opm-simulators/opm/simulators/wells/StandardWellConnections.cpp

572 lines
27 KiB
C++

/*
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2017 Statoil ASA.
Copyright 2016 - 2017 IRIS AS.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <opm/simulators/wells/StandardWellConnections.hpp>
#include <opm/core/props/BlackoilPhases.hpp>
#include <opm/material/fluidsystems/BlackOilFluidSystem.hpp>
#include <opm/models/blackoil/blackoilindices.hh>
#include <opm/models/blackoil/blackoilonephaseindices.hh>
#include <opm/models/blackoil/blackoiltwophaseindices.hh>
#include <opm/simulators/utils/DeferredLogger.hpp>
#include <opm/simulators/wells/ParallelWellInfo.hpp>
#include <opm/simulators/wells/WellInterfaceIndices.hpp>
#include <opm/simulators/wells/WellState.hpp>
#include <numeric>
#include <sstream>
namespace Opm
{
template<class FluidSystem, class Indices, class Scalar>
StandardWellConnections<FluidSystem,Indices,Scalar>::
StandardWellConnections(const WellInterfaceIndices<FluidSystem,Indices,Scalar>& well)
: well_(well)
, perf_densities_(well.numPerfs())
, perf_pressure_diffs_(well.numPerfs())
{
}
template<class FluidSystem, class Indices, class Scalar>
void StandardWellConnections<FluidSystem,Indices,Scalar>::
computePressureDelta()
{
// Algorithm:
// We'll assume the perforations are given in order from top to
// bottom for each well. By top and bottom we do not necessarily
// mean in a geometric sense (depth), but in a topological sense:
// the 'top' perforation is nearest to the surface topologically.
// Our goal is to compute a pressure delta for each perforation.
// 1. Compute pressure differences between perforations.
// dp_perf will contain the pressure difference between a
// perforation and the one above it, except for the first
// perforation for each well, for which it will be the
// difference to the reference (bhp) depth.
const int nperf = well_.numPerfs();
perf_pressure_diffs_.resize(nperf, 0.0);
auto z_above = well_.parallelWellInfo().communicateAboveValues(well_.refDepth(), well_.perfDepth());
for (int perf = 0; perf < nperf; ++perf) {
const double dz = well_.perfDepth()[perf] - z_above[perf];
perf_pressure_diffs_[perf] = dz * perf_densities_[perf] * well_.gravity();
}
// 2. Compute pressure differences to the reference point (bhp) by
// accumulating the already computed adjacent pressure
// differences, storing the result in dp_perf.
// This accumulation must be done per well.
const auto beg = perf_pressure_diffs_.begin();
const auto end = perf_pressure_diffs_.end();
well_.parallelWellInfo().partialSumPerfValues(beg, end);
}
template<class FluidSystem, class Indices, class Scalar>
void StandardWellConnections<FluidSystem,Indices,Scalar>::
computeDensities(const std::vector<Scalar>& perfComponentRates,
const Properties& props,
DeferredLogger& deferred_logger)
{
// Verify that we have consistent input.
const int nperf = well_.numPerfs();
const int num_comp = well_.numComponents();
// 1. Compute the flow (in surface volume units for each
// component) exiting up the wellbore from each perforation,
// taking into account flow from lower in the well, and
// in/out-flow at each perforation.
std::vector<Scalar> q_out_perf((nperf)*num_comp, 0.0);
// Step 1 depends on the order of the perforations. Hence we need to
// do the modifications globally.
// Create and get the global perforation information and do this sequentially
// on each process
const auto& factory = well_.parallelWellInfo().getGlobalPerfContainerFactory();
auto global_q_out_perf = factory.createGlobal(q_out_perf, num_comp);
auto global_perf_comp_rates = factory.createGlobal(perfComponentRates, num_comp);
// TODO: investigate whether we should use the following techniques to calcuate the composition of flows in the wellbore
// Iterate over well perforations from bottom to top.
for (int perf = factory.numGlobalPerfs() - 1; perf >= 0; --perf) {
for (int component = 0; component < num_comp; ++component) {
auto index = perf * num_comp + component;
if (perf == factory.numGlobalPerfs() - 1) {
// This is the bottom perforation. No flow from below.
global_q_out_perf[index] = 0.0;
} else {
// Set equal to flow from below.
global_q_out_perf[index] = global_q_out_perf[index + num_comp];
}
// Subtract outflow through perforation.
global_q_out_perf[index] -= global_perf_comp_rates[index];
}
}
// Copy the data back to local view
factory.copyGlobalToLocal(global_q_out_perf, q_out_perf, num_comp);
// 2. Compute the component mix at each perforation as the
// absolute values of the surface rates divided by their sum.
