mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-12-23 16:00:01 -06:00
bd38a577ae
This should eventually be integrated in the parser.
689 lines
33 KiB
C++
689 lines
33 KiB
C++
/*
|
|
Copyright 2014 SINTEF ICT, Applied Mathematics.
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef OPM_INITSTATEEQUIL_HEADER_INCLUDED
|
|
#define OPM_INITSTATEEQUIL_HEADER_INCLUDED
|
|
|
|
#include <opm/core/simulator/EquilibrationHelpers.hpp>
|
|
#include <opm/core/simulator/BlackoilState.hpp>
|
|
#include <opm/core/io/eclipse/EclipseGridParser.hpp>
|
|
#include <opm/core/props/BlackoilPropertiesInterface.hpp>
|
|
#include <opm/core/props/BlackoilPhases.hpp>
|
|
#include <opm/core/utility/RegionMapping.hpp>
|
|
#include <opm/core/utility/Units.hpp>
|
|
#include <opm/parser/eclipse/Utility/EquilWrapper.hpp>
|
|
#include <opm/parser/eclipse/Utility/SingleRecordTable.hpp>
|
|
|
|
#include <array>
|
|
#include <cassert>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
/**
|
|
* \file
|
|
* Facilities for an ECLIPSE-style equilibration-based
|
|
* initialisation scheme (keyword 'EQUIL').
|
|
*/
|
|
struct UnstructuredGrid;
|
|
|
|
namespace Opm
|
|
{
|
|
|
|
/**
|
|
* Compute initial state by an equilibration procedure.
|
|
*
|
|
* The following state fields are modified:
|
|
* pressure(),
|
|
* saturation(),
|
|
* surfacevol(),
|
|
* gasoilratio(),
|
|
* rv().
|
|
*
|
|
* \param[in] grid Grid.
|
|
* \param[in] props Property object, pvt and capillary properties are used.
|
|
* \param[in] deck Simulation deck, used to obtain EQUIL and related data.
|
|
* \param[in] gravity Acceleration of gravity, assumed to be in Z direction.
|
|
*/
|
|
void initStateEquil(const UnstructuredGrid& grid,
|
|
const BlackoilPropertiesInterface& props,
|
|
const EclipseGridParser& deck,
|
|
const double gravity,
|
|
BlackoilState& state);
|
|
|
|
|
|
void initStateEquil(const UnstructuredGrid& grid,
|
|
const BlackoilPropertiesInterface& props,
|
|
const Opm::DeckConstPtr newParserDeck,
|
|
const double gravity,
|
|
BlackoilState& state);
|
|
|
|
|
|
/**
|
|
* Types and routines that collectively implement a basic
|
|
* ECLIPSE-style equilibration-based initialisation scheme.
|
|
*
|
|
* This namespace is intentionally nested to avoid name clashes
|
|
* with other parts of OPM.
|
|
*/
|
|
namespace Equil {
|
|
|
|
/**
|
|
* Compute initial phase pressures by means of equilibration.
|
|
*
|
|
* This function uses the information contained in an
|
|
* equilibration record (i.e., depths and pressurs) as well as
|
|
* a density calculator and related data to vertically
|
|
* integrate the phase pressure ODE
|
|
* \f[
|
|
* \frac{\mathrm{d}p_{\alpha}}{\mathrm{d}z} =
|
|
* \rho_{\alpha}(z,p_{\alpha})\cdot g
|
|
* \f]
|
|
* in which \f$\rho_{\alpha}$ denotes the fluid density of
|
|
* fluid phase \f$\alpha\f$, \f$p_{\alpha}\f$ is the
|
|
* corresponding phase pressure, \f$z\f$ is the depth and
|
|
* \f$g\f$ is the acceleration due to gravity (assumed
|
|
* directed downwords, in the positive \f$z\f$ direction).
|
|
*
|
|
* \tparam Region Type of an equilibration region information
|
|
* base. Typically an instance of the EquilReg
|
|
* class template.
|
|
*
|
|
* \tparam CellRange Type of cell range that demarcates the
|
|
* cells pertaining to the current
|
|
* equilibration region. Must implement
|
|
* methods begin() and end() to bound the range
|
|
* as well as provide an inner type,
|
|
* const_iterator, to traverse the range.
|
|
*
|
|
* \param[in] G Grid.
