logger);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
updateWellControls(Opm::DeferredLogger& deferred_logger, const bool checkGroupControls)
|
|
{
|
|
// Even if there are no wells active locally, we cannot
|
|
// return as the DeferredLogger uses global communication.
|
|
// For no well active globally we simply return.
|
|
if( !wellsActive() ) return ;
|
|
|
|
updateAndCommunicateGroupData();
|
|
|
|
updateNetworkPressures();
|
|
|
|
std::set<std::string> switched_wells;
|
|
std::set<std::string> switched_groups;
|
|
|
|
if (checkGroupControls) {
|
|
// Check group individual constraints.
|
|
updateGroupIndividualControls(deferred_logger, switched_groups);
|
|
|
|
// Check group's constraints from higher levels.
|
|
updateGroupHigherControls(deferred_logger, switched_groups);
|
|
|
|
updateAndCommunicateGroupData();
|
|
|
|
// Check wells' group constraints and communicate.
|
|
for (const auto& well : well_container_) {
|
|
const auto mode = WellInterface<TypeTag>::IndividualOrGroup::Group;
|
|
const bool changed = well->updateWellControl(ebosSimulator_, mode, this->wellState(), deferred_logger);
|
|
if (changed) {
|
|
switched_wells.insert(well->name());
|
|
}
|
|
}
|
|
updateAndCommunicateGroupData();
|
|
}
|
|
|
|
// Check individual well constraints and communicate.
|
|
for (const auto& well : well_container_) {
|
|
if (switched_wells.count(well->name())) {
|
|
continue;
|
|
}
|
|
const auto mode = WellInterface<TypeTag>::IndividualOrGroup::Individual;
|
|
well->updateWellControl(ebosSimulator_, mode, this->wellState(), deferred_logger);
|
|
}
|
|
updateAndCommunicateGroupData();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
updateNetworkPressures()
|
|
{
|
|
// Get the network and return if inactive.
|
|
const int reportStepIdx = ebosSimulator_.episodeIndex();
|
|
const auto& network = schedule()[reportStepIdx].network();
|
|
if (!network.active()) {
|
|
return;
|
|
}
|
|
node_pressures_ = WellGroupHelpers::computeNetworkPressures(
|
|
network, this->wellState(), *(vfp_properties_->getProd()), schedule(), reportStepIdx);
|
|
|
|
// Set the thp limits of wells
|
|
for (auto& well : well_container_) {
|
|
// Producers only, since we so far only support the
|
|
// "extended" network model (properties defined by
|
|
// BRANPROP and NODEPROP) which only applies to producers.
|
|
if (well->isProducer()) {
|
|
const auto it = node_pressures_.find(well->wellEcl().groupName());
|
|
if (it != node_pressures_.end()) {
|
|
// The well belongs to a group with has a network pressure constraint,
|
|
// set the dynamic THP constraint of the well accordingly.
|
|
well->setDynamicThpLimit(it->second);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
updateAndCommunicateGroupData()
|
|
{
|
|
const int reportStepIdx = ebosSimulator_.episodeIndex();
|
|
const Group& fieldGroup = schedule().getGroup("FIELD", reportStepIdx);
|
|
const int nupcol = schedule()[reportStepIdx].nupcol();
|
|
const int iterationIdx = ebosSimulator_.model().newtonMethod().numIterations();
|
|
|
|
// This builds some necessary lookup structures, so it must be called
|
|
// before we copy to well_state_nupcol_.
|
|
const auto& comm = ebosSimulator_.vanguard().grid().comm();
|
|
this->wellState().updateGlobalIsGrup(schedule(), reportStepIdx, comm);
|
|
|
|
if (iterationIdx < nupcol) {
|
|
this->updateNupcolWellState();
|
|
}
|
|
|
|
auto& well_state = this->wellState();
|
|
const auto& well_state_nupcol = this->nupcolWellState();
|
|
const auto& summaryState = ebosSimulator_.vanguard().summaryState();
|
|
// the group target reduction rates needs to be update since wells may have swicthed to/from GRUP control
|
|
// Currently the group target reduction does not honor NUPCOL. TODO: is that true?
|
|
std::vector<double> groupTargetReduction(numPhases(), 0.0);
|
|
WellGroupHelpers::updateGroupTargetReduction(fieldGroup, schedule(), reportStepIdx, /*isInjector*/ false, phase_usage_, *guideRate_, well_state_nupcol, well_state, groupTargetReduction);
|
|
std::vector<double> groupTargetReductionInj(numPhases(), 0.0);
|
|
WellGroupHelpers::updateGroupTargetReduction(fieldGroup, schedule(), reportStepIdx, /*isInjector*/ true, phase_usage_, *guideRate_, well_state_nupcol, well_state, groupTargetReductionInj);
|
|
|
|
WellGroupHelpers::updateREINForGroups(fieldGroup, schedule(), reportStepIdx, phase_usage_, summaryState, well_state_nupcol, well_state);
|
|
WellGroupHelpers::updateVREPForGroups(fieldGroup, schedule(), reportStepIdx, well_state_nupcol, well_state);
|
|
|
|
WellGroupHelpers::updateReservoirRatesInjectionGroups(fieldGroup, schedule(), reportStepIdx, well_state_nupcol, well_state);
|
|
WellGroupHelpers::updateGroupProductionRates(fieldGroup, schedule(), reportStepIdx, well_state_nupcol, well_state);
|
|
|
|
// We use the rates from the privious time-step to reduce oscilations
|
|
WellGroupHelpers::updateWellRates(fieldGroup, schedule(), reportStepIdx, this->prevWellState(), well_state);
|
|
|
|
// Set ALQ for off-process wells to zero
|
|
for (const auto& wname : schedule().wellNames(reportStepIdx)) {
|
|
const bool is_producer = schedule().getWell(wname, reportStepIdx).isProducer();
|
|
const bool not_on_this_process = well_state.wellMap().count(wname) == 0;
|
|
if (is_producer && not_on_this_process) {
|
|
well_state.setALQ(wname, 0.0);
|
|
}
|
|
}
|
|
|
|
well_state.communicateGroupRates(comm);
|
|
|
|
// compute wsolvent fraction for REIN wells
|
|
updateWsolvent(fieldGroup, schedule(), reportStepIdx, well_state_nupcol);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
updateWellTestState(const double& simulationTime, WellTestState& wellTestState) const
|
|
{
|
|
Opm::DeferredLogger local_deferredLogger;
|
|
for (const auto& well : well_container_) {
|
|
const auto wasClosed = wellTestState.hasWellClosed(well->name());
|
|
|
|
well->updateWellTestState(this->wellState(), simulationTime, /*writeMessageToOPMLog=*/ true, wellTestState, local_deferredLogger);
|
|
|
|
if (!wasClosed && wellTestState.hasWellClosed(well->name())) {
|
|
this->closed_this_step_.insert(well->name());
|
|
}
|
|
}
|
|
|
|
Opm::DeferredLogger global_deferredLogger = gatherDeferredLogger(local_deferredLogger);
|
|
if (terminal_output_) {
|
|
global_deferredLogger.logMessages();
|
|
}
|
|
}
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
computeWellPotentials(std::vector<double>& well_potentials, const int reportStepIdx, Opm::DeferredLogger& deferred_logger)
|
|
{
|
|
// number of wells and phases
|
|
const int nw = numLocalWells();
|
|
const int np = numPhases();
|
|
well_potentials.resize(nw * np, 0.0);
|
|
|
|
auto well_state = this->wellState();
|
|
|
|
const Opm::SummaryConfig& summaryConfig = ebosSimulator_.vanguard().summaryConfig();
|
|
const bool write_restart_file = ebosSimulator_.vanguard().schedule().write_rst_file(reportStepIdx);
|
|
auto exc_type = ExceptionType::NONE;
|
|
std::string exc_msg;
|
|
for (const auto& well : well_container_) {
|
|
const bool needed_for_summary = ((summaryConfig.hasSummaryKey( "WWPI:" + well->name()) ||
|
|
summaryConfig.hasSummaryKey( "WOPI:" + well->name()) ||
|
|
summaryConfig.hasSummaryKey( "WGPI:" + well->name())) && well->isInjector()) ||
|
|
((summaryConfig.hasSummaryKey( "WWPP:" + well->name()) ||
|
|
