mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-16 16:01:55 -06:00
1133 lines
51 KiB
C++
1133 lines
51 KiB
C++
/*
|
|
Copyright 2013, 2015 SINTEF ICT, Applied Mathematics.
|
|
Copyright 2014, 2015 Dr. Blatt - HPC-Simulation-Software & Services
|
|
Copyright 2014, 2015 Statoil ASA.
|
|
Copyright 2015 NTNU
|
|
Copyright 2015, 2016, 2017 IRIS AS
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef OPM_BLACKOILMODELEBOS_HEADER_INCLUDED
|
|
#define OPM_BLACKOILMODELEBOS_HEADER_INCLUDED
|
|
|
|
#include <ebos/eclproblem.hh>
|
|
#include <opm/models/utils/start.hh>
|
|
|
|
#include <opm/simulators/timestepping/AdaptiveTimeSteppingEbos.hpp>
|
|
|
|
#include <opm/simulators/flow/NonlinearSolverEbos.hpp>
|
|
#include <opm/simulators/flow/BlackoilModelParametersEbos.hpp>
|
|
#include <opm/simulators/wells/BlackoilWellModel.hpp>
|
|
#include <opm/simulators/aquifers/BlackoilAquiferModel.hpp>
|
|
#include <opm/simulators/wells/WellConnectionAuxiliaryModule.hpp>
|
|
#include <opm/simulators/flow/countGlobalCells.hpp>
|
|
#include <opm/simulators/utils/DeferredLoggingErrorHelpers.hpp>
|
|
|
|
#include <opm/grid/UnstructuredGrid.h>
|
|
#include <opm/simulators/timestepping/SimulatorReport.hpp>
|
|
#include <opm/simulators/linalg/ParallelIstlInformation.hpp>
|
|
#include <opm/core/props/phaseUsageFromDeck.hpp>
|
|
#include <opm/common/ErrorMacros.hpp>
|
|
#include <opm/common/Exceptions.hpp>
|
|
#include <opm/common/OpmLog/OpmLog.hpp>
|
|
#include <opm/input/eclipse/Units/Units.hpp>
|
|
#include <opm/simulators/timestepping/SimulatorTimer.hpp>
|
|
#include <opm/common/utility/parameters/ParameterGroup.hpp>
|
|
#include <opm/input/eclipse/EclipseState/EclipseState.hpp>
|
|
#include <opm/input/eclipse/EclipseState/Tables/TableManager.hpp>
|
|
|
|
#include <opm/simulators/linalg/ISTLSolverEbos.hpp>
|
|
|
|
#include <dune/istl/owneroverlapcopy.hh>
|
|
#if DUNE_VERSION_NEWER(DUNE_COMMON, 2, 7)
|
|
#include <dune/common/parallel/communication.hh>
|
|
#else
|
|
#include <dune/common/parallel/collectivecommunication.hh>
|
|
#endif
|
|
#include <dune/common/timer.hh>
|
|
#include <dune/common/unused.hh>
|
|
|
|
#include <cassert>
|
|
#include <cmath>
|
|
#include <iostream>
|
|
#include <iomanip>
|
|
#include <limits>
|
|
#include <vector>
|
|
#include <algorithm>
|
|
|
|
namespace Opm::Properties {
|
|
|
|
namespace TTag {
|
|
struct EclFlowProblem {
|
|
using InheritsFrom = std::tuple<FlowTimeSteppingParameters, FlowModelParameters,
|
|
FlowNonLinearSolver, EclBaseProblem, BlackOilModel>;
|
|
};
|
|
}
|
|
template<class TypeTag>
|
|
struct OutputDir<TypeTag, TTag::EclFlowProblem> {
|
|
static constexpr auto value = "";
|
|
};
|
|
template<class TypeTag>
|
|
struct EnableDebuggingChecks<TypeTag, TTag::EclFlowProblem> {
|
|
static constexpr bool value = false;
|
|
};
|
|
// default in flow is to formulate the equations in surface volumes
|
|
template<class TypeTag>
|
|
struct BlackoilConserveSurfaceVolume<TypeTag, TTag::EclFlowProblem> {
|
|
static constexpr bool value = true;
|
|
};
|
|
template<class TypeTag>
|
|
struct UseVolumetricResidual<TypeTag, TTag::EclFlowProblem> {
|
|
static constexpr bool value = false;
|
|
};
|
|
|
|
template<class TypeTag>
|
|
struct EclAquiferModel<TypeTag, TTag::EclFlowProblem> {
|
|
using type = BlackoilAquiferModel<TypeTag>;
|
|
};
|
|
|
|
// disable all extensions supported by black oil model. this should not really be
|
|
// necessary but it makes things a bit more explicit
|
|
template<class TypeTag>
|
|
struct EnablePolymer<TypeTag, TTag::EclFlowProblem> {
|
|
static constexpr bool value = false;
|
|
};
|
|
template<class TypeTag>
|
|
struct EnableSolvent<TypeTag, TTag::EclFlowProblem> {
|
|
static constexpr bool value = false;
|
|
};
|
|
template<class TypeTag>
|
|
struct EnableTemperature<TypeTag, TTag::EclFlowProblem> {
|
|
static constexpr bool value = true;
|
|
};
|
|
template<class TypeTag>
|
|
struct EnableEnergy<TypeTag, TTag::EclFlowProblem> {
|
|
static constexpr bool value = false;
|
|
};
|
|
template<class TypeTag>
|
|
struct EnableFoam<TypeTag, TTag::EclFlowProblem> {
|
|
static constexpr bool value = false;
|
|
};
|
|
template<class TypeTag>
|
|
struct EnableBrine<TypeTag, TTag::EclFlowProblem> {
|
|
static constexpr bool value = false;
|
|
};
|
|
template<class TypeTag>
|
|
struct EnableSaltPrecipitation<TypeTag, TTag::EclFlowProblem> {
|
|
static constexpr bool value = false;
|
|
};
|
|
template<class TypeTag>
|
|
struct EnableMICP<TypeTag, TTag::EclFlowProblem> {
|
|
static constexpr bool value = false;
|
|
};
|
|
|
|
template<class TypeTag>
|
|
struct EclWellModel<TypeTag, TTag::EclFlowProblem> {
|
|
using type = BlackoilWellModel<TypeTag>;
|
|
};
|
|
template<class TypeTag>
|
|
struct LinearSolverSplice<TypeTag, TTag::EclFlowProblem> {
|
|
using type = TTag::FlowIstlSolver;
|
|
};
|
|
|
|
} // namespace Opm::Properties
|
|
|
|
namespace Opm {
|
|
/// A model implementation for three-phase black oil.