|
|
* \param[in] reg Current equilibration region.
|
|
* \param[in] cells Range that spans the cells of the current
|
|
* equilibration region.
|
|
* \param[in] grav Acceleration of gravity.
|
|
*
|
|
* \return Phase pressures, one vector for each active phase,
|
|
* of pressure values in each cell in the current
|
|
* equilibration region.
|
|
*/
|
|
template <class Region, class CellRange>
|
|
std::vector< std::vector<double> >
|
|
phasePressures(const UnstructuredGrid& G,
|
|
const Region& reg,
|
|
const CellRange& cells,
|
|
const double grav = unit::gravity);
|
|
|
|
|
|
|
|
/**
|
|
* Compute initial phase saturations by means of equilibration.
|
|
*
|
|
* \tparam Region Type of an equilibration region information
|
|
* base. Typically an instance of the EquilReg
|
|
* class template.
|
|
*
|
|
* \tparam CellRange Type of cell range that demarcates the
|
|
* cells pertaining to the current
|
|
* equilibration region. Must implement
|
|
* methods begin() and end() to bound the range
|
|
* as well as provide an inner type,
|
|
* const_iterator, to traverse the range.
|
|
*
|
|
* \param[in] reg Current equilibration region.
|
|
* \param[in] cells Range that spans the cells of the current
|
|
* equilibration region.
|
|
* \param[in] props Property object, needed for capillary functions.
|
|
* \param[in] phase_pressures Phase pressures, one vector for each active phase,
|
|
* of pressure values in each cell in the current
|
|
* equilibration region.
|
|
* \return Phase saturations, one vector for each phase, each containing
|
|
* one saturation value per cell in the region.
|
|
*/
|
|
template <class Region, class CellRange>
|
|
std::vector< std::vector<double> >
|
|
phaseSaturations(const Region& reg,
|
|
const CellRange& cells,
|
|
const BlackoilPropertiesInterface& props,
|
|
const std::vector< std::vector<double> >& phase_pressures);
|
|
|
|
|
|
|
|
/**
|
|
* Compute initial Rs values.
|
|
*
|
|
* \tparam CellRangeType Type of cell range that demarcates the
|
|
* cells pertaining to the current
|
|
* equilibration region. Must implement
|
|
* methods begin() and end() to bound the range
|
|
* as well as provide an inner type,
|
|
* const_iterator, to traverse the range.
|
|
*
|
|
* \param[in] grid Grid.
|
|
* \param[in] cells Range that spans the cells of the current
|
|
* equilibration region.
|
|
* \param[in] oil_pressure Oil pressure for each cell in range.
|
|
* \param[in] rs_func Rs as function of pressure and depth.
|
|
* \return Rs values, one for each cell in the 'cells' range.
|
|
*/
|
|
template <class CellRangeType>
|
|
std::vector<double> computeRs(const UnstructuredGrid& grid,
|
|
const CellRangeType& cells,
|
|
const std::vector<double> oil_pressure,
|
|
const Miscibility::RsFunction& rs_func,
|
|
const std::vector<double> gas_saturation);
|
|
|
|
namespace DeckDependent {
|
|
|
|
inline
|
|
std::vector<EquilRecord>
|
|
getEquil(const EclipseGridParser& deck)
|
|
{
|
|
if (deck.hasField("EQUIL")) {
|
|
const EQUIL& eql = deck.getEQUIL();
|
|
|
|
typedef std::vector<EquilLine>::size_type sz_t;
|
|
const sz_t nrec = eql.equil.size();
|
|
|
|
std::vector<EquilRecord> ret;
|
|
ret.reserve(nrec);
|
|
for (sz_t r = 0; r < nrec; ++r) {
|
|
const EquilLine& rec = eql.equil[r];
|
|
|
|
EquilRecord record =
|
|
{