summaryConfig.hasSummaryKey( "WOPP:" + well->name()) ||
|
|
summaryConfig.hasSummaryKey( "WGPP:" + well->name())) && well->isProducer());
|
|
|
|
bool needPotentialsForGuideRate = true;//eclWell.getGuideRatePhase() == Well::GuideRateTarget::UNDEFINED;
|
|
if (write_restart_file || needed_for_summary || needPotentialsForGuideRate)
|
|
{
|
|
try {
|
|
std::vector<double> potentials;
|
|
well->computeWellPotentials(ebosSimulator_, well_state, potentials, deferred_logger);
|
|
// putting the sucessfully calculated potentials to the well_potentials
|
|
for (int p = 0; p < np; ++p) {
|
|
well_potentials[well->indexOfWell() * np + p] = std::abs(potentials[p]);
|
|
}
|
|
} catch (const std::runtime_error& e) {
|
|
exc_type = ExceptionType::RUNTIME_ERROR;
|
|
exc_msg = e.what();
|
|
} catch (const std::invalid_argument& e) {
|
|
exc_type = ExceptionType::INVALID_ARGUMENT;
|
|
exc_msg = e.what();
|
|
} catch (const std::logic_error& e) {
|
|
exc_type = ExceptionType::LOGIC_ERROR;
|
|
exc_msg = e.what();
|
|
} catch (const std::exception& e) {
|
|
exc_type = ExceptionType::DEFAULT;
|
|
exc_msg = e.what();
|
|
}
|
|
}
|
|
}
|
|
logAndCheckForExceptionsAndThrow(deferred_logger, exc_type,
|
|
"computeWellPotentials() failed: " + exc_msg,
|
|
terminal_output_);
|
|
|
|
// Store it in the well state
|
|
this->wellState().wellPotentials() = well_potentials;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
calculateProductivityIndexValues(DeferredLogger& deferred_logger)
|
|
{
|
|
if (! this->localWellsActive()) {
|
|
return;
|
|
}
|
|
|
|
for (const auto& wellPtr : this->well_container_) {
|
|
wellPtr->updateProductivityIndex(this->ebosSimulator_,
|
|
this->prod_index_calc_[wellPtr->indexOfWell()],
|
|
this->wellState(),
|
|
deferred_logger);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
prepareTimeStep(Opm::DeferredLogger& deferred_logger)
|
|
{
|
|
auto exc_type = ExceptionType::NONE;
|
|
std::string exc_msg;
|
|
try {
|
|
for (const auto& well : well_container_) {
|
|
well->checkWellOperability(ebosSimulator_, this->wellState(), deferred_logger);
|
|
}
|
|
// since the controls are all updated, we should update well_state accordingly
|
|
for (const auto& well : well_container_) {
|
|
const int w = well->indexOfWell();
|
|
if (!well->isOperable() ) continue;
|
|
|
|
if (this->wellState().effectiveEventsOccurred(w) ) {
|
|
well->updateWellStateWithTarget(ebosSimulator_, this->wellState(), deferred_logger);
|
|
}
|
|
|
|
// there is no new well control change input within a report step,
|
|
// so next time step, the well does not consider to have effective events anymore
|
|
// TODO: if we can know whether this is the first time step within the report step,
|
|
// we do not need to set it to false
|
|
// TODO: we should do this at the end of the time step in case we will need it within
|
|
// this time step somewhere
|
|
if (this->wellState().effectiveEventsOccurred(w) ) {
|
|
this->wellState().setEffectiveEventsOccurred(w, false);
|
|
}
|
|
} // end of for (const auto& well : well_container_)
|
|
updatePrimaryVariables(deferred_logger);
|
|
} catch (const std::runtime_error& e) {
|
|
exc_type = ExceptionType::RUNTIME_ERROR;
|
|
exc_msg = e.what();
|
|
} catch (const std::invalid_argument& e) {
|
|
exc_type = ExceptionType::INVALID_ARGUMENT;
|
|
exc_msg = e.what();
|
|
} catch (const std::logic_error& e) {
|
|
exc_type = ExceptionType::LOGIC_ERROR;
|
|
exc_msg = e.what();
|
|
} catch (const std::exception& e) {
|
|
exc_type = ExceptionType::DEFAULT;
|
|
exc_msg = e.what();
|
|
}
|
|
logAndCheckForExceptionsAndThrow(deferred_logger, exc_type, "prepareTimestep() failed: " + exc_msg, terminal_output_);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
calculateEfficiencyFactors(const int reportStepIdx)
|
|
{
|
|
if ( !localWellsActive() ) {
|
|
return;
|
|
}
|
|
|
|
for (auto& well : well_container_) {
|
|
const Well& wellEcl = well->wellEcl();
|
|
double well_efficiency_factor = wellEcl.getEfficiencyFactor();
|
|
WellGroupHelpers::accumulateGroupEfficiencyFactor(schedule().getGroup(wellEcl.groupName(), reportStepIdx), schedule(), reportStepIdx, well_efficiency_factor);
|
|
well->setWellEfficiencyFactor(well_efficiency_factor);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
setupCartesianToCompressed_(const int* global_cell, int number_of_cartesian_cells)
|
|
{
|
|
cartesian_to_compressed_.resize(number_of_cartesian_cells, -1);
|
|
if (global_cell) {
|
|
auto elemIt = ebosSimulator_.gridView().template begin</*codim=*/ 0>();
|
|
for (unsigned i = 0; i < local_num_cells_; ++i) {
|
|
// Skip perforations in the overlap/ghost for distributed wells.
|
|
if (elemIt->partitionType() == Dune::InteriorEntity)
|
|
{
|
|
assert(ebosSimulator_.gridView().indexSet().index(*elemIt) == static_cast<int>(i));
|
|
cartesian_to_compressed_[global_cell[i]] = i;
|
|
}
|
|
++elemIt;
|
|
}
|
|
}
|
|
else {
|
|
for (unsigned i = 0; i < local_num_cells_; ++i) {
|
|
cartesian_to_compressed_[i] = i;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
setRepRadiusPerfLength()
|
|
{
|
|
for (const auto& well : well_container_) {
|
|
well->setRepRadiusPerfLength(cartesian_to_compressed_);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
updateAverageFormationFactor()
|
|
{
|
|
std::vector< Scalar > B_avg(numComponents(), Scalar() );
|
|
const auto& grid = ebosSimulator_.vanguard().grid();
|
|
const auto& gridView = grid.leafGridView();
|
|
ElementContext elemCtx(ebosSimulator_);
|
|
const auto& elemEndIt = gridView.template end</*codim=*/0, Dune::Interior_Partition>();
|
|
|
|
for (auto elemIt = gridView.template begin</*codim=*/0, Dune::Interior_Partition>();
|
|
elemIt != elemEndIt; ++elemIt)
|
|
{
|
|
elemCtx.updatePrimaryStencil(*elemIt);
|
|
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
|
|
|
|
const auto& intQuants = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
|
|
const auto& fs = intQuants.fluidState();
|
|
|
|
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx)
|
|
{
|
|
if (!FluidSystem::phaseIsActive(phaseIdx)) {
|
|
continue;
|
|
}
|
|
|
|
const unsigned compIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
|
|
auto& B = B_avg[ compIdx ];
|
|
|
|
B += 1 / fs.invB(phaseIdx).value();
|
|
}
|
|
if constexpr (has_solvent_) {
|
|
auto& B = B_avg[solventSaturationIdx];
|
|
B += 1 / intQuants.solventInverseFormationVolumeFactor().value();
|
|
}
|
|
}
|
|
|
|
// compute global average
|
|
grid.comm().sum(B_avg.data(), B_avg.size());
|
|
for(auto& bval: B_avg)
|
|
{
|
|
bval/=global_num_cells_;
|
|
}
|
|
B_avg_ = B_avg;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
updatePrimaryVariables(Opm::DeferredLogger& deferred_logger)
|
|
{
|
|
for (const auto& well : well_container_) {
|
|
well->updatePrimaryVariables(this->wellState(), deferred_logger);
|
|
}
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::extractLegacyCellPvtRegionIndex_()
|
|
{
|
|
const auto& grid = ebosSimulator_.vanguard().grid();
|
|
const auto& eclProblem = ebosSimulator_.problem();
|
|
const unsigned numCells = grid.size(/*codim=*/0);
|
|
|
|
pvt_region_idx_.resize(numCells);
|
|
for (unsigned cellIdx = 0; cellIdx < numCells; ++cellIdx) {
|
|
pvt_region_idx_[cellIdx] =
|
|
eclProblem.pvtRegionIndex(cellIdx);
|
|
}
|
|
}
|
|
|
|
// The number of components in the model.