|
|
///
|
|
/// The simulator is capable of handling three-phase problems
|
|
/// where gas can be dissolved in oil and vice versa. It
|
|
/// uses an industry-standard TPFA discretization with per-phase
|
|
/// upwind weighting of mobilities.
|
|
template <class TypeTag>
|
|
class BlackoilModelEbos
|
|
{
|
|
public:
|
|
// --------- Types and enums ---------
|
|
typedef BlackoilModelParametersEbos<TypeTag> ModelParameters;
|
|
|
|
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
|
|
using Grid = GetPropType<TypeTag, Properties::Grid>;
|
|
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
|
|
using SparseMatrixAdapter = GetPropType<TypeTag, Properties::SparseMatrixAdapter>;
|
|
using SolutionVector = GetPropType<TypeTag, Properties::SolutionVector>;
|
|
using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
|
|
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
|
|
using Indices = GetPropType<TypeTag, Properties::Indices>;
|
|
using MaterialLaw = GetPropType<TypeTag, Properties::MaterialLaw>;
|
|
using MaterialLawParams = GetPropType<TypeTag, Properties::MaterialLawParams>;
|
|
|
|
typedef double Scalar;
|
|
static const int numEq = Indices::numEq;
|
|
static const int contiSolventEqIdx = Indices::contiSolventEqIdx;
|
|
static const int contiZfracEqIdx = Indices::contiZfracEqIdx;
|
|
static const int contiPolymerEqIdx = Indices::contiPolymerEqIdx;
|
|
static const int contiEnergyEqIdx = Indices::contiEnergyEqIdx;
|
|
static const int contiPolymerMWEqIdx = Indices::contiPolymerMWEqIdx;
|
|
static const int contiFoamEqIdx = Indices::contiFoamEqIdx;
|
|
static const int contiBrineEqIdx = Indices::contiBrineEqIdx;
|
|
static const int contiMicrobialEqIdx = Indices::contiMicrobialEqIdx;
|
|
static const int contiOxygenEqIdx = Indices::contiOxygenEqIdx;
|
|
static const int contiUreaEqIdx = Indices::contiUreaEqIdx;
|
|
static const int contiBiofilmEqIdx = Indices::contiBiofilmEqIdx;
|
|
static const int contiCalciteEqIdx = Indices::contiCalciteEqIdx;
|
|
static const int solventSaturationIdx = Indices::solventSaturationIdx;
|
|
static const int zFractionIdx = Indices::zFractionIdx;
|
|
static const int polymerConcentrationIdx = Indices::polymerConcentrationIdx;
|
|
static const int polymerMoleWeightIdx = Indices::polymerMoleWeightIdx;
|
|
static const int temperatureIdx = Indices::temperatureIdx;
|
|
static const int foamConcentrationIdx = Indices::foamConcentrationIdx;
|
|
static const int saltConcentrationIdx = Indices::saltConcentrationIdx;
|
|
static const int microbialConcentrationIdx = Indices::microbialConcentrationIdx;
|
|
static const int oxygenConcentrationIdx = Indices::oxygenConcentrationIdx;
|
|
static const int ureaConcentrationIdx = Indices::ureaConcentrationIdx;
|
|
static const int biofilmConcentrationIdx = Indices::biofilmConcentrationIdx;
|
|
static const int calciteConcentrationIdx = Indices::calciteConcentrationIdx;
|
|
|
|
typedef Dune::FieldVector<Scalar, numEq > VectorBlockType;
|
|
typedef typename SparseMatrixAdapter::MatrixBlock MatrixBlockType;
|
|
typedef typename SparseMatrixAdapter::IstlMatrix