mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-16 17:31:58 -06:00
344 lines
13 KiB
C++
344 lines
13 KiB
C++
/*
|
|
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
|
|
Copyright 2017 Statoil ASA.
|
|
Copyright 2020 Equinor ASA.
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
|
|
#ifndef OPM_MSWELLHELPERS_HEADER_INCLUDED
|
|
#define OPM_MSWELLHELPERS_HEADER_INCLUDED
|
|
|
|
#include <opm/simulators/utils/DeferredLoggingErrorHelpers.hpp>
|
|
#include <opm/simulators/utils/DeferredLogger.hpp>
|
|
#include <opm/common/ErrorMacros.hpp>
|
|
#include <opm/parser/eclipse/EclipseState/Schedule/MSW/SICD.hpp>
|
|
#include <opm/common/OpmLog/OpmLog.hpp>
|
|
#include <string>
|
|
#include <dune/istl/solvers.hh>
|
|
#if HAVE_UMFPACK
|
|
#include <dune/istl/umfpack.hh>
|
|
#endif // HAVE_UMFPACK
|
|
#include <cmath>
|
|
|
|
namespace Opm {
|
|
|
|
namespace mswellhelpers
|
|
{
|
|
|
|
/// Applies umfpack and checks for singularity
|
|
template <typename MatrixType, typename VectorType>
|
|
VectorType
|
|
applyUMFPack(const MatrixType& D, std::shared_ptr<Dune::UMFPack<MatrixType> >& linsolver, VectorType x)
|
|
{
|
|
#if HAVE_UMFPACK
|
|
if (!linsolver)
|
|
{
|
|
linsolver.reset(new Dune::UMFPack<MatrixType>(D, 0));
|
|
}
|
|
|
|
// The copy of x seems mandatory for calling UMFPack!
|
|
VectorType y(x.size());
|
|
y = 0.;
|
|
|
|
// Object storing some statistics about the solving process
|
|
Dune::InverseOperatorResult res;
|
|
|
|
// Solve
|
|
linsolver->apply(y, x, res);
|
|
|
|
// Checking if there is any inf or nan in y
|
|
// it will be the solution before we find a way to catch the singularity of the matrix
|
|
for (size_t i_block = 0; i_block < y.size(); ++i_block) {
|
|
for (size_t i_elem = 0; i_elem < y[i_block].size(); ++i_elem) {
|
|
if (std::isinf(y[i_block][i_elem]) || std::isnan(y[i_block][i_elem]) ) {
|
|
const std::string msg{"nan or inf value found after UMFPack solve due to singular matrix"};
|
|
OpmLog::debug(msg);
|
|
OPM_THROW_NOLOG(Opm::NumericalIssue, msg);
|
|
}
|
|
}
|
|
}
|
|
return y;
|
|
#else
|
|
// this is not thread safe
|
|
OPM_THROW(std::runtime_error, "Cannot use applyUMFPack() without UMFPACK. "
|
|
"Reconfigure opm-simulators with SuiteSparse/UMFPACK support and recompile.");
|
|
#endif // HAVE_UMFPACK
|
|
}
|
|
|
|
|
|
|
|
/// Applies umfpack and checks for singularity
|
|
template <typename MatrixType, typename VectorType>
|
|
Dune::Matrix<typename MatrixType::block_type>
|
|
invertWithUMFPack(const MatrixType& D, std::shared_ptr<Dune::UMFPack<MatrixType> >& linsolver)
|
|
{
|
|
#if HAVE_UMFPACK
|
|
const int sz = D.M();
|
|
const int bsz = D[0][0].M();
|
|
VectorType e(sz);
|
|
e = 0.0;
|
|
|
|
// Make a full block matrix.
|
|
Dune::Matrix<typename MatrixType::block_type> inv(sz, sz);
|
|
|
|
// Create inverse by passing basis vectors to the solver.
|
|
for (int ii = 0; ii < sz; ++ii) {
|
|
for (int jj = 0; jj < bsz; ++jj) {
|
|
e[ii][jj] = 1.0;
|
|
auto col = applyUMFPack(D, linsolver, e);
|
|
for (int cc = 0; cc < sz; ++cc) {
|
|
for (int dd = 0; dd < bsz; ++dd) {
|
|
inv[cc][ii][dd][jj] = col[cc][dd];
|
|
}
|
|
}
|
|
e[ii][jj] = 0.0;
|
|
}
|
|
}
|
|
|
|
return inv;
|
|
#else
|
|
// this is not thread safe
|
|
OPM_THROW(std::runtime_error, "Cannot use invertWithUMFPack() without UMFPACK. "
|
|
"Reconfigure opm-simulators with SuiteSparse/UMFPACK support and recompile.");
|
|
#endif // HAVE_UMFPACK
|
|
}
|
|
|
|
|
|
|
|
// obtain y = D^-1 * x with a BICSSTAB iterative solver
|
|
template <typename MatrixType, typename VectorType>
|
|
VectorType
|
|
invDX(const MatrixType& D, VectorType x, Opm::DeferredLogger& deferred_logger)
|
|
{
|
|
// the function will change the value of x, so we should not use reference of x here.