|
|
template<typename TypeTag>
|
|
int
|
|
BlackoilWellModel<TypeTag>::numComponents() const
|
|
{
|
|
if (wellsActive() && numPhases() < 3) {
|
|
return numPhases();
|
|
}
|
|
int numComp = FluidSystem::numComponents;
|
|
if constexpr (has_solvent_) {
|
|
numComp ++;
|
|
}
|
|
|
|
return numComp;
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
int
|
|
BlackoilWellModel<TypeTag>:: numLocalWells() const
|
|
{
|
|
return wells_ecl_.size();
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
int
|
|
BlackoilWellModel<TypeTag>::numPhases() const
|
|
{
|
|
return phase_usage_.num_phases;
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::extractLegacyDepth_()
|
|
{
|
|
const auto& grid = ebosSimulator_.vanguard().grid();
|
|
const unsigned numCells = grid.size(/*codim=*/0);
|
|
|
|
depth_.resize(numCells);
|
|
for (unsigned cellIdx = 0; cellIdx < numCells; ++cellIdx) {
|
|
depth_[cellIdx] = Opm::UgGridHelpers::cellCenterDepth( grid, cellIdx );
|
|
}
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
updatePerforationIntensiveQuantities() {
|
|
ElementContext elemCtx(ebosSimulator_);
|
|
const auto& gridView = ebosSimulator_.gridView();
|
|
const auto& elemEndIt = gridView.template end</*codim=*/0, Dune::Interior_Partition>();
|
|
for (auto elemIt = gridView.template begin</*codim=*/0, Dune::Interior_Partition>();
|
|
elemIt != elemEndIt;
|
|
++elemIt)
|
|
{
|
|
|
|
elemCtx.updatePrimaryStencil(*elemIt);
|
|
int elemIdx = elemCtx.globalSpaceIndex(0, 0);
|
|
|
|
if (!is_cell_perforated_[elemIdx]) {
|
|
continue;
|
|
}
|
|
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
|
|
}
|
|
}
|
|
|
|
|
|
template<typename TypeTag>
|
|
bool
|
|
BlackoilWellModel<TypeTag>::
|
|
hasWell(const std::string& wname) {
|
|
auto iter = std::find_if( this->wells_ecl_.begin(), this->wells_ecl_.end(), [&wname](const Well& well) { return well.name() == wname; });
|
|
return (iter != this->wells_ecl_.end());
|
|
}
|
|
|
|
|
|
// convert well data from opm-common to well state from opm-core
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
loadRestartData( const data::Wells& rst_wells,
|
|
const data::GroupAndNetworkValues& grpNwrkValues,
|
|
const PhaseUsage& phases,
|
|
const bool handle_ms_well,
|
|
WellStateFullyImplicitBlackoil& state) const
|
|
{
|
|
using GPMode = Group::ProductionCMode;
|
|
using GIMode = Group::InjectionCMode;
|
|
|
|
using rt = data::Rates::opt;
|
|
const auto np = phases.num_phases;
|
|
|
|
std::vector< rt > phs( np );
|
|
if( phases.phase_used[BlackoilPhases::Aqua] ) {
|
|
phs.at( phases.phase_pos[BlackoilPhases::Aqua] ) = rt::wat;
|
|
}
|
|
|
|
if( phases.phase_used[BlackoilPhases::Liquid] ) {
|
|
phs.at( phases.phase_pos[BlackoilPhases::Liquid] ) = rt::oil;
|
|
}
|
|
|
|
if( phases.phase_used[BlackoilPhases::Vapour] ) {
|
|
phs.at( phases.phase_pos[BlackoilPhases::Vapour] ) = rt::gas;
|
|
}
|
|
|
|
for( const auto& wm : state.wellMap() ) {
|
|
const auto well_index = wm.second[ 0 ];
|
|
const auto& rst_well = rst_wells.at( wm.first );
|
|
state.bhp()[ well_index ] = rst_well.bhp;
|
|
state.temperature()[ well_index ] = rst_well.temperature;
|
|
|
|
if (rst_well.current_control.isProducer) {
|
|
state.currentProductionControls()[ well_index ] = rst_well.current_control.prod;
|
|
}
|
|
else {
|
|
state.currentInjectionControls()[ well_index ] = rst_well.current_control.inj;
|
|
}
|
|
|
|
const auto wellrate_index = well_index * np;
|
|
for( size_t i = 0; i < phs.size(); ++i ) {
|
|
assert( rst_well.rates.has( phs[ i ] ) );
|
|
state.wellRates()[ wellrate_index + i ] = rst_well.rates.get( phs[ i ] );
|
|
}
|
|
|
|
auto * perf_pressure = state.perfPress().data() + wm.second[1];
|
|
auto * perf_rates = state.perfRates().data() + wm.second[1];
|
|
auto * perf_phase_rates = state.perfPhaseRates().data() + wm.second[1]*np;
|
|
const auto& perf_data = this->well_perf_data_[well_index];
|
|
|
|
for (std::size_t perf_index = 0; perf_index < perf_data.size(); perf_index++) {
|
|
const auto& pd = perf_data[perf_index];
|
|
const auto& rst_connection = rst_well.connections[pd.ecl_index];
|
|
perf_pressure[perf_index] = rst_connection.pressure;
|
|
perf_rates[perf_index] = rst_connection.reservoir_rate;
|
|
for (int phase_index = 0; phase_index < np; ++phase_index)
|
|
perf_phase_rates[perf_index*np + phase_index] = rst_connection.rates.get(phs[phase_index]);
|
|
}
|
|
|
|
if (handle_ms_well && !rst_well.segments.empty()) {
|
|
// we need the well_ecl_ information
|
|
const std::string& well_name = wm.first;
|
|
const Well& well_ecl = getWellEcl(well_name);
|
|
|
|
const WellSegments& segment_set = well_ecl.getSegments();
|
|
|
|
const int top_segment_index = state.topSegmentIndex(well_index);
|
|
const auto& segments = rst_well.segments;
|
|
|
|
// \Note: eventually we need to hanlde the situations that some segments are shut
|
|
assert(0u + segment_set.size() == segments.size());
|
|
|
|
for (const auto& segment : segments) {
|
|
const int segment_index = segment_set.segmentNumberToIndex(segment.first);
|
|
|
|
// recovering segment rates and pressure from the restart values
|
|
const auto pres_idx = Opm::data::SegmentPressures::Value::Pressure;
|
|
state.segPress()[top_segment_index + segment_index] = segment.second.pressures[pres_idx];
|
|
|
|
const auto& segment_rates = segment.second.rates;
|
|
for (int p = 0; p < np; ++p) {
|
|
state.segRates()[(top_segment_index + segment_index) * np + p] = segment_rates.get(phs[p]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for (const auto& [group, value] : grpNwrkValues.groupData) {
|
|
const auto cpc = value.currentControl.currentProdConstraint;
|
|
const auto cgi = value.currentControl.currentGasInjectionConstraint;
|
|
const auto cwi = value.currentControl.currentWaterInjectionConstraint;
|
|
|
|
if (cpc != GPMode::NONE) {
|
|
state.setCurrentProductionGroupControl(group, cpc);
|
|
}
|
|
|
|
if (cgi != GIMode::NONE) {
|
|
state.setCurrentInjectionGroupControl(Phase::GAS, group, cgi);
|
|
}
|
|
|
|
if (cwi != GIMode::NONE) {
|
|
state.setCurrentInjectionGroupControl(Phase::WATER, group, cwi);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
bool
|
|
BlackoilWellModel<TypeTag>::
|
|
anyMSWellOpenLocal() const
|
|
{
|
|
for (const auto& well : wells_ecl_) {
|
|
if (well.isMultiSegment()) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
const Well&
|
|
BlackoilWellModel<TypeTag>::
|
|
getWellEcl(const std::string& well_name) const
|
|
{
|
|
// finding the iterator of the well in wells_ecl
|
|
auto well_ecl = std::find_if(wells_ecl_.begin(),
|
|
wells_ecl_.end(),
|
|
[&well_name](const Well& elem)->bool {
|
|
return elem.name() == well_name;
|
|
});
|
|
|
|
assert(well_ecl != wells_ecl_.end());
|
|
|
|
return *well_ecl;
|
|
}
|
|
|
|
|
|
template<typename TypeTag>
|
|
typename BlackoilWellModel<TypeTag>::WellInterfacePtr
|
|
BlackoilWellModel<TypeTag>::
|
|
getWell(const std::string& well_name) const
|
|
{
|
|
// finding the iterator of the well in wells_ecl
|
|
auto well = std::find_if(well_container_.begin(),
|
|
well_container_.end(),
|
|
[&well_name](const WellInterfacePtr& elem)->bool {
|
|
return elem->name() == well_name;
|
|
});
|
|
|
|
assert(well != well_container_.end());
|
|
|
|
return *well;
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
updateGroupIndividualControls(Opm::DeferredLogger& deferred_logger, std::set<std::string>& switched_groups)
|
|
{
|
|
const int reportStepIdx = ebosSimulator_.episodeIndex();
|
|
|
|
const int nupcol = schedule()[reportStepIdx].nupcol();
|
|
const int iterationIdx = ebosSimulator_.model().newtonMethod().numIterations();
|
|
// don't switch group control when iterationIdx > nupcol
|
|
// to avoid oscilations between group controls
|
|
if (iterationIdx > nupcol)
|
|
return;
|
|
|
|
const Group& fieldGroup = schedule().getGroup("FIELD", reportStepIdx);
|
|
updateGroupIndividualControl(fieldGroup, deferred_logger, switched_groups);
|
|
}
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
updateGroupIndividualControl(const Group& group, Opm::DeferredLogger& deferred_logger, std::set<std::string>& switched_groups) {
|
|
|
|
const int reportStepIdx = ebosSimulator_.episodeIndex();
|
|
const bool skip = switched_groups.count(group.name());
|
|
if (!skip && group.isInjectionGroup())
|
|
{
|
|
const Phase all[] = {Phase::WATER, Phase::OIL, Phase::GAS};
|
|
for (Phase phase : all) {
|
|
if (!group.hasInjectionControl(phase)) {
|
|
continue;
|
|
}
|
|
Group::InjectionCMode newControl = checkGroupInjectionConstraints(group, phase);
|
|
if (newControl != Group::InjectionCMode::NONE)
|
|
{
|
|
switched_groups.insert(group.name());
|
|
actionOnBrokenConstraints(group, newControl, phase, deferred_logger);
|
|
}
|
|
}
|
|
}
|
|
if (!skip && group.isProductionGroup()) {
|
|
Group::ProductionCMode newControl = checkGroupProductionConstraints(group, deferred_logger);
|
|
const auto& summaryState = ebosSimulator_.vanguard().summaryState();
|
|
const auto controls = group.productionControls(summaryState);
|
|
if (newControl != Group::ProductionCMode::NONE)
|
|
{
|
|
switched_groups.insert(group.name());
|
|
actionOnBrokenConstraints(group, controls.exceed_action, newControl, deferred_logger);
|
|
}
|
|
}
|
|
|
|
// call recursively down the group hiearchy
|
|
for (const std::string& groupName : group.groups()) {
|
|
updateGroupIndividualControl( schedule().getGroup(groupName, reportStepIdx), deferred_logger, switched_groups);