|
|
{ rec.datum_depth_ ,
|
|
rec.datum_depth_pressure_ }
|
|
,
|
|
{ rec.water_oil_contact_depth_ ,
|
|
rec.oil_water_cap_pressure_ }
|
|
,
|
|
{ rec.gas_oil_contact_depth_ ,
|
|
rec.gas_oil_cap_pressure_ }
|
|
,
|
|
rec.live_oil_table_index_
|
|
,
|
|
rec.wet_gas_table_index_
|
|
,
|
|
rec.N_
|
|
};
|
|
if (record.N != 0) {
|
|
OPM_THROW(std::domain_error,
|
|
"kw EQUIL, item 9: Only N=0 supported.");
|
|
}
|
|
ret.push_back(record);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
else {
|
|
OPM_THROW(std::domain_error,
|
|
"Deck does not provide equilibration data.");
|
|
}
|
|
}
|
|
|
|
inline
|
|
std::vector<EquilRecord>
|
|
getEquil(const Opm::DeckConstPtr newParserDeck)
|
|
{
|
|
if (newParserDeck->hasKeyword("EQUIL")) {
|
|
|
|
Opm::EquilWrapper eql(newParserDeck->getKeyword("EQUIL"));
|
|
|
|
const int nrec = eql.numRegions();
|
|
|
|
std::vector<EquilRecord> ret;
|
|
ret.reserve(nrec);
|
|
for (int r = 0; r < nrec; ++r) {
|
|
|
|
EquilRecord record =
|
|
{
|
|
{ eql.datumDepth(r) ,
|
|
eql.datumDepthPressure(r) }
|
|
,
|
|
{ eql.waterOilContactDepth(r) ,
|
|
eql.waterOilContactCapillaryPressure(r) }
|
|
,
|
|
{ eql.gasOilContactDepth(r) ,
|
|
eql.gasOilContactCapillaryPressure(r) }
|
|
,
|
|
eql.liveOilInitProceedure(r)
|
|
,
|
|
eql.wetGasInitProceedure(r)
|
|
,
|
|
eql.initializationTargetAccuracy(r)
|
|
};
|
|
if (record.N != 0) {
|
|
OPM_THROW(std::domain_error,
|
|
"kw EQUIL, item 9: Only N=0 supported.");
|
|
}
|
|
ret.push_back(record);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
else {
|
|
OPM_THROW(std::domain_error,
|
|
"Deck does not provide equilibration data.");
|
|
}
|
|
}
|
|
|
|
|
|
inline
|
|
std::vector<int>
|
|
equilnum(const EclipseGridParser& deck,
|
|
const UnstructuredGrid& G )
|
|
{
|
|
std::vector<int> eqlnum;
|
|
if (deck.hasField("EQLNUM")) {
|
|
const std::vector<int>& e = deck.getIntegerValue("EQLNUM");
|
|
eqlnum.reserve(e.size());
|
|
std::transform(e.begin(), e.end(), std::back_inserter(eqlnum),
|
|
std::bind2nd(std::minus<int>(), 1));
|
|
}
|
|
else {
|
|
// No explicit equilibration region.
|
|
// All cells in region zero.
|
|
eqlnum.assign(G.number_of_cells, 0);
|
|
}
|
|
|
|
return eqlnum;
|
|
}
|
|
|
|
|
|
inline
|
|
std::vector<int>
|
|
equilnum(const Opm::DeckConstPtr newParserDeck,
|
|
const UnstructuredGrid& G )
|
|
{
|
|
std::vector<int> eqlnum;
|
|
if (newParserDeck->hasKeyword("EQLNUM")) {
|
|
const std::vector<int>& e = newParserDeck->getKeyword("EQLNUM")->getIntData();
|
|
eqlnum.reserve(e.size());
|
|
if (newParserDeck->hasKeyword("ACTNUM")) {
|
|
std::vector<int>::const_iterator actnum_begin =
|
|
newParserDeck->getKeyword("ACTNUM")->getIntData().begin();
|
|
std::transform(e.begin(), e.end(), actnum_begin, std::back_inserter(eqlnum),
|
|
[](int eql, int act){ return (act == 0) ? -1 : eql-1;});
|
|
eqlnum.erase(std::remove_if(eqlnum.begin(), eqlnum.end(),
|
|
std::bind2nd(std::less<int>(), 0)),
|
|
eqlnum.end());
|
|
}
|
|
else {
|
|
std::transform(e.begin(), e.end(), std::back_inserter(eqlnum),
|
|
std::bind2nd(std::minus<int>(), 1));
|
|
}
|
|
if (eqlnum.size() != G.number_of_cells)
|
|
OPM_THROW(std::runtime_error, "Keyword EQLNUM: inconsistent array size.");
|
|
}
|
|
else {
|
|
// No explicit equilibration region.
|
|
// All cells in region zero.