// Then compute volume ratios (formation factors) for each perforation.
// Finally compute densities for the segments associated with each perforation.
std::vector<Scalar> mix(num_comp,0.0);
std::vector<Scalar> x(num_comp);
std::vector<Scalar> surf_dens(num_comp);
for (int perf = 0; perf < nperf; ++perf) {
// Find component mix.
const Scalar tot_surf_rate = std::accumulate(q_out_perf.begin() + num_comp*perf,
q_out_perf.begin() + num_comp*(perf+1), 0.0);
if (tot_surf_rate != 0.0) {
for (int component = 0; component < num_comp; ++component) {
mix[component] = std::fabs(q_out_perf[perf*num_comp + component]/tot_surf_rate);
}
} else if (num_comp == 1) {
mix[num_comp-1] = 1.0;
} else {
std::fill(mix.begin(), mix.end(), 0.0);
// No flow => use well specified fractions for mix.
if (well_.isInjector()) {
switch (well_.wellEcl().injectorType()) {
case InjectorType::WATER:
mix[FluidSystem::waterCompIdx] = 1.0;
break;
case InjectorType::GAS:
mix[FluidSystem::gasCompIdx] = 1.0;
break;
case InjectorType::OIL:
mix[FluidSystem::oilCompIdx] = 1.0;
break;
case InjectorType::MULTI:
// Not supported.
// deferred_logger.warning("MULTI_PHASE_INJECTOR_NOT_SUPPORTED",
// "Multi phase injectors are not supported, requested for well " + name());
break;
}
} else {
assert(well_.isProducer());
// For the frist perforation without flow we use the preferred phase to decide the mix initialization.
if (perf == 0) { //
switch (well_.wellEcl().getPreferredPhase()) {
case Phase::OIL:
mix[FluidSystem::oilCompIdx] = 1.0;
break;
case Phase::GAS:
mix[FluidSystem::gasCompIdx] = 1.0;
break;
case Phase::WATER:
mix[FluidSystem::waterCompIdx] = 1.0;
break;
default:
// No others supported.
break;
}
// For the rest of the perforation without flow we use mix from the above perforation.
} else {
mix = x;
}
}
}
// Compute volume ratio.
x = mix;
// Subtract dissolved gas from oil phase and vapporized oil from gas phase and vaporized water from gas phase
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
const unsigned gaspos = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
const unsigned oilpos = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
Scalar rs = 0.0;
Scalar rv = 0.0;
if (!props.rsmax_perf.empty() && mix[oilpos] > 1e-12) {
rs = std::min(mix[gaspos] / mix[oilpos], props.rsmax_perf[perf]);
}
if (!props.rvmax_perf.empty() && mix[gaspos] > 1e-12) {
rv = std::min(mix[oilpos] / mix[gaspos], props.rvmax_perf[perf]);
}
const Scalar d = 1.0 - rs*rv;
if (d <= 0.0) {
std::ostringstream sstr;
sstr << "Problematic d value " << d << " obtained for well " << well_.name()
<< " during computeConnectionDensities with rs " << rs
<< ", rv " << rv
<< " obtaining d " << d
<< " Continue as if no dissolution (rs = 0) and vaporization (rv = 0) "
<< " for this connection.";
deferred_logger.debug(sstr.str());
} else {
if (rs > 0.0) {
// Subtract gas in oil from gas mixture
x[gaspos] = (mix[gaspos] - mix[oilpos]*rs)/d;
}
if (rv > 0.0) {
// Subtract oil in gas from oil mixture
x[oilpos] = (mix[oilpos] - mix[gaspos]*rv)/d;
}
}
}
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
//matrix system: (mix[oilpos] = q_os, x[oilpos] = bo*q_or, etc...)