|
|
}
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
bool
|
|
BlackoilWellModel<TypeTag>::
|
|
checkGroupConstraints(const Group& group, Opm::DeferredLogger& deferred_logger) const {
|
|
|
|
const int reportStepIdx = ebosSimulator_.episodeIndex();
|
|
if (group.isInjectionGroup()) {
|
|
const Phase all[] = {Phase::WATER, Phase::OIL, Phase::GAS};
|
|
for (Phase phase : all) {
|
|
if (!group.hasInjectionControl(phase)) {
|
|
continue;
|
|
}
|
|
Group::InjectionCMode newControl = checkGroupInjectionConstraints(group, phase);
|
|
if (newControl != Group::InjectionCMode::NONE) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
if (group.isProductionGroup()) {
|
|
Group::ProductionCMode newControl = checkGroupProductionConstraints(group, deferred_logger);
|
|
if (newControl != Group::ProductionCMode::NONE)
|
|
{
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// call recursively down the group hiearchy
|
|
bool violated = false;
|
|
for (const std::string& groupName : group.groups()) {
|
|
violated = violated || checkGroupConstraints( schedule().getGroup(groupName, reportStepIdx), deferred_logger);
|
|
}
|
|
return violated;
|
|
}
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
Group::ProductionCMode
|
|
BlackoilWellModel<TypeTag>::
|
|
checkGroupProductionConstraints(const Group& group, Opm::DeferredLogger& deferred_logger) const {
|
|
|
|
const int reportStepIdx = ebosSimulator_.episodeIndex();
|
|
const auto& summaryState = ebosSimulator_.vanguard().summaryState();
|
|
const auto& comm = ebosSimulator_.vanguard().grid().comm();
|
|
const auto& well_state = this->wellState();
|
|
|
|
const auto controls = group.productionControls(summaryState);
|
|
const Group::ProductionCMode& currentControl = well_state.currentProductionGroupControl(group.name());
|
|
|
|
if (group.has_control(Group::ProductionCMode::ORAT))
|
|
{
|
|
if (currentControl != Group::ProductionCMode::ORAT)
|
|
{
|
|
double current_rate = 0.0;
|
|
current_rate += WellGroupHelpers::sumWellRates(group, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Liquid], false);
|
|
|
|
// sum over all nodes
|
|
current_rate = comm.sum(current_rate);
|
|
|
|
if (controls.oil_target < current_rate ) {
|
|
return Group::ProductionCMode::ORAT;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (group.has_control(Group::ProductionCMode::WRAT))
|
|
{
|
|
if (currentControl != Group::ProductionCMode::WRAT)
|
|
{
|
|
|
|
double current_rate = 0.0;
|
|
current_rate += WellGroupHelpers::sumWellRates(group, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Aqua], false);
|
|
|
|
// sum over all nodes
|
|
current_rate = comm.sum(current_rate);
|
|
|
|
if (controls.water_target < current_rate ) {
|
|
return Group::ProductionCMode::WRAT;
|
|
}
|
|
}
|
|
}
|
|
if (group.has_control(Group::ProductionCMode::GRAT))
|
|
{
|
|
if (currentControl != Group::ProductionCMode::GRAT)
|
|
{
|
|
double current_rate = 0.0;
|
|
current_rate += WellGroupHelpers::sumWellRates(group, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Vapour], false);
|
|
|
|
// sum over all nodes
|
|
current_rate = comm.sum(current_rate);
|
|
if (controls.gas_target < current_rate ) {
|
|
return Group::ProductionCMode::GRAT;
|
|
}
|
|
}
|
|
}
|
|
if (group.has_control(Group::ProductionCMode::LRAT))
|
|
{
|
|
if (currentControl != Group::ProductionCMode::LRAT)
|
|
{
|
|
double current_rate = 0.0;
|
|
current_rate += WellGroupHelpers::sumWellRates(group, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Liquid], false);
|
|
current_rate += WellGroupHelpers::sumWellRates(group, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Aqua], false);
|
|
|
|
// sum over all nodes
|
|
current_rate = comm.sum(current_rate);
|
|
|
|
if (controls.liquid_target < current_rate ) {
|
|
return Group::ProductionCMode::LRAT;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (group.has_control(Group::ProductionCMode::CRAT))
|
|
{
|
|
OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + "CRAT control for production groups not implemented" , deferred_logger);
|
|
}
|
|
if (group.has_control(Group::ProductionCMode::RESV))
|
|
{
|
|
if (currentControl != Group::ProductionCMode::RESV)
|
|
{
|
|
double current_rate = 0.0;
|
|
current_rate += WellGroupHelpers::sumWellResRates(group, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Aqua], true);
|
|
current_rate += WellGroupHelpers::sumWellResRates(group, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Liquid], true);
|
|
current_rate += WellGroupHelpers::sumWellResRates(group, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Vapour], true);
|
|
|
|
// sum over all nodes
|
|
current_rate = comm.sum(current_rate);
|
|
|
|
if (controls.resv_target < current_rate ) {
|
|
return Group::ProductionCMode::RESV;
|
|
}
|
|
}
|
|
|
|
}
|
|
if (group.has_control(Group::ProductionCMode::PRBL))
|
|
{
|
|
OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + "PRBL control for production groups not implemented", deferred_logger);
|
|
}
|
|
return Group::ProductionCMode::NONE;
|
|
}
|
|
|
|
|
|
template<typename TypeTag>
|
|
Group::InjectionCMode
|
|
BlackoilWellModel<TypeTag>::
|
|
checkGroupInjectionConstraints(const Group& group, const Phase& phase) const {
|
|
|
|
const int reportStepIdx = ebosSimulator_.episodeIndex();
|
|
const auto& summaryState = ebosSimulator_.vanguard().summaryState();
|
|
const auto& comm = ebosSimulator_.vanguard().grid().comm();
|
|
const auto& well_state = this->wellState();
|
|
|
|
int phasePos;
|
|
if (phase == Phase::GAS && phase_usage_.phase_used[BlackoilPhases::Vapour] )
|
|
phasePos = phase_usage_.phase_pos[BlackoilPhases::Vapour];
|
|
else if (phase == Phase::OIL && phase_usage_.phase_used[BlackoilPhases::Liquid])
|
|
phasePos = phase_usage_.phase_pos[BlackoilPhases::Liquid];
|
|
else if (phase == Phase::WATER && phase_usage_.phase_used[BlackoilPhases::Aqua] )
|
|
phasePos = phase_usage_.phase_pos[BlackoilPhases::Aqua];
|
|
else
|
|
OPM_THROW(std::runtime_error, "Unknown phase" );
|
|
|
|
const auto& controls = group.injectionControls(phase, summaryState);
|
|
const Group::InjectionCMode& currentControl = well_state.currentInjectionGroupControl(phase, group.name());
|
|
|
|
if (controls.has_control(Group::InjectionCMode::RATE))
|
|
{
|
|
if (currentControl != Group::InjectionCMode::RATE)
|
|
{
|
|
double current_rate = 0.0;
|
|
current_rate += WellGroupHelpers::sumWellRates(group, schedule(), well_state, reportStepIdx, phasePos, /*isInjector*/true);
|
|
|
|
// sum over all nodes
|
|
current_rate = comm.sum(current_rate);
|
|
|
|
if (controls.surface_max_rate < current_rate) {
|
|
return Group::InjectionCMode::RATE;
|
|
}
|
|
}
|
|
}
|
|
if (controls.has_control(Group::InjectionCMode::RESV))
|
|
{
|
|
if (currentControl != Group::InjectionCMode::RESV)
|
|
{
|
|
double current_rate = 0.0;
|
|
current_rate += WellGroupHelpers::sumWellResRates(group, schedule(), well_state, reportStepIdx, phasePos, /*isInjector*/true);
|
|
// sum over all nodes
|
|
current_rate = comm.sum(current_rate);
|
|
|
|
if (controls.resv_max_rate < current_rate) {
|
|
return Group::InjectionCMode::RESV;
|
|
}
|
|
}
|
|
}
|
|
if (controls.has_control(Group::InjectionCMode::REIN))
|
|
{
|
|
if (currentControl != Group::InjectionCMode::REIN)
|
|
{
|
|
double production_Rate = 0.0;
|
|
const Group& groupRein = schedule().getGroup(controls.reinj_group, reportStepIdx);
|
|
production_Rate += WellGroupHelpers::sumWellRates(groupRein, schedule(), well_state, reportStepIdx, phasePos, /*isInjector*/false);
|
|
|
|
// sum over all nodes
|
|
production_Rate = comm.sum(production_Rate);
|
|
|
|
double current_rate = 0.0;
|
|
current_rate += WellGroupHelpers::sumWellRates(group, schedule(), well_state, reportStepIdx, phasePos, /*isInjector*/true);
|
|
|
|
// sum over all nodes
|
|
current_rate = comm.sum(current_rate);
|
|
|
|
if (controls.target_reinj_fraction*production_Rate < current_rate) {
|
|
return Group::InjectionCMode::REIN;
|
|
}
|
|
}
|
|
}
|
|
if (controls.has_control(Group::InjectionCMode::VREP))
|
|
{
|
|
if (currentControl != Group::InjectionCMode::VREP)
|
|
{
|
|
double voidage_rate = 0.0;
|
|
const Group& groupVoidage = schedule().getGroup(controls.voidage_group, reportStepIdx);
|
|
voidage_rate += WellGroupHelpers::sumWellResRates(groupVoidage, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Aqua], false);
|
|
voidage_rate += WellGroupHelpers::sumWellResRates(groupVoidage, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Liquid], false);
|
|
voidage_rate += WellGroupHelpers::sumWellResRates(groupVoidage, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Vapour], false);
|
|
|
|
// sum over all nodes
|
|
voidage_rate = comm.sum(voidage_rate);
|
|
|
|
double total_rate = 0.0;
|
|
total_rate += WellGroupHelpers::sumWellResRates(group, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Aqua], true);
|
|
total_rate += WellGroupHelpers::sumWellResRates(group, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Liquid], true);
|
|
total_rate += WellGroupHelpers::sumWellResRates(group, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Vapour], true);
|
|
|
|
// sum over all nodes
|
|
total_rate = comm.sum(total_rate);
|
|
|
|
if (controls.target_void_fraction*voidage_rate < total_rate) {
|
|
return Group::InjectionCMode::VREP;
|
|
}
|
|
}
|
|
}
|
|
return Group::InjectionCMode::NONE;
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