|
|
eqlnum.assign(G.number_of_cells, 0);
|
|
}
|
|
|
|
return eqlnum;
|
|
}
|
|
|
|
|
|
template <class InputDeck>
|
|
class InitialStateComputer;
|
|
|
|
template <>
|
|
class InitialStateComputer<Opm::EclipseGridParser> {
|
|
public:
|
|
InitialStateComputer(const BlackoilPropertiesInterface& props,
|
|
const EclipseGridParser& deck ,
|
|
const UnstructuredGrid& G ,
|
|
const double grav = unit::gravity)
|
|
: pp_(props.numPhases(),
|
|
std::vector<double>(G.number_of_cells)),
|
|
sat_(props.numPhases(),
|
|
std::vector<double>(G.number_of_cells)),
|
|
rs_(G.number_of_cells),
|
|
rv_(G.number_of_cells)
|
|
{
|
|
// Get the equilibration records.
|
|
const std::vector<EquilRecord> rec = getEquil(deck);
|
|
|
|
// Create (inverse) region mapping.
|
|
const RegionMapping<> eqlmap(equilnum(deck, G));
|
|
|
|
// Create Rs functions.
|
|
rs_func_.reserve(rec.size());
|
|
if (deck.hasField("DISGAS")) {
|
|
for (size_t i = 0; i < rec.size(); ++i) {
|
|
const int cell = *(eqlmap.cells(i).begin());
|
|
if (rec[i].live_oil_table_index > 0) {
|
|
if (deck.hasField("RSVD")) {
|
|
// TODO When this kw is actually parsed, also check for proper number of available tables
|
|
// For now, just use dummy ...
|
|
std::vector<double> depth; depth.push_back(0.0); depth.push_back(100.0);
|
|
std::vector<double> rs; rs.push_back(0.0); rs.push_back(100.0);
|
|
rs_func_.push_back(std::make_shared<Miscibility::RsVD>(props, cell, depth, rs));
|
|
} else {
|
|
OPM_THROW(std::runtime_error, "Cannot initialise: RSVD table " << (rec[i].live_oil_table_index) << " not available.");
|
|
}
|
|
} else {
|
|
if (rec[i].goc.depth != rec[i].main.depth) {
|
|
OPM_THROW(std::runtime_error,
|
|
"Cannot initialise: when no explicit RSVD table is given, \n"
|
|
"datum depth must be at the gas-oil-contact. "
|
|
"In EQUIL region " << (i + 1) << " (counting from 1), this does not hold.");
|
|
}
|
|
const double p_contact = rec[i].main.press;
|
|
rs_func_.push_back(std::make_shared<Miscibility::RsSatAtContact>(props, cell, p_contact));
|
|
}
|
|
}
|
|
} else {
|
|
for (size_t i = 0; i < rec.size(); ++i) {
|
|
rs_func_.push_back(std::make_shared<Miscibility::NoMixing>());
|
|
}
|
|
}
|
|
|
|
rv_func_.reserve(rec.size());
|
|
if (deck.hasField("VAPOIL")) {
|
|
for (size_t i = 0; i < rec.size(); ++i) {
|
|
const int cell = *(eqlmap.cells(i).begin());
|
|
if (rec[i].wet_gas_table_index > 0) {
|
|
if (deck.hasField("RVVD")) {
|
|
// TODO When this kw is actually parsed, also check for proper number of available tables
|
|
// For now, just use dummy ...
|
|
std::vector<double> depth; depth.push_back(0.0); depth.push_back(100.0);
|
|
std::vector<double> rv; rv.push_back(0.0); rv.push_back(0.0001);
|
|
rv_func_.push_back(std::make_shared<Miscibility::RvVD>(props, cell, depth, rv));
|
|
} else {
|
|
OPM_THROW(std::runtime_error, "Cannot initialise: RVVD table " << (rec[i].wet_gas_table_index) << " not available.");
|
|
}
|
|
} else {
|
|
if (rec[i].goc.depth != rec[i].main.depth) {
|
|
OPM_THROW(std::runtime_error,
|
|
"Cannot initialise: when no explicit RVVD table is given, \n"
|
|
"datum depth must be at the gas-oil-contact. "
|
|
"In EQUIL region " << (i + 1) << " (counting from 1), this does not hold.");
|
|
}
|
|
const double p_contact = rec[i].main.press + rec[i].goc.press;
|
|
rv_func_.push_back(std::make_shared<Miscibility::RvSatAtContact>(props, cell, p_contact));
|
|
}
|
|
}
|
|
} else {
|
|
for (size_t i = 0; i < rec.size(); ++i) {
|
|
rv_func_.push_back(std::make_shared<Miscibility::NoMixing>());
|
|
}
|
|
}
|
|
|
|
// Compute pressures, saturations, rs and rv factors.