|
|
|
|
// TODO: store some of the following information to avoid to call it again and again for
|
|
// efficiency improvement.
|
|
// Bassically, only the solve / apply step is different.
|
|
|
|
VectorType y(x.size());
|
|
y = 0.;
|
|
|
|
Dune::MatrixAdapter<MatrixType, VectorType, VectorType> linearOperator(D);
|
|
|
|
// Sequential incomplete LU decomposition as the preconditioner
|
|
#if DUNE_VERSION_NEWER(DUNE_ISTL, 2, 7)
|
|
Dune::SeqILU<MatrixType, VectorType, VectorType> preconditioner(D, 1.0);
|
|
#else
|
|
Dune::SeqILU0<MatrixType, VectorType, VectorType> preconditioner(D, 1.0);
|
|
#endif
|
|
// Dune::SeqILUn<MatrixType, VectorType, VectorType> preconditioner(D, 1, 0.92);
|
|
// Dune::SeqGS<MatrixType, VectorType, VectorType> preconditioner(D, 1, 1);
|
|
// Dune::SeqJac<MatrixType, VectorType, VectorType> preconditioner(D, 1, 1);
|
|
|
|
// Preconditioned BICGSTAB solver
|
|
Dune::BiCGSTABSolver<VectorType> linsolver(linearOperator,
|
|
preconditioner,
|
|
1.e-8, // desired residual reduction factor
|
|
250, // maximum number of iterations
|
|
0); // verbosity of the solver */
|
|
|
|
// Object storing some statistics about the solving process
|
|
Dune::InverseOperatorResult res;
|
|
|
|
// Solve
|
|
linsolver.apply(y, x, res);
|
|
|
|
if ( !res.converged ) {
|
|
OPM_DEFLOG_THROW(Opm::NumericalIssue, "the invDX did not converge ", deferred_logger);
|
|
}
|
|
|
|
return y;
|
|
}
|
|
|
|
|
|
|
|
|
|
template <typename ValueType>
|
|
inline ValueType haalandFormular(const ValueType& re, const double diameter, const double roughness)
|
|
{
|
|
const ValueType value = -3.6 * Opm::log10(6.9 / re + std::pow(roughness / (3.7 * diameter), 10. / 9.) );
|
|
|
|
// sqrt(1/f) should be non-positive
|
|
assert(value >= 0.0);
|
|
|
|
return 1. / (value * value);
|
|
}
|
|
|
|
|
|
|
|
|
|
template <typename ValueType>
|
|
inline ValueType calculateFrictionFactor(const double area, const double diameter,
|
|
const ValueType& w, const double roughness, const ValueType& mu)
|
|
{
|
|
|
|
ValueType f = 0.;
|
|
// Reynolds number
|
|
const ValueType re = Opm::abs( diameter * w / (area * mu));
|
|
|
|
if ( re == 0.0 ) {
|
|
// make sure it is because the mass rate is zero
|
|
assert(w == 0.);
|
|
return 0.0;
|
|
}
|
|
|
|
const ValueType re_value1 = 2000.;
|
|
const ValueType re_value2 = 4000.;
|
|
|
|
if (re < re_value1) {
|
|
f = 16. / re;
|
|
} else if (re > re_value2){
|
|
f = haalandFormular(re, diameter, roughness);
|
|
} else { // in between
|
|
const ValueType f1 = 16. / re_value1;
|
|
const ValueType f2 = haalandFormular(re_value2, diameter, roughness);
|
|
|
|
f = (f2 - f1) / (re_value2 - re_value1) * (re - re_value1) + f1;
|
|
}
|
|
return f;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// calculating the friction pressure loss
|
|
// l is the segment length
|
|
// area is the segment cross area
|
|
// diameter is the segment inner diameter
|
|
// w is mass flow rate through the segment
|
|
// density is density
|
|
// roughness is the absolute roughness
|
|
// mu is the average phase viscosity
|
|
template <typename ValueType>
|
|
ValueType frictionPressureLoss(const double l, const double diameter, const double area, const double roughness,
|
|
const ValueType& density, const ValueType& w, const ValueType& mu)
|
|
{
|
|
const ValueType f = calculateFrictionFactor(area, diameter, w, roughness, mu);
|
|
// \Note: a factor of 2 needs to be here based on the dimensional analysis
|
|
return 2. * f * l * w * w / (area * area * diameter * density);
|
|
}
|
|
|
|
|
|
template <typename ValueType>
|
|
ValueType valveContrictionPressureLoss(const ValueType& mass_rate, const ValueType& density,
|
|
const double area_con, const double cv)
|
|
{
|
|
// the formulation is adjusted a little bit for convinience
|
|
// velocity = mass_rate / (density * area) is applied to the original formulation
|
|
const double area = (area_con > 1.e-10 ? area_con : 1.e-10);
|
|
return mass_rate * mass_rate / (2. * density * cv * cv * area * area);
|
|
}
|
|
|
|
|
|
template <typename ValueType>
|
|
ValueType velocityHead(const double area, const ValueType& mass_rate, const ValueType& density)
|
|
{
|
|
// \Note: a factor of 2 is added to the formulation in order to match results from the
|
|
// reference simulator. This is inline with what is done for the friction loss.