checkGconsaleLimits(const Group& group, WellState& well_state, Opm::DeferredLogger& deferred_logger) const
|
|
{
|
|
const int reportStepIdx = ebosSimulator_.episodeIndex();
|
|
// call recursively down the group hiearchy
|
|
for (const std::string& groupName : group.groups()) {
|
|
checkGconsaleLimits( schedule().getGroup(groupName, reportStepIdx), well_state, deferred_logger);
|
|
}
|
|
|
|
// only for groups with gas injection controls
|
|
if (!group.hasInjectionControl(Phase::GAS)) {
|
|
return;
|
|
}
|
|
|
|
// check if gconsale is used for this group
|
|
if (!schedule()[reportStepIdx].gconsale().has(group.name()))
|
|
return;
|
|
|
|
std::ostringstream ss;
|
|
|
|
const auto& summaryState = ebosSimulator_.vanguard().summaryState();
|
|
const auto& comm = ebosSimulator_.vanguard().grid().comm();
|
|
|
|
const auto& gconsale = schedule()[reportStepIdx].gconsale().get(group.name(), summaryState);
|
|
const Group::ProductionCMode& oldProductionControl = well_state.currentProductionGroupControl(group.name());
|
|
|
|
|
|
int gasPos = phase_usage_.phase_pos[BlackoilPhases::Vapour];
|
|
double production_rate = WellGroupHelpers::sumWellRates(group, schedule(), well_state, reportStepIdx, gasPos, /*isInjector*/false);
|
|
double injection_rate = WellGroupHelpers::sumWellRates(group, schedule(), well_state, reportStepIdx, gasPos, /*isInjector*/true);
|
|
|
|
// sum over all nodes
|
|
injection_rate = comm.sum(injection_rate);
|
|
production_rate = comm.sum(production_rate);
|
|
|
|
double sales_rate = production_rate - injection_rate;
|
|
double production_target = gconsale.sales_target + injection_rate;
|
|
|
|
// add import rate and substract consumption rate for group for gas
|
|
if (schedule()[reportStepIdx].gconsump().has(group.name())) {
|
|
const auto& gconsump = schedule()[reportStepIdx].gconsump().get(group.name(), summaryState);
|
|
if (phase_usage_.phase_used[BlackoilPhases::Vapour]) {
|
|
sales_rate += gconsump.import_rate;
|
|
sales_rate -= gconsump.consumption_rate;
|
|
production_target -= gconsump.import_rate;
|
|
production_target += gconsump.consumption_rate;
|
|
}
|
|
}
|
|
if (sales_rate > gconsale.max_sales_rate) {
|
|
|
|
switch(gconsale.max_proc) {
|
|
case GConSale::MaxProcedure::NONE: {
|
|
if (oldProductionControl != Group::ProductionCMode::GRAT && oldProductionControl != Group::ProductionCMode::NONE) {
|
|
ss << "Group sales exceed maximum limit, but the action is NONE for " + group.name() + ". Nothing happens";
|
|
}
|
|
break;
|
|
}
|
|
case GConSale::MaxProcedure::CON: {
|
|
OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + "GCONSALE exceed limit CON not implemented", deferred_logger);
|
|
break;
|
|
}
|
|
case GConSale::MaxProcedure::CON_P: {
|
|
OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + "GCONSALE exceed limit CON_P not implemented", deferred_logger);
|
|
break;
|
|
}
|
|
case GConSale::MaxProcedure::WELL: {
|
|
OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + "GCONSALE exceed limit WELL not implemented", deferred_logger);
|
|
break;
|
|
}
|
|
case GConSale::MaxProcedure::PLUG: {
|
|
OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + "GCONSALE exceed limit PLUG not implemented", deferred_logger);
|
|
break;
|
|
}
|
|
case GConSale::MaxProcedure::MAXR: {
|
|
OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + "GCONSALE exceed limit MAXR not implemented", deferred_logger);
|
|
break;
|
|
}
|
|
case GConSale::MaxProcedure::END: {
|
|
OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + "GCONSALE exceed limit END not implemented", deferred_logger);
|
|
break;
|
|
}
|
|
case GConSale::MaxProcedure::RATE: {
|
|
well_state.setCurrentProductionGroupControl(group.name(), Group::ProductionCMode::GRAT);
|
|
ss << "Maximum GCONSALE limit violated for " << group.name() << ". The group is switched from ";
|
|
ss << Group::ProductionCMode2String(oldProductionControl) << " to " << Group::ProductionCMode2String(Group::ProductionCMode::GRAT);
|
|
ss << " and limited by the maximum sales rate after consumption and import are considered" ;
|
|
well_state.setCurrentGroupGratTargetFromSales(group.name(), production_target);
|
|
break;
|
|
}
|
|
default:
|
|
throw("Invalid procedure for maximum rate limit selected for group" + group.name());
|
|
}
|
|
}
|
|
if (sales_rate < gconsale.min_sales_rate) {
|
|
const Group::ProductionCMode& currentProductionControl = well_state.currentProductionGroupControl(group.name());
|
|
if ( currentProductionControl == Group::ProductionCMode::GRAT ) {
|
|
ss << "Group " + group.name() + " has sale rate less then minimum permitted value and is under GRAT control. \n";
|
|
ss << "The GRAT is increased to meet the sales minimum rate. \n";
|
|
well_state.setCurrentGroupGratTargetFromSales(group.name(), production_target);
|
|
//} else if () {//TODO add action for WGASPROD
|
|
//} else if () {//TODO add action for drilling queue
|
|
} else {
|
|
ss << "Group " + group.name() + " has sale rate less then minimum permitted value but cannot increase the group production rate \n";
|
|
ss << "or adjust gas production using WGASPROD or drill new wells to meet the sales target. \n";
|
|
ss << "Note that WGASPROD and drilling queues are not implemented in Flow. No action is taken. \n ";
|
|
}
|
|
}
|
|
if (gconsale.sales_target < 0.0) {
|
|
OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + " has sale rate target less then zero. Not implemented in Flow" , deferred_logger);
|
|
}
|
|
|
|
auto cc = Dune::MPIHelper::getCollectiveCommunication();
|
|
if (!ss.str().empty() && cc.rank() == 0)
|
|
deferred_logger.info(ss.str());
|
|
|
|
}
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
actionOnBrokenConstraints(const Group& group, const Group::ExceedAction& exceed_action, const Group::ProductionCMode& newControl, Opm::DeferredLogger& deferred_logger) {
|
|
|
|
auto& well_state = this->wellState();
|
|
const Group::ProductionCMode oldControl = well_state.currentProductionGroupControl(group.name());
|
|
|
|
std::ostringstream ss;
|
|
|
|
switch(exceed_action) {
|
|
case Group::ExceedAction::NONE: {
|
|
if (oldControl != newControl && oldControl != Group::ProductionCMode::NONE) {
|
|
ss << "Group production exceed action is NONE for group " + group.name() + ". Nothing happens.";
|
|
}
|
|
break;
|
|
}
|
|
case Group::ExceedAction::CON: {
|
|
OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + "GroupProductionExceedLimit CON not implemented", deferred_logger);
|
|
break;
|
|
}
|
|
case Group::ExceedAction::CON_PLUS: {
|
|
OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + "GroupProductionExceedLimit CON_PLUS not implemented", deferred_logger);
|
|
break;
|
|
}
|
|
case Group::ExceedAction::WELL: {
|
|
OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + "GroupProductionExceedLimit WELL not implemented", deferred_logger);
|
|
break;
|
|
}
|
|
case Group::ExceedAction::PLUG: {
|
|
OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + "GroupProductionExceedLimit PLUG not implemented", deferred_logger);
|
|
break;
|
|
}
|
|
case Group::ExceedAction::RATE: {
|
|
if (oldControl != newControl) {
|
|
well_state.setCurrentProductionGroupControl(group.name(), newControl);
|
|
ss << "Switching production control mode for group "<< group.name()
|
|
<< " from " << Group::ProductionCMode2String(oldControl)
|
|
<< " to " << Group::ProductionCMode2String(newControl);
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
throw("Invalid procedure for maximum rate limit selected for group" + group.name());
|
|
}
|
|
|
|
auto cc = Dune::MPIHelper::getCollectiveCommunication();
|
|
if (!ss.str().empty() && cc.rank() == 0)
|
|
deferred_logger.info(ss.str());
|
|
|
|
|
|
}
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
actionOnBrokenConstraints(const Group& group, const Group::InjectionCMode& newControl, const Phase& controlPhase, Opm::DeferredLogger& deferred_logger) {
|
|
auto& well_state = this->wellState();
|
|
const Group::InjectionCMode oldControl = well_state.currentInjectionGroupControl(controlPhase, group.name());
|
|
|
|
std::ostringstream ss;
|
|
if (oldControl != newControl) {
|
|
const std::string from = Group::InjectionCMode2String(oldControl);
|
|
ss << "Switching injection control mode for group "<< group.name()
|
|
<< " from " << Group::InjectionCMode2String(oldControl)
|
|
<< " to " << Group::InjectionCMode2String(newControl);
|
|
well_state.setCurrentInjectionGroupControl(controlPhase, group.name(), newControl);
|
|
}
|
|
auto cc = Dune::MPIHelper::getCollectiveCommunication();
|
|
if (!ss.str().empty() && cc.rank() == 0)
|
|
deferred_logger.info(ss.str());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
updateGroupHigherControls(Opm::DeferredLogger& deferred_logger, std::set<std::string>& switched_groups)
|
|
{
|
|
const int reportStepIdx = ebosSimulator_.episodeIndex();
|
|
const Group& fieldGroup = schedule().getGroup("FIELD", reportStepIdx);
|
|
checkGroupHigherConstraints(fieldGroup, deferred_logger, switched_groups);
|
|
}
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
checkGroupHigherConstraints(const Group& group, Opm::DeferredLogger& deferred_logger, std::set<std::string>& switched_groups)
|
|
{
|
|
// Set up coefficients for RESV <-> surface rate conversion.
|
|
// Use the pvtRegionIdx from the top cell of the first well.
|
|
// TODO fix this!
|
|
// This is only used for converting RESV rates.
|
|
// What is the proper approach?