|
|
calcPressSatRsRv(eqlmap, rec, props, G, grav);
|
|
|
|
// Modify oil pressure in no-oil regions so that the pressures of present phases can
|
|
// be recovered from the oil pressure and capillary relations.
|
|
}
|
|
|
|
typedef std::vector<double> Vec;
|
|
typedef std::vector<Vec> PVec; // One per phase.
|
|
|
|
const PVec& press() const { return pp_; }
|
|
const PVec& saturation() const { return sat_; }
|
|
const Vec& rs() const { return rs_; }
|
|
const Vec& rv() const { return rv_; }
|
|
|
|
private:
|
|
typedef DensityCalculator<BlackoilPropertiesInterface> RhoCalc;
|
|
typedef EquilReg<RhoCalc> EqReg;
|
|
|
|
std::vector< std::shared_ptr<Miscibility::RsFunction> > rs_func_;
|
|
std::vector< std::shared_ptr<Miscibility::RsFunction> > rv_func_;
|
|
|
|
PVec pp_;
|
|
PVec sat_;
|
|
Vec rs_;
|
|
Vec rv_;
|
|
|
|
template <class RMap>
|
|
void
|
|
calcPressSatRsRv(const RMap& reg ,
|
|
const std::vector< EquilRecord >& rec ,
|
|
const Opm::BlackoilPropertiesInterface& props,
|
|
const UnstructuredGrid& G ,
|
|
const double grav)
|
|
{
|
|
typedef Miscibility::NoMixing NoMix;
|
|
|
|
for (typename RMap::RegionId
|
|
r = 0, nr = reg.numRegions();
|
|
r < nr; ++r)
|
|
{
|
|
const typename RMap::CellRange cells = reg.cells(r);
|
|
|
|
const int repcell = *cells.begin();
|
|
const RhoCalc calc(props, repcell);
|
|
const EqReg eqreg(rec[r], calc,
|
|
rs_func_[r], rv_func_[r],
|
|
props.phaseUsage());
|
|
|
|
PVec press = phasePressures(G, eqreg, cells, grav);
|
|
|
|
const PVec sat = phaseSaturations(eqreg, cells, props, press);
|
|
|
|
const int np = props.numPhases();
|
|
for (int p = 0; p < np; ++p) {
|
|
copyFromRegion(press[p], cells, pp_[p]);
|
|
copyFromRegion(sat[p], cells, sat_[p]);
|
|
}
|
|
if (props.phaseUsage().phase_used[BlackoilPhases::Liquid]
|
|
&& props.phaseUsage().phase_used[BlackoilPhases::Vapour]) {
|
|
const int oilpos = props.phaseUsage().phase_pos[BlackoilPhases::Liquid];
|
|
const int gaspos = props.phaseUsage().phase_pos[BlackoilPhases::Vapour];
|
|
const Vec rs = computeRs(G, cells, press[oilpos], *(rs_func_[r]), sat[gaspos]);
|
|
const Vec rv = computeRs(G, cells, press[gaspos], *(rv_func_[r]), sat[oilpos]);
|
|
copyFromRegion(rs, cells, rs_);
|
|
copyFromRegion(rv, cells, rv_);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class CellRangeType>
|
|
void copyFromRegion(const Vec& source,
|
|
const CellRangeType& cells,
|
|
Vec& destination)
|
|
{
|
|
auto s = source.begin();
|
|
auto c = cells.begin();
|
|
const auto e = cells.end();
|
|
for (; c != e; ++c, ++s) {
|
|
destination[*c] = *s;
|
|
}
|
|
}
|
|
|
|
};
|
|
|
|
|
|
template <>
|
|
class InitialStateComputer<Opm::DeckConstPtr> {
|
|
public:
|
|
InitialStateComputer(const BlackoilPropertiesInterface& props,
|
|
const Opm::DeckConstPtr newParserDeck,
|
|
const UnstructuredGrid& G ,
|
|
const double grav = unit::gravity)
|
|
: pp_(props.numPhases(),
|
|
std::vector<double>(G.number_of_cells)),
|
|
sat_(props.numPhases(),
|
|
std::vector<double>(G.number_of_cells)),
|
|
rs_(G.number_of_cells),
|
|
rv_(G.number_of_cells)
|
|
{
|
|
// Get the equilibration records.