//┌ ┐ ┌ ┐ ┌ ┐
//│mix[oilpos] │ | 1 Rv 0 | |x[oilpos] |
//│mix[gaspos] │ = │ Rs 1 Rsw│ │x[gaspos] │
//│mix[waterpos]│ │ 0 Rvw 1 │ │x[waterpos │
//└ ┘ └ ┘ └ ┘
const unsigned waterpos = Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx);
const unsigned gaspos = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
Scalar rvw = 0.0;
if (!props.rvwmax_perf.empty() && mix[gaspos] > 1e-12) {
rvw = std::min(mix[waterpos] / mix[gaspos], props.rvwmax_perf[perf]);
}
Scalar rsw = 0.0;
if (!props.rswmax_perf.empty() && mix[waterpos] > 1e-12) {
rsw = std::min(mix[gaspos] / mix[waterpos], props.rswmax_perf[perf]);
}
const Scalar d = 1.0 - rsw*rvw;
if (d <= 0.0) {
std::ostringstream sstr;
sstr << "Problematic d value " << d << " obtained for well " << well_.name()
<< " during computeConnectionDensities with rsw " << rsw
<< ", rvw " << rvw
<< " obtaining d " << d
<< " Continue as if no dissolution (rsw = 0) and vaporization (rvw = 0) "
<< " for this connection.";
deferred_logger.debug(sstr.str());
} else {
if (rsw > 0.0) {
// Subtract gas in water from gas mixture
x[gaspos] = (mix[gaspos] - mix[waterpos]*rsw)/d;
}
if (rvw > 0.0) {
// Subtract water in gas from water mixture
x[waterpos] = (mix[waterpos] - mix[gaspos]*rvw)/d;
}
}
}
Scalar volrat = 0.0;
for (int component = 0; component < num_comp; ++component) {
volrat += x[component] / props.b_perf[perf * num_comp + component];
}
for (int component = 0; component < num_comp; ++component) {
surf_dens[component] = props.surf_dens_perf[perf * num_comp + component];
}
// Compute segment density.
perf_densities_[perf] = std::inner_product(surf_dens.begin(), surf_dens.end(), mix.begin(), 0.0) / volrat;
}
}
template<class FluidSystem, class Indices, class Scalar>
void StandardWellConnections<FluidSystem,Indices,Scalar>::
computePropertiesForPressures(const WellState& well_state,
const std::function<Scalar(int,int)>& getTemperature,
const std::function<Scalar(int)>& getSaltConcentration,
const std::function<int(int)>& pvtRegionIdx,
const std::function<Scalar(int)>& solventInverseFormationVolumeFactor,
const std::function<Scalar(int)>& solventRefDensity,
Properties& props) const
{
const int nperf = well_.numPerfs();
const PhaseUsage& pu = well_.phaseUsage();
props.b_perf.resize(nperf * well_.numComponents());
props.surf_dens_perf.resize(nperf * well_.numComponents());
const auto& ws = well_state.well(well_.indexOfWell());
static constexpr int Water = BlackoilPhases::Aqua;
static constexpr int Oil = BlackoilPhases::Liquid;
static constexpr int Gas = BlackoilPhases::Vapour;
const bool waterPresent = FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx);
const bool oilPresent = FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx);
const bool gasPresent = FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx);
//rs and rv are only used if both oil and gas is present
if (oilPresent && gasPresent) {
props.rsmax_perf.resize(nperf);
props.rvmax_perf.resize(nperf);
}
//rvw is only used if both water and gas is present
if (waterPresent && gasPresent) {
props.rvwmax_perf.resize(nperf);
props.rswmax_perf.resize(nperf);
}
// Compute the average pressure in each well block
const auto& perf_press = ws.perf_data.pressure;
auto p_above = well_.parallelWellInfo().communicateAboveValues(ws.bhp,
perf_press.data(),
nperf);
for (int perf = 0; perf < nperf; ++perf) {
const int cell_idx = well_.cells()[perf];
const double p_avg = (perf_press[perf] + p_above[perf])/2;
const double temperature = getTemperature(cell_idx, FluidSystem::oilPhaseIdx);