|
|
const auto& comm = ebosSimulator_.vanguard().grid().comm();
|
|
const int fipnum = 0;
|
|
int pvtreg = well_perf_data_.empty() || well_perf_data_[0].empty()
|
|
? pvt_region_idx_[0]
|
|
: pvt_region_idx_[well_perf_data_[0][0].cell_index];
|
|
|
|
if ( comm.size() > 1)
|
|
{
|
|
// Just like in the sequential case the pvtregion is determined
|
|
// by the first cell of the first well. What is the first well
|
|
// is decided by the order in the Schedule using Well::seqIndex()
|
|
int firstWellIndex = well_perf_data_.empty() ?
|
|
std::numeric_limits<int>::max() : wells_ecl_[0].seqIndex();
|
|
auto regIndexPair = std::make_pair(pvtreg, firstWellIndex);
|
|
std::vector<decltype(regIndexPair)> pairs(comm.size());
|
|
comm.allgather(®IndexPair, 1, pairs.data());
|
|
pvtreg = std::min_element(pairs.begin(), pairs.end(),
|
|
[](const auto& p1, const auto& p2){ return p1.second < p2.second;})
|
|
->first;
|
|
}
|
|
|
|
std::vector<double> resv_coeff(phase_usage_.num_phases, 0.0);
|
|
rateConverter_->calcCoeff(fipnum, pvtreg, resv_coeff);
|
|
|
|
const int reportStepIdx = ebosSimulator_.episodeIndex();
|
|
const auto& summaryState = ebosSimulator_.vanguard().summaryState();
|
|
|
|
std::vector<double> rates(phase_usage_.num_phases, 0.0);
|
|
|
|
const bool skip = switched_groups.count(group.name()) || group.name() == "FIELD";
|
|
|
|
if (!skip && group.isInjectionGroup()) {
|
|
// Obtain rates for group.
|
|
for (int phasePos = 0; phasePos < phase_usage_.num_phases; ++phasePos) {
|
|
const double local_current_rate = WellGroupHelpers::sumWellRates(group, schedule(), this->wellState(), reportStepIdx, phasePos, /* isInjector */ true);
|
|
// Sum over all processes
|
|
rates[phasePos] = comm.sum(local_current_rate);
|
|
}
|
|
const Phase all[] = { Phase::WATER, Phase::OIL, Phase::GAS };
|
|
for (Phase phase : all) {
|
|
// Check higher up only if under individual (not FLD) control.
|
|
const Group::InjectionCMode& currentControl = this->wellState().currentInjectionGroupControl(phase, group.name());
|
|
if (currentControl != Group::InjectionCMode::FLD && group.injectionGroupControlAvailable(phase)) {
|
|
const Group& parentGroup = schedule().getGroup(group.parent(), reportStepIdx);
|
|
const std::pair<bool, double> changed = WellGroupHelpers::checkGroupConstraintsInj(
|
|
group.name(),
|
|
group.parent(),
|
|
parentGroup,
|
|
this->wellState(),
|
|
reportStepIdx,
|
|
guideRate_.get(),
|
|
rates.data(),
|
|
phase,
|
|
phase_usage_,
|
|
group.getGroupEfficiencyFactor(),
|
|
schedule(),
|
|
summaryState,
|
|
resv_coeff,
|
|
deferred_logger);
|
|
if (changed.first) {
|
|
switched_groups.insert(group.name());
|
|
actionOnBrokenConstraints(group, Group::InjectionCMode::FLD, phase, deferred_logger);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!skip && group.isProductionGroup()) {
|
|
// Obtain rates for group.
|
|
for (int phasePos = 0; phasePos < phase_usage_.num_phases; ++phasePos) {
|
|
const double local_current_rate = WellGroupHelpers::sumWellRates(group, schedule(), this->wellState(), reportStepIdx, phasePos, /* isInjector */ false);
|
|
// Sum over all processes
|
|
rates[phasePos] = -comm.sum(local_current_rate);
|
|
}
|
|
// Check higher up only if under individual (not FLD) control.
|
|
const Group::ProductionCMode& currentControl = this->wellState().currentProductionGroupControl(group.name());
|
|
if (currentControl != Group::ProductionCMode::FLD && group.productionGroupControlAvailable()) {
|
|
const Group& parentGroup = schedule().getGroup(group.parent(), reportStepIdx);
|
|
const std::pair<bool, double> changed = WellGroupHelpers::checkGroupConstraintsProd(
|
|
group.name(),
|
|
group.parent(),
|
|
parentGroup,
|
|
this->wellState(),
|
|
reportStepIdx,
|
|
guideRate_.get(),
|
|
rates.data(),
|
|
phase_usage_,
|
|
group.getGroupEfficiencyFactor(),
|
|
schedule(),
|
|
summaryState,
|
|
resv_coeff,
|
|
deferred_logger);
|
|
if (changed.first) {
|
|
switched_groups.insert(group.name());
|
|
const auto exceed_action = group.productionControls(summaryState).exceed_action;
|
|
actionOnBrokenConstraints(group, exceed_action, Group::ProductionCMode::FLD, deferred_logger);
|
|
}
|
|
}
|
|
}
|
|
|
|
// call recursively down the group hiearchy
|
|
for (const std::string& groupName : group.groups()) {
|
|
checkGroupHigherConstraints( schedule().getGroup(groupName, reportStepIdx), deferred_logger, switched_groups);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
updateEclWells(const int timeStepIdx, const std::unordered_set<std::string>& wells) {
|
|
const auto& schedule = this->ebosSimulator_.vanguard().schedule();
|
|
for (const auto& wname : wells) {
|
|
auto well_iter = std::find_if( this->wells_ecl_.begin(), this->wells_ecl_.end(), [wname] (const auto& well) -> bool { return well.name() == wname;});
|
|
if (well_iter != this->wells_ecl_.end()) {
|
|
auto well_index = std::distance( this->wells_ecl_.begin(), well_iter );
|
|
this->wells_ecl_[well_index] = schedule.getWell(wname, timeStepIdx);
|
|
|
|
const auto& well = this->wells_ecl_[well_index];
|
|
auto& pd = this->well_perf_data_[well_index];
|
|
auto pdIter = pd.begin();
|
|
for (const auto& conn : well.getConnections()) {
|
|
if (conn.state() != Connection::State::SHUT) {
|
|
pdIter->connection_transmissibility_factor = conn.CF();
|
|
++pdIter;
|
|
}
|
|
}
|
|
this->wellState().updateStatus(well_index, well.getStatus());
|
|
this->wellState().resetConnectionTransFactors(well_index, pd);
|
|
this->prod_index_calc_[well_index].reInit(well);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
double
|
|
BlackoilWellModel<TypeTag>::
|
|
wellPI(const int well_index) const
|
|
{
|
|
const auto& pu = this->phase_usage_;
|
|
const auto np = this->numPhases();
|
|
const auto* pi = &this->wellState().productivityIndex()[np*well_index + 0];
|
|
|
|
const auto preferred = this->wells_ecl_[well_index].getPreferredPhase();
|
|
switch (preferred) { // Should really have LIQUID = OIL + WATER here too...
|
|
case Phase::WATER:
|
|
return pu.phase_used[BlackoilPhases::PhaseIndex::Aqua]
|
|
? pi[pu.phase_pos[BlackoilPhases::PhaseIndex::Aqua]]
|
|
: 0.0;
|
|
|
|
case Phase::OIL:
|
|
return pu.phase_used[BlackoilPhases::PhaseIndex::Liquid]
|
|
? pi[pu.phase_pos[BlackoilPhases::PhaseIndex::Liquid]]
|
|
: 0.0;
|
|
|
|
case Phase::GAS:
|
|
return pu.phase_used[BlackoilPhases::PhaseIndex::Vapour]
|
|
? pi[pu.phase_pos[BlackoilPhases::PhaseIndex::Vapour]]
|
|
: 0.0;
|
|
|
|
default:
|
|
throw std::invalid_argument {
|
|
"Unsupported preferred phase " +
|
|
std::to_string(static_cast<int>(preferred))
|
|
};
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
double
|
|
BlackoilWellModel<TypeTag>::
|
|
wellPI(const std::string& well_name) const
|
|
{
|
|
auto well_iter = std::find_if(this->wells_ecl_.begin(), this->wells_ecl_.end(),
|
|
[&well_name](const Well& well)
|
|
{
|
|
return well.name() == well_name;
|
|
});
|
|
|
|
if (well_iter == this->wells_ecl_.end()) {
|
|
throw std::logic_error { "Could not find well: " + well_name };
|
|
}
|
|
|
|
auto well_index = std::distance(this->wells_ecl_.begin(), well_iter);
|
|
return this->wellPI(well_index);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
int
|
|
BlackoilWellModel<TypeTag>::
|
|
reportStepIndex() const
|
|
{
|
|
return std::max(this->ebosSimulator_.episodeIndex(), 0);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
runWellPIScaling(const int timeStepIdx, DeferredLogger& local_deferredLogger)
|
|
{
|
|
if (this->last_run_wellpi_.has_value() && (*this->last_run_wellpi_ == timeStepIdx)) {
|
|
// We've already run WELPI scaling for this report step. Most
|
|
// common for the very first report step. Don't redo WELPI scaling.