|
|
const std::vector<EquilRecord> rec = getEquil(newParserDeck);
|
|
|
|
// Create (inverse) region mapping.
|
|
const RegionMapping<> eqlmap(equilnum(newParserDeck, G));
|
|
|
|
// Create Rs functions.
|
|
rs_func_.reserve(rec.size());
|
|
if (newParserDeck->hasKeyword("DISGAS")) {
|
|
for (size_t i = 0; i < rec.size(); ++i) {
|
|
const int cell = *(eqlmap.cells(i).begin());
|
|
if (rec[i].live_oil_table_index > 0) {
|
|
if (newParserDeck->hasKeyword("RSVD") &&
|
|
size_t(rec[i].live_oil_table_index) <= newParserDeck->getKeyword("RSVD")->size()) {
|
|
Opm::SingleRecordTable rsvd(newParserDeck->getKeyword("RSVD"),std::vector<std::string>{"vd", "rs"},rec[i].live_oil_table_index-1);
|
|
std::vector<double> vd(rsvd.getColumn("vd"));
|
|
std::vector<double> rs(rsvd.getColumn("rs"));
|
|
rs_func_.push_back(std::make_shared<Miscibility::RsVD>(props, cell, vd, rs));
|
|
} else {
|
|
OPM_THROW(std::runtime_error, "Cannot initialise: RSVD table " << (rec[i].live_oil_table_index) << " not available.");
|
|
}
|
|
} else {
|
|
if (rec[i].goc.depth != rec[i].main.depth) {
|
|
OPM_THROW(std::runtime_error,
|
|
"Cannot initialise: when no explicit RSVD table is given, \n"
|
|
"datum depth must be at the gas-oil-contact. "
|
|
"In EQUIL region " << (i + 1) << " (counting from 1), this does not hold.");
|
|
}
|
|
const double p_contact = rec[i].main.press;
|
|
rs_func_.push_back(std::make_shared<Miscibility::RsSatAtContact>(props, cell, p_contact));
|
|
}
|
|
}
|
|
} else {
|
|
for (size_t i = 0; i < rec.size(); ++i) {
|
|
rs_func_.push_back(std::make_shared<Miscibility::NoMixing>());
|
|
}
|
|
}
|
|
|
|
rv_func_.reserve(rec.size());
|
|
if (newParserDeck->hasKeyword("VAPOIL")) {
|
|
for (size_t i = 0; i < rec.size(); ++i) {
|
|
const int cell = *(eqlmap.cells(i).begin());
|
|
if (rec[i].wet_gas_table_index > 0) {
|
|
if (newParserDeck->hasKeyword("RVVD") &&
|
|
size_t(rec[i].wet_gas_table_index) <= newParserDeck->getKeyword("RVVD")->size()) {
|
|
Opm::SingleRecordTable rvvd(newParserDeck->getKeyword("RVVD"),std::vector<std::string>{"vd", "rv"},rec[i].wet_gas_table_index-1);
|
|
std::vector<double> vd(rvvd.getColumn("vd"));
|
|
std::vector<double> rv(rvvd.getColumn("rv"));
|
|
rv_func_.push_back(std::make_shared<Miscibility::RvVD>(props, cell, vd, rv));
|
|
} else {
|
|
OPM_THROW(std::runtime_error, "Cannot initialise: RVVD table " << (rec[i].wet_gas_table_index) << " not available.");
|
|
}
|
|
} else {
|
|
if (rec[i].goc.depth != rec[i].main.depth) {
|
|
OPM_THROW(std::runtime_error,
|
|
"Cannot initialise: when no explicit RVVD table is given, \n"
|
|
"datum depth must be at the gas-oil-contact. "
|
|
"In EQUIL region " << (i + 1) << " (counting from 1), this does not hold.");
|
|
}
|
|
const double p_contact = rec[i].main.press + rec[i].goc.press;
|
|
rv_func_.push_back(std::make_shared<Miscibility::RvSatAtContact>(props, cell, p_contact));
|
|
}
|
|
}
|
|
} else {
|
|
for (size_t i = 0; i < rec.size(); ++i) {
|
|
rv_func_.push_back(std::make_shared<Miscibility::NoMixing>());
|
|
}
|
|
}
|
|
|
|
// Compute pressures, saturations, rs and rv factors.