|
|
return (mass_rate * mass_rate / (area * area * density));
|
|
}
|
|
|
|
|
|
|
|
// water in oil emulsion viscosity
|
|
// TODO: maybe it should be two different ValueTypes. When we calculate the viscosity for transitional zone
|
|
template <typename ValueType>
|
|
ValueType WIOEmulsionViscosity(const ValueType& oil_viscosity, const ValueType& water_liquid_fraction,
|
|
const double max_visco_ratio)
|
|
{
|
|
const ValueType temp_value = 1. / (1. - (0.8415 / 0.7480 * water_liquid_fraction) );
|
|
const ValueType viscosity_ratio = Opm::pow(temp_value, 2.5);
|
|
|
|
if (viscosity_ratio <= max_visco_ratio) {
|
|
return oil_viscosity * viscosity_ratio;
|
|
} else {
|
|
return oil_viscosity * max_visco_ratio;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// oil in water emulsion viscosity
|
|
template <typename ValueType>
|
|
ValueType OIWEmulsionViscosity(const ValueType& water_viscosity, const ValueType& water_liquid_fraction,
|
|
const double max_visco_ratio)
|
|
{
|
|
const ValueType temp_value = 1. / (1. - (0.6019 / 0.6410) * (1. - water_liquid_fraction) );
|
|
const ValueType viscosity_ratio = Opm::pow(temp_value, 2.5);
|
|
|
|
if (viscosity_ratio <= max_visco_ratio) {
|
|
return water_viscosity * viscosity_ratio;
|
|
} else {
|
|
return water_viscosity * max_visco_ratio;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// calculating the viscosity of oil-water emulsion at local conditons
|
|
template <typename ValueType>
|
|
ValueType emulsionViscosity(const ValueType& water_fraction, const ValueType& water_viscosity,
|
|
const ValueType& oil_fraction, const ValueType& oil_viscosity,
|
|
const SICD& sicd)
|
|
{
|
|
const double width_transition = sicd.widthTransitionRegion();
|
|
|
|
// it is just for now, we should be able to treat it.
|
|
if (width_transition <= 0.) {
|
|
OPM_THROW(std::runtime_error, "Not handling non-positive transition width now");
|
|
}
|
|
|
|
const double critical_value = sicd.criticalValue();
|
|
const ValueType transition_start_value = critical_value - width_transition / 2.0;
|
|
const ValueType transition_end_value = critical_value + width_transition / 2.0;
|
|
|
|
const ValueType liquid_fraction = water_fraction + oil_fraction;
|
|
// if there is no liquid, we just return zero
|
|
if (liquid_fraction == 0.) {
|
|
return 0.;
|
|
}
|
|
|
|
const ValueType water_liquid_fraction = water_fraction / liquid_fraction;
|
|
|
|
const double max_visco_ratio = sicd.maxViscosityRatio();
|
|
if (water_liquid_fraction <= transition_start_value) {
|
|
return WIOEmulsionViscosity(oil_viscosity, water_liquid_fraction, max_visco_ratio);
|
|
} else if(water_liquid_fraction >= transition_end_value) {
|
|
return OIWEmulsionViscosity(water_viscosity, water_liquid_fraction, max_visco_ratio);
|
|
} else { // in the transition region
|
|
const ValueType viscosity_start_transition = WIOEmulsionViscosity(oil_viscosity, transition_start_value, max_visco_ratio);
|
|
const ValueType viscosity_end_transition = OIWEmulsionViscosity(water_viscosity, transition_end_value, max_visco_ratio);
|
|
const ValueType emulsion_viscosity = (viscosity_start_transition * (transition_end_value - water_liquid_fraction)
|
|
+ viscosity_end_transition * (water_liquid_fraction - transition_start_value) ) / width_transition;
|
|
return emulsion_viscosity;
|
|
}
|
|
}
|
|
|
|
} // namespace mswellhelpers
|
|
|
|
}
|
|
|
|
#endif
|