|
|
return;
|
|
}
|
|
|
|
auto hasWellPIEvent = [this, timeStepIdx](const int well_index) -> bool
|
|
{
|
|
return this->schedule()[timeStepIdx].wellgroup_events()
|
|
.hasEvent(this->wells_ecl_[well_index].name(),
|
|
ScheduleEvents::Events::WELL_PRODUCTIVITY_INDEX);
|
|
};
|
|
|
|
auto updateEclWell = [this, timeStepIdx](const int well_index) -> void
|
|
{
|
|
const auto& schedule = this->schedule();
|
|
const auto& wname = this->wells_ecl_[well_index].name();
|
|
this->wells_ecl_[well_index] = schedule.getWell(wname, timeStepIdx);
|
|
|
|
const auto& well = this->wells_ecl_[well_index];
|
|
auto& pd = this->well_perf_data_[well_index];
|
|
auto pdIter = pd.begin();
|
|
for (const auto& conn : well.getConnections()) {
|
|
if (conn.state() != Connection::State::SHUT) {
|
|
pdIter->connection_transmissibility_factor = conn.CF();
|
|
++pdIter;
|
|
}
|
|
}
|
|
this->wellState().resetConnectionTransFactors(well_index, pd);
|
|
this->prod_index_calc_[well_index].reInit(well);
|
|
};
|
|
|
|
|
|
auto rescaleWellPI =
|
|
[this, timeStepIdx](const int well_index,
|
|
const double newWellPI) -> void
|
|
{
|
|
const auto& wname = this->wells_ecl_[well_index].name();
|
|
|
|
auto& schedule = this->ebosSimulator_.vanguard().schedule(); // Mutable
|
|
schedule.applyWellProdIndexScaling(wname, timeStepIdx, newWellPI);
|
|
};
|
|
|
|
// Minimal well setup to compute PI/II values
|
|
{
|
|
auto saved_previous_well_state = this->prevWellState();
|
|
this->commitWellState();
|
|
|
|
well_container_ = createWellContainer(timeStepIdx);
|
|
for (auto& well : well_container_) {
|
|
well->init(&phase_usage_, depth_, gravity_, local_num_cells_, B_avg_);
|
|
}
|
|
|
|
std::fill(is_cell_perforated_.begin(), is_cell_perforated_.end(), false);
|
|
for (auto& well : well_container_) {
|
|
well->updatePerforatedCell(is_cell_perforated_);
|
|
}
|
|
|
|
this->calculateProductivityIndexValues(local_deferredLogger);
|
|
this->commitWellState(std::move(saved_previous_well_state));
|
|
}
|
|
|
|
const auto nw = this->numLocalWells();
|
|
for (auto wellID = 0*nw; wellID < nw; ++wellID) {
|
|
if (hasWellPIEvent(wellID)) {
|
|
rescaleWellPI(wellID, this->wellPI(wellID));
|
|
updateEclWell(wellID);
|
|
}
|
|
}
|
|
|
|
this->last_run_wellpi_ = timeStepIdx;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
bool
|
|
BlackoilWellModel<TypeTag>::
|
|
wasDynamicallyShutThisTimeStep(const int well_index) const
|
|
{
|
|
return this->closed_this_step_.find(this->wells_ecl_[well_index].name())
|
|
!= this->closed_this_step_.end();
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
updateWsolvent(const Group& group, const Schedule& schedule, const int reportStepIdx, const WellStateFullyImplicitBlackoil& wellState) {
|
|
for (const std::string& groupName : group.groups()) {
|
|
const Group& groupTmp = schedule.getGroup(groupName, reportStepIdx);
|
|
updateWsolvent(groupTmp, schedule, reportStepIdx, wellState);
|
|
}
|
|
|
|
if (group.isProductionGroup())
|
|
return;
|
|
|
|
const Group::InjectionCMode& currentGroupControl = wellState.currentInjectionGroupControl(Phase::GAS, group.name());
|
|
if( currentGroupControl == Group::InjectionCMode::REIN ) {
|
|
int gasPos = phase_usage_.phase_pos[BlackoilPhases::Vapour];
|
|
const auto& summaryState = ebosSimulator_.vanguard().summaryState();
|
|
const auto& controls = group.injectionControls(Phase::GAS, summaryState);
|
|
const Group& groupRein = schedule.getGroup(controls.reinj_group, reportStepIdx);
|
|
double gasProductionRate = WellGroupHelpers::sumWellRates(groupRein, schedule, wellState, reportStepIdx, gasPos, /*isInjector*/false);
|
|
double solventProductionRate = WellGroupHelpers::sumSolventRates(groupRein, schedule, wellState, reportStepIdx, /*isInjector*/false);
|
|
|
|
const auto& comm = ebosSimulator_.vanguard().grid().comm();
|
|
solventProductionRate = comm.sum(solventProductionRate);
|
|
gasProductionRate = comm.sum(gasProductionRate);
|
|
|
|
double wsolvent = 0.0;
|
|
if (std::abs(gasProductionRate) > 1e-6)
|
|
wsolvent = solventProductionRate / gasProductionRate;
|
|
|
|
setWsolvent(group, schedule, reportStepIdx, wsolvent);
|
|
}
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
setWsolvent(const Group& group, const Schedule& schedule, const int reportStepIdx, double wsolvent) {
|
|
for (const std::string& groupName : group.groups()) {
|
|
const Group& groupTmp = schedule.getGroup(groupName, reportStepIdx);
|
|
setWsolvent(groupTmp, schedule, reportStepIdx, wsolvent);
|
|
}
|
|
|
|
for (const std::string& wellName : group.wells()) {
|
|
const auto& wellTmp = schedule.getWell(wellName, reportStepIdx);
|
|
if (wellTmp.getStatus() == Well::Status::SHUT)
|
|
continue;
|
|
|
|
auto well = getWell(wellName);
|
|
well->setWsolvent(wsolvent);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
assignWellGuideRates(data::Wells& wsrpt) const
|
|
{
|
|
for (const auto& well : this->wells_ecl_) {
|
|
auto xwPos = wsrpt.find(well.name());
|
|
if (xwPos == wsrpt.end()) { // No well results. Unexpected.
|
|
continue;
|
|
}
|
|
|
|
xwPos->second.guide_rates = this->getGuideRateValues(well);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
assignShutConnections(data::Wells& wsrpt) const
|
|
{
|
|
auto wellID = 0;
|
|
|
|
for (const auto& well : this->wells_ecl_) {
|
|
auto& xwel = wsrpt[well.name()]; // data::Wells is a std::map<>
|
|
|
|
xwel.dynamicStatus = this->schedule()
|
|
.getWell(well.name(), this->reportStepIndex()).getStatus();
|
|
|
|
const auto wellIsOpen = xwel.dynamicStatus == Well::Status::OPEN;
|
|
auto skip = [wellIsOpen](const Connection& conn)
|
|
{
|
|
return wellIsOpen && (conn.state() != Connection::State::SHUT);
|
|
};
|
|
|
|
if (this->wellTestState_.hasWellClosed(well.name()) &&
|
|
!this->wasDynamicallyShutThisTimeStep(wellID))
|
|
{
|
|
xwel.dynamicStatus = well.getAutomaticShutIn()
|
|
? Well::Status::SHUT : Well::Status::STOP;
|
|
}
|
|
|
|
auto& xcon = xwel.connections;
|
|
for (const auto& conn : well.getConnections()) {
|
|
if (skip(conn)) {
|
|
continue;
|
|
}
|
|
|
|
auto& xc = xcon.emplace_back();
|
|
xc.index = conn.global_index();
|
|
xc.pressure = xc.reservoir_rate = 0.0;
|
|
|
|
xc.effective_Kh = conn.Kh();
|
|
xc.trans_factor = conn.CF();
|
|
}
|
|
|
|
++wellID;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
assignGroupValues(const int reportStepIdx,
|
|
const Schedule& sched,
|
|
std::map<std::string, data::GroupData>& gvalues) const
|
|
{
|
|
const auto groupGuideRates =
|
|
this->calculateAllGroupGuiderates(reportStepIdx, sched);
|
|
|
|
for (const auto& gname : sched.groupNames(reportStepIdx)) {
|
|
const auto& grup = sched.getGroup(gname, reportStepIdx);
|
|
|
|
auto& gdata = gvalues[gname];
|
|
this->assignGroupControl(grup, gdata);
|
|
this->assignGroupGuideRates(grup, groupGuideRates, gdata);
|
|
}
|
|
}
|
|
|
|
template <typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
assignNodeValues(std::map<std::string, data::NodeData>& nodevalues) const
|
|
{
|
|
nodevalues.clear();
|
|
for (const auto& [node, pressure] : node_pressures_) {
|
|
nodevalues.emplace(node, data::NodeData{pressure});
|
|
}
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
std::unordered_map<std::string, data::GroupGuideRates>
|
|
BlackoilWellModel<TypeTag>::
|
|
calculateAllGroupGuiderates(const int reportStepIdx, const Schedule& sched) const
|
|
{
|
|
auto gr = std::unordered_map<std::string, data::GroupGuideRates>{};
|
|
auto up = std::vector<std::string>{};
|
|
|
|
// Start at well level, accumulate contributions towards root of
|
|
// group tree (FIELD group).
|
|
|
|
for (const auto& wname : sched.wellNames(reportStepIdx)) {
|
|
if (! (this->wellState().hasWellRates(wname) &&
|
|
this->guideRate_->has(wname)))
|
|
{
|
|
continue;
|
|
}
|
|
|
|
const auto& well = sched.getWell(wname, reportStepIdx);
|
|
const auto& parent = well.groupName();
|
|
|
|
if (parent == "FIELD") {
|
|
// Well parented directly to "FIELD". Inadvisable and
|
|
// unexpected, but nothing to do about that here. Just skip
|
|
// this guide rate contribution.
|
|
continue;
|
|
}
|
|
|
|
auto& grval = well.isInjector()
|
|
? gr[parent].injection
|
|
: gr[parent].production;
|
|
|
|
grval += this->getGuideRateValues(well);
|
|
up.push_back(parent);
|
|
}
|
|
|
|
// Propagate accumulated guide rates up towards root of group tree.
|
|
// Override accumulation if there is a GUIDERAT specification that
|
|
// applies to a group.