|
|
calcPressSatRsRv(eqlmap, rec, props, G, grav);
|
|
|
|
// Modify oil pressure in no-oil regions so that the pressures of present phases can
|
|
// be recovered from the oil pressure and capillary relations.
|
|
}
|
|
|
|
typedef std::vector<double> Vec;
|
|
typedef std::vector<Vec> PVec; // One per phase.
|
|
|
|
const PVec& press() const { return pp_; }
|
|
const PVec& saturation() const { return sat_; }
|
|
const Vec& rs() const { return rs_; }
|
|
const Vec& rv() const { return rv_; }
|
|
|
|
private:
|
|
typedef DensityCalculator<BlackoilPropertiesInterface> RhoCalc;
|
|
typedef EquilReg<RhoCalc> EqReg;
|
|
|
|
std::vector< std::shared_ptr<Miscibility::RsFunction> > rs_func_;
|
|
std::vector< std::shared_ptr<Miscibility::RsFunction> > rv_func_;
|
|
|
|
PVec pp_;
|
|
PVec sat_;
|
|
Vec rs_;
|
|
Vec rv_;
|
|
|
|
template <class RMap>
|
|
void
|
|
calcPressSatRsRv(const RMap& reg ,
|
|
const std::vector< EquilRecord >& rec ,
|
|
const Opm::BlackoilPropertiesInterface& props,
|
|
const UnstructuredGrid& G ,
|
|
const double grav)
|
|
{
|
|
typedef Miscibility::NoMixing NoMix;
|
|
|
|
for (typename RMap::RegionId
|
|
r = 0, nr = reg.numRegions();
|
|
r < nr; ++r)
|
|
{
|
|
const typename RMap::CellRange cells = reg.cells(r);
|
|
|
|
const int repcell = *cells.begin();
|
|
const RhoCalc calc(props, repcell);
|
|
const EqReg eqreg(rec[r], calc,
|
|
rs_func_[r], rv_func_[r],
|
|
props.phaseUsage());
|
|
|
|
PVec press = phasePressures(G, eqreg, cells, grav);
|
|
|
|
const PVec sat = phaseSaturations(eqreg, cells, props, press);
|
|
|
|
const int np = props.numPhases();
|
|
for (int p = 0; p < np; ++p) {
|
|
copyFromRegion(press[p], cells, pp_[p]);
|
|
copyFromRegion(sat[p], cells, sat_[p]);
|
|
}
|
|
if (props.phaseUsage().phase_used[BlackoilPhases::Liquid]
|
|
&& props.phaseUsage().phase_used[BlackoilPhases::Vapour]) {
|
|
const int oilpos = props.phaseUsage().phase_pos[BlackoilPhases::Liquid];
|
|
const int gaspos = props.phaseUsage().phase_pos[BlackoilPhases::Vapour];
|
|
const Vec rs = computeRs(G, cells, press[oilpos], *(rs_func_[r]), sat[gaspos]);
|
|
const Vec rv = computeRs(G, cells, press[gaspos], *(rv_func_[r]), sat[oilpos]);
|
|
copyFromRegion(rs, cells, rs_);
|
|
copyFromRegion(rv, cells, rv_);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class CellRangeType>
|
|
void copyFromRegion(const Vec& source,
|
|
const CellRangeType& cells,
|
|
Vec& destination)
|
|
{
|
|
auto s = source.begin();
|
|
auto c = cells.begin();
|
|
const auto e = cells.end();
|
|
for (; c != e; ++c, ++s) {
|
|
destination[*c] = *s;
|
|
}
|
|
}
|
|
|
|
};
|
|
} // namespace DeckDependent
|
|
} // namespace Equil
|
|
} // namespace Opm
|
|
|
|
#include <opm/core/simulator/initStateEquil_impl.hpp>
|
|
|
|
#endif // OPM_INITSTATEEQUIL_HEADER_INCLUDED
|