const double saltConcentration = getSaltConcentration(cell_idx);
const int region_idx = pvtRegionIdx(cell_idx);
if (waterPresent) {
const unsigned waterCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx);
double rsw = 0.0;
if (FluidSystem::enableDissolvedGasInWater()) {
// TODO support mutual solubility in water and oil
assert(!FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx));
const double waterrate = std::abs(ws.surface_rates[pu.phase_pos[Water]]);
props.rswmax_perf[perf] = FluidSystem::waterPvt().saturatedGasDissolutionFactor(region_idx, temperature, p_avg, saltConcentration);
if (waterrate > 0) {
const double gasrate = std::abs(ws.surface_rates[pu.phase_pos[Gas]]) - (Indices::enableSolvent ? ws.sum_solvent_rates() : 0.0);
if (gasrate > 0) {
rsw = waterrate / gasrate;
}
rsw = std::min(rsw, props.rswmax_perf[perf]);
}
}
props.b_perf[waterCompIdx + perf * well_.numComponents()] = FluidSystem::waterPvt().inverseFormationVolumeFactor(region_idx, temperature, p_avg, rsw, saltConcentration);
}
if (gasPresent) {
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
const int gaspos = gasCompIdx + perf * well_.numComponents();
if (oilPresent && waterPresent) {
const double oilrate = std::abs(ws.surface_rates[pu.phase_pos[Oil]]); //in order to handle negative rates in producers
const double waterrate = std::abs(ws.surface_rates[pu.phase_pos[Water]]); //in order to handle negative rates in producers
props.rvmax_perf[perf] = FluidSystem::gasPvt().saturatedOilVaporizationFactor(region_idx, temperature, p_avg);
props.rvwmax_perf[perf] = FluidSystem::gasPvt().saturatedWaterVaporizationFactor(region_idx, temperature, p_avg);
double rv = 0.0;
double rvw = 0.0;
if (oilrate > 0) {
const double gasrate = std::abs(ws.surface_rates[pu.phase_pos[Gas]]) - (Indices::enableSolvent ? ws.sum_solvent_rates() : 0.0);
if (gasrate > 0) {
rv = oilrate / gasrate;
}
rv = std::min(rv, props.rvmax_perf[perf]);
}
if (waterrate > 0) {
const double gasrate = std::abs(ws.surface_rates[pu.phase_pos[Gas]]) - (Indices::enableSolvent ? ws.sum_solvent_rates() : 0.0);
if (gasrate > 0) {
rvw = waterrate / gasrate;
}
rvw = std::min(rvw, props.rvwmax_perf[perf]);
}
if (rv > 0.0 || rvw > 0.0){
props.b_perf[gaspos] = FluidSystem::gasPvt().inverseFormationVolumeFactor(region_idx, temperature, p_avg, rv, rvw);
}
else {
props.b_perf[gaspos] = FluidSystem::gasPvt().saturatedInverseFormationVolumeFactor(region_idx, temperature, p_avg);
}
} else if (oilPresent) {
//no water
const double oilrate = std::abs(ws.surface_rates[pu.phase_pos[Oil]]); //in order to handle negative rates in producers
props.rvmax_perf[perf] = FluidSystem::gasPvt().saturatedOilVaporizationFactor(region_idx, temperature, p_avg);
if (oilrate > 0) {
const double gasrate = std::abs(ws.surface_rates[pu.phase_pos[Gas]]) - (Indices::enableSolvent ? ws.sum_solvent_rates() : 0.0);
double rv = 0.0;
if (gasrate > 0) {
rv = oilrate / gasrate;
}
rv = std::min(rv, props.rvmax_perf[perf]);
props.b_perf[gaspos] = FluidSystem::gasPvt().inverseFormationVolumeFactor(region_idx, temperature, p_avg, rv, 0.0 /*Rvw*/);
}
else {
props.b_perf[gaspos] = FluidSystem::gasPvt().saturatedInverseFormationVolumeFactor(region_idx, temperature, p_avg);
}
} else if (waterPresent) {
//no oil
const double waterrate = std::abs(ws.surface_rates[pu.phase_pos[Water]]); //in order to handle negative rates in producers
props.rvwmax_perf[perf] = FluidSystem::gasPvt().saturatedWaterVaporizationFactor(region_idx, temperature, p_avg);
if (waterrate > 0) {