|
|
std::sort(up.begin(), up.end());
|
|
auto start = 0*up.size();
|
|
auto u = std::unique(up.begin(), up.end());
|
|
auto nu = std::distance(up.begin(), u);
|
|
while (nu > 0) {
|
|
const auto ntot = up.size();
|
|
|
|
for (auto gi = 0*nu; gi < nu; ++gi) {
|
|
const auto& gname = up[start + gi];
|
|
const auto& group = sched.getGroup(gname, reportStepIdx);
|
|
|
|
if (this->guideRate_->has(gname)) {
|
|
gr[gname].production = this->getGuideRateValues(group);
|
|
}
|
|
|
|
if (this->guideRate_->has(gname, Opm::Phase::WATER)
|
|
|| this->guideRate_->has(gname, Opm::Phase::GAS)) {
|
|
gr[gname].injection = this->getGuideRateInjectionGroupValues(group);
|
|
}
|
|
|
|
const auto parent = group.parent();
|
|
if (parent == "FIELD") { continue; }
|
|
|
|
gr[parent].injection += gr[gname].injection;
|
|
gr[parent].production += gr[gname].production;
|
|
up.push_back(parent);
|
|
}
|
|
|
|
start = ntot;
|
|
|
|
auto begin = up.begin() + ntot;
|
|
std::sort(begin, up.end());
|
|
u = std::unique(begin, up.end());
|
|
nu = std::distance(begin, u);
|
|
}
|
|
|
|
return gr;
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
assignGroupControl(const Group& group, data::GroupData& gdata) const
|
|
{
|
|
const auto& gname = group.name();
|
|
const auto grup_type = group.getGroupType();
|
|
auto& cgc = gdata.currentControl;
|
|
|
|
cgc.currentProdConstraint =
|
|
::Opm::Group::ProductionCMode::NONE;
|
|
|
|
cgc.currentGasInjectionConstraint =
|
|
cgc.currentWaterInjectionConstraint =
|
|
::Opm::Group::InjectionCMode::NONE;
|
|
|
|
if (this->wellState().hasProductionGroupControl(gname)) {
|
|
cgc.currentProdConstraint = this->wellState().currentProductionGroupControl(gname);
|
|
}
|
|
|
|
if ((grup_type == ::Opm::Group::GroupType::INJECTION) ||
|
|
(grup_type == ::Opm::Group::GroupType::MIXED))
|
|
{
|
|
if (this->wellState().hasInjectionGroupControl(::Opm::Phase::WATER, gname)) {
|
|
cgc.currentWaterInjectionConstraint = this->wellState().currentInjectionGroupControl(::Opm::Phase::WATER, gname);
|
|
}
|
|
|
|
if (this->wellState().hasInjectionGroupControl(::Opm::Phase::GAS, gname)) {
|
|
cgc.currentGasInjectionConstraint = this->wellState().currentInjectionGroupControl(::Opm::Phase::GAS, gname);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename TypeTag>
|
|
data::GuideRateValue
|
|
BlackoilWellModel<TypeTag>::
|
|
getGuideRateValues(const Well& well) const
|
|
{
|
|
auto grval = data::GuideRateValue{};
|
|
|
|
assert (this->guideRate_ != nullptr);
|
|
|
|
const auto& wname = well.name();
|
|
if (! this->wellState().hasWellRates(wname)) {
|
|
// No flow rates for 'wname' -- might be before well comes
|
|
// online (e.g., for the initial condition before simulation
|
|
// starts).
|
|
return grval;
|
|
}
|
|
|
|
if (! this->guideRate_->has(wname)) {
|
|
// No guiderates exist for 'wname'.
|
|
return grval;
|
|
}
|
|
|
|
const auto qs = WellGroupHelpers::
|
|
getWellRateVector(this->wellState(), this->phase_usage_, wname);
|
|
|
|
this->getGuideRateValues(qs, well.isInjector(), wname, grval);
|
|
|
|
return grval;
|
|
}
|
|
template <typename TypeTag>
|
|
data::GuideRateValue
|
|
BlackoilWellModel<TypeTag>::
|
|
getGuideRateInjectionGroupValues(const Group& group) const
|
|
{
|
|
auto grval = data::GuideRateValue{};
|
|
|
|
assert (this->guideRate_ != nullptr);
|
|
|
|
const auto& gname = group.name();
|
|
if (this->guideRate_->has(gname, Opm::Phase::GAS)) {
|
|
grval.set(data::GuideRateValue::Item::Gas,
|
|
this->guideRate_->get(gname, Opm::Phase::GAS));
|
|
}
|
|
if (this->guideRate_->has(gname, Opm::Phase::WATER)) {
|
|
grval.set(data::GuideRateValue::Item::Water,
|
|
this->guideRate_->get(gname, Opm::Phase::WATER));
|
|
}
|
|
return grval;
|
|
}
|
|
|
|
template <typename TypeTag>
|
|
data::GuideRateValue
|
|
BlackoilWellModel<TypeTag>::
|
|
getGuideRateValues(const Group& group) const
|
|
{
|
|
auto grval = data::GuideRateValue{};
|
|
|
|
assert (this->guideRate_ != nullptr);
|
|
|
|
const auto& gname = group.name();
|
|
|
|
if ( ! this->wellState().hasProductionGroupRates(gname)) {
|
|
// No flow rates for production group 'gname' -- might be before group comes
|
|
// online (e.g., for the initial condition before simulation
|
|
// starts).
|
|
return grval;
|
|
}
|
|
|
|
if (! this->guideRate_->has(gname)) {
|
|
// No guiderates exist for 'gname'.
|
|
return grval;
|
|
}
|
|
|
|
const auto qs = WellGroupHelpers::getProductionGroupRateVector(this->wellState(), this->phase_usage_, gname);
|
|
|
|
const auto is_inj = false; // This procedure only applies to G*PGR.
|
|
this->getGuideRateValues(qs, is_inj, gname, grval);
|
|
|
|
return grval;
|
|
}
|
|
|
|
template <typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
getGuideRateValues(const GuideRate::RateVector& qs,
|
|
const bool is_inj,
|
|
const std::string& wgname,
|
|
data::GuideRateValue& grval) const
|
|
{
|
|
auto getGR = [this, &wgname, &qs](const GuideRateModel::Target t)
|
|
{
|
|
return this->guideRate_->get(wgname, t, qs);
|
|
};
|
|
|
|
// Note: GuideRate does currently (2020-07-20) not support Target::RES.
|
|
grval.set(data::GuideRateValue::Item::Gas,
|
|
getGR(GuideRateModel::Target::GAS));
|
|
|
|
grval.set(data::GuideRateValue::Item::Water,
|
|
getGR(GuideRateModel::Target::WAT));
|
|
|
|
if (! is_inj) {
|
|
// Producer. Extract "all" guiderate values.
|
|
grval.set(data::GuideRateValue::Item::Oil,
|
|
getGR(GuideRateModel::Target::OIL));
|
|
}
|
|
}
|
|
|
|
template <typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
assignGroupGuideRates(const Group& group,
|
|
const std::unordered_map<std::string, data::GroupGuideRates>& groupGuideRates,
|
|
data::GroupData& gdata) const
|
|
{
|
|
auto& prod = gdata.guideRates.production; prod.clear();
|
|
auto& inj = gdata.guideRates.injection; inj .clear();
|
|
|
|
auto xgrPos = groupGuideRates.find(group.name());
|
|
if ((xgrPos == groupGuideRates.end()) ||
|
|
!this->guideRate_->has(group.name()))
|
|
{
|
|
// No guiderates defined for this group.
|
|
return;
|
|
}
|
|
|
|
const auto& xgr = xgrPos->second;
|
|
prod = xgr.production;
|
|
inj = xgr.injection;
|
|
}
|
|
|
|
template <typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
computeWellTemperature()
|
|
{
|
|
if (!has_energy_)
|
|
return;
|
|
|
|
int np = numPhases();
|
|
double cellInternalEnergy;
|
|
double cellBinv;
|
|
double cellDensity;
|
|
double perfPhaseRate;
|
|
const int nw = numLocalWells();
|
|
for (auto wellID = 0*nw; wellID < nw; ++wellID) {
|
|
const Well& well = wells_ecl_[wellID];
|
|
if (well.isInjector())
|
|
continue;
|
|
|
|
int connpos = 0;
|
|
for (int i = 0; i < wellID; ++i) {
|
|
connpos += well_perf_data_[i].size();
|
|
}
|
|
connpos *= np;
|
|
double weighted_temperature = 0.0;
|
|
double total_weight = 0.0;
|
|
|
|
auto& well_info = *local_parallel_well_info_[wellID];
|
|
const int num_perf_this_well = well_info.communication().sum(well_perf_data_[wellID].size());
|
|
|
|
for (int perf = 0; perf < num_perf_this_well; ++perf) {
|
|
const int cell_idx = well_perf_data_[wellID][perf].cell_index;
|
|
const auto& intQuants = *(ebosSimulator_.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0));
|
|
const auto& fs = intQuants.fluidState();
|
|
|
|
double cellTemperatures = fs.temperature(/*phaseIdx*/0).value();
|
|
double weight_factor = 0.0;
|
|
for (int phaseIdx = 0; phaseIdx < np; ++phaseIdx) {
|
|
cellInternalEnergy = fs.enthalpy(phaseIdx).value() - fs.pressure(phaseIdx).value() / fs.density(phaseIdx).value();
|
|
cellBinv = fs.invB(phaseIdx).value();
|
|
cellDensity = fs.density(phaseIdx).value();
|
|
perfPhaseRate = this->wellState().perfPhaseRates()[connpos + perf*np + phaseIdx ];
|
|
weight_factor += cellDensity * perfPhaseRate/cellBinv * cellInternalEnergy/cellTemperatures;
|
|
}
|
|
total_weight += weight_factor;
|
|
weighted_temperature += weight_factor * cellTemperatures;
|
|
}
|
|
weighted_temperature = well_info.communication().sum(weighted_temperature);
|
|
total_weight = well_info.communication().sum(total_weight);
|
|
this->wellState().temperature()[wellID] = weighted_temperature/total_weight;
|
|
}
|
|
}
|
|
} // namespace Opm
|