opm-simulators/opm/simulators/wells/WellConvergence.cpp

163 lines
6.5 KiB
C++

/*
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2017 Statoil ASA.
Copyright 2016 - 2017 IRIS AS.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <opm/simulators/wells/WellConvergence.hpp>
#include <opm/simulators/timestepping/ConvergenceReport.hpp>
#include <opm/simulators/utils/DeferredLoggingErrorHelpers.hpp>
#include <opm/simulators/wells/WellInterfaceGeneric.hpp>
#include <opm/simulators/wells/WellState.hpp>
#include <cmath>
#include <stdexcept>
namespace Opm
{
void WellConvergence::
checkConvergenceControlEq(const WellState& well_state,
const Tolerances& tolerances,
const double well_control_residual,
ConvergenceReport& report,
DeferredLogger& deferred_logger) const
{
double control_tolerance = 0.;
using CR = ConvergenceReport;
CR::WellFailure::Type ctrltype = CR::WellFailure::Type::Invalid;
const int well_index = well_.indexOfWell();
const auto& ws = well_state.well(well_index);
if (well_.wellIsStopped()) {
ctrltype = CR::WellFailure::Type::ControlRate;
control_tolerance = tolerances.rates; // use smaller tolerance for zero control?
}
else if (well_.isInjector() )
{
auto current = ws.injection_cmode;
switch(current) {
case Well::InjectorCMode::THP:
ctrltype = CR::WellFailure::Type::ControlTHP;
control_tolerance = tolerances.thp;
break;
case Well::InjectorCMode::BHP:
ctrltype = CR::WellFailure::Type::ControlBHP;
control_tolerance = tolerances.bhp;
break;
case Well::InjectorCMode::RATE:
case Well::InjectorCMode::RESV:
ctrltype = CR::WellFailure::Type::ControlRate;
control_tolerance = tolerances.rates;
break;
case Well::InjectorCMode::GRUP:
ctrltype = CR::WellFailure::Type::ControlRate;
control_tolerance = tolerances.grup;
break;
default:
OPM_DEFLOG_THROW(std::runtime_error,
"Unknown well control control types for well " + well_.name(),
deferred_logger);
}
}
else if (well_.isProducer() )
{
auto current = ws.production_cmode;
switch(current) {
case Well::ProducerCMode::THP:
ctrltype = CR::WellFailure::Type::ControlTHP;
control_tolerance = tolerances.thp;
break;
case Well::ProducerCMode::BHP:
ctrltype = CR::WellFailure::Type::ControlBHP;
control_tolerance = tolerances.bhp;
break;
case Well::ProducerCMode::ORAT:
case Well::ProducerCMode::WRAT:
case Well::ProducerCMode::GRAT:
case Well::ProducerCMode::LRAT:
case Well::ProducerCMode::RESV:
case Well::ProducerCMode::CRAT:
ctrltype = CR::WellFailure::Type::ControlRate;
control_tolerance = tolerances.rates;
break;
case Well::ProducerCMode::GRUP:
ctrltype = CR::WellFailure::Type::ControlRate;
control_tolerance = tolerances.grup;
break;
default:
OPM_DEFLOG_THROW(std::runtime_error,
"Unknown well control control types for well " + well_.name(),
deferred_logger);
}
}
const int dummy_component = -1;
if (std::isnan(well_control_residual)) {
report.setWellFailed({ctrltype, CR::Severity::NotANumber, dummy_component, well_.name()});
} else if (well_control_residual > tolerances.max_residual_allowed * 10.) {
report.setWellFailed({ctrltype, CR::Severity::TooLarge, dummy_component, well_.name()});
} else if (well_control_residual > control_tolerance) {
report.setWellFailed({ctrltype, CR::Severity::Normal, dummy_component, well_.name()});
}
}
void
WellConvergence::
checkConvergencePolyMW(const std::vector<double>& res,
const int Bhp,
const double maxResidualAllowed,
ConvergenceReport& report) const
{
if (well_.isInjector()) {
// checking the convergence of the perforation rates
const double wat_vel_tol = 1.e-8;
const int dummy_component = -1;
using CR = ConvergenceReport;
const auto wat_vel_failure_type = CR::WellFailure::Type::MassBalance;
for (int perf = 0; perf < well_.numPerfs(); ++perf) {
const double wat_vel_residual = res[Bhp + 1 + perf];
if (std::isnan(wat_vel_residual)) {
report.setWellFailed({wat_vel_failure_type, CR::Severity::NotANumber, dummy_component, well_.name()});
} else if (wat_vel_residual > maxResidualAllowed * 10.) {
report.setWellFailed({wat_vel_failure_type, CR::Severity::TooLarge, dummy_component, well_.name()});
} else if (wat_vel_residual > wat_vel_tol) {
report.setWellFailed({wat_vel_failure_type, CR::Severity::Normal, dummy_component, well_.name()});
}
}
// checking the convergence of the skin pressure
const double pskin_tol = 1000.; // 1000 pascal
const auto pskin_failure_type = CR::WellFailure::Type::Pressure;
for (int perf = 0; perf < well_.numPerfs(); ++perf) {
const double pskin_residual = res[Bhp + 1 + perf + well_.numPerfs()];
if (std::isnan(pskin_residual)) {
report.setWellFailed({pskin_failure_type, CR::Severity::NotANumber, dummy_component, well_.name()});
} else if (pskin_residual > maxResidualAllowed * 10.) {
report.setWellFailed({pskin_failure_type, CR::Severity::TooLarge, dummy_component, well_.name()});
} else if (pskin_residual > pskin_tol) {
report.setWellFailed({pskin_failure_type, CR::Severity::Normal, dummy_component, well_.name()});
}
}
}
}
}