const double gasrate = std::abs(ws.surface_rates[pu.phase_pos[Gas]]) - (Indices::enableSolvent ? ws.sum_solvent_rates() : 0.0);
double rvw = 0.0;
if (gasrate > 0) {
rvw = waterrate / gasrate;
}
rvw = std::min(rvw, props.rvwmax_perf[perf]);
props.b_perf[gaspos] = FluidSystem::gasPvt().inverseFormationVolumeFactor(region_idx, temperature, p_avg, 0.0 /*Rv*/, rvw);
}
else {
props.b_perf[gaspos] = FluidSystem::gasPvt().saturatedInverseFormationVolumeFactor(region_idx, temperature, p_avg);
}
} else {
props.b_perf[gaspos] = FluidSystem::gasPvt().saturatedInverseFormationVolumeFactor(region_idx, temperature, p_avg);
}
}
if (oilPresent) {
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
const int oilpos = oilCompIdx + perf * well_.numComponents();
if (gasPresent) {
props.rsmax_perf[perf] = FluidSystem::oilPvt().saturatedGasDissolutionFactor(region_idx, temperature, p_avg);
const double gasrate = std::abs(ws.surface_rates[pu.phase_pos[Gas]]) - (Indices::enableSolvent ? ws.sum_solvent_rates() : 0.0);
if (gasrate > 0) {
const double oilrate = std::abs(ws.surface_rates[pu.phase_pos[Oil]]);
double rs = 0.0;
if (oilrate > 0) {
rs = gasrate / oilrate;
}
rs = std::min(rs, props.rsmax_perf[perf]);
props.b_perf[oilpos] = FluidSystem::oilPvt().inverseFormationVolumeFactor(region_idx, temperature, p_avg, rs);
} else {
props.b_perf[oilpos] = FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(region_idx, temperature, p_avg);
}
} else {
props.b_perf[oilpos] = FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(region_idx, temperature, p_avg);
}
}
// Surface density.
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx)) {
continue;
}
const unsigned compIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
props.surf_dens_perf[well_.numComponents() * perf + compIdx] = FluidSystem::referenceDensity( phaseIdx, region_idx );
}
// We use cell values for solvent injector
if constexpr (Indices::enableSolvent) {
props.b_perf[well_.numComponents() * perf + Indices::contiSolventEqIdx] = solventInverseFormationVolumeFactor(cell_idx);
props.surf_dens_perf[well_.numComponents() * perf + Indices::contiSolventEqIdx] = solventRefDensity(cell_idx);
}
}
}
template<class FluidSystem, class Indices, class Scalar>
void StandardWellConnections<FluidSystem,Indices,Scalar>::
computeProperties(const WellState& well_state,
const std::function<Scalar(int,int)>& invB,
const std::function<Scalar(int,int)>& mobility,
const std::function<Scalar(int)>& solventInverseFormationVolumeFactor,
const std::function<Scalar(int)>& solventMobility,
const Properties& props,
DeferredLogger& deferred_logger)
{
// Compute densities
const int nperf = well_.numPerfs();
const int np = well_.numPhases();
std::vector<double> perfRates(props.b_perf.size(),0.0);
const auto& ws = well_state.well(well_.indexOfWell());
const auto& perf_data = ws.perf_data;
const auto& perf_rates_state = perf_data.phase_rates;
for (int perf = 0; perf < nperf; ++perf) {
for (int comp = 0; comp < np; ++comp) {
perfRates[perf * well_.numComponents() + comp] = perf_rates_state[perf * np + well_.ebosCompIdxToFlowCompIdx(comp)];
}
}
if constexpr (Indices::enableSolvent) {
const auto& solvent_perf_rates_state = perf_data.solvent_rates;
for (int perf = 0; perf < nperf; ++perf) {
perfRates[perf * well_.numComponents() + Indices::contiSolventEqIdx] = solvent_perf_rates_state[perf];
}
}
// for producers where all perforations have zero rate we
// approximate the perforation mixture using the mobility ratio
// and weight the perforations using the well transmissibility.
bool all_zero = std::all_of(perfRates.begin(), perfRates.end(),
[](double val) { return val == 0.0; });
const auto& comm = well_.parallelWellInfo().communication();
if (comm.size() > 1)
{
all_zero = (comm.min(all_zero ? 1 : 0) == 1);
}
if (all_zero && well_.isProducer()) {
double total_tw = 0;
for (int perf = 0; perf < nperf; ++perf) {
total_tw += well_.wellIndex()[perf];
}
if (comm.size() > 1)
{
total_tw = comm.sum(total_tw);
}
for (int perf = 0; perf < nperf; ++perf) {
const int cell_idx = well_.cells()[perf];
const double well_tw_fraction = well_.wellIndex()[perf] / total_tw;
double total_mobility = 0.0;
for (int p = 0; p < np; ++p) {
int ebosPhaseIdx = well_.flowPhaseToEbosPhaseIdx(p);
total_mobility += invB(cell_idx, ebosPhaseIdx) * mobility(cell_idx, ebosPhaseIdx);
}
if constexpr (Indices::enableSolvent) {
total_mobility += solventInverseFormationVolumeFactor(cell_idx) * solventMobility(cell_idx);
}
for (int p = 0; p < np; ++p) {
int ebosPhaseIdx = well_.flowPhaseToEbosPhaseIdx(p);
perfRates[perf * well_.numComponents() + p] = well_tw_fraction * mobility(cell_idx, ebosPhaseIdx) / total_mobility;
}
if constexpr (Indices::enableSolvent) {
perfRates[perf * well_.numComponents() + Indices::contiSolventEqIdx] = well_tw_fraction * solventInverseFormationVolumeFactor(cell_idx) / total_mobility;
}
}
}
this->computeDensities(perfRates, props, deferred_logger);
this->computePressureDelta();
}
#define INSTANCE(...) \
template class StandardWellConnections<BlackOilFluidSystem<double,BlackOilDefaultIndexTraits>,__VA_ARGS__,double>;
// One phase
INSTANCE(BlackOilOnePhaseIndices<0u,0u,0u,0u,false,false,0u,1u,0u>)
INSTANCE(BlackOilOnePhaseIndices<0u,0u,0u,1u,false,false,0u,1u,0u>)
INSTANCE(BlackOilOnePhaseIndices<0u,0u,0u,0u,false,false,0u,1u,5u>)
// Two phase
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,false,0u,0u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,false,0u,1u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,false,0u,2u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,1u,0u,false,false,0u,2u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,1u,0u,false,true,0u,2u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,1u,false,false,0u,1u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,true,0u,0u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,true,0u,2u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,2u,0u,false,false,0u,2u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,1u,false,false,0u,0u,0u>)
// Blackoil
INSTANCE(BlackOilIndices<0u,0u,0u,0u,false,false,0u,0u>)
INSTANCE(BlackOilIndices<1u,0u,0u,0u,false,false,0u,0u>)
INSTANCE(BlackOilIndices<0u,1u,0u,0u,false,false,0u,0u>)
INSTANCE(BlackOilIndices<0u,0u,1u,0u,false,false,0u,0u>)
INSTANCE(BlackOilIndices<0u,0u,0u,1u,false,false,0u,0u>)
INSTANCE(BlackOilIndices<0u,0u,0u,0u,true,false,0u,0u>)
INSTANCE(BlackOilIndices<0u,0u,0u,0u,false,true,0u,0u>)
INSTANCE(BlackOilIndices<0u,0u,0u,1u,false,true,0u,0u>)
INSTANCE(BlackOilIndices<0u,0u,0u,1u,false,false,1u,0u>)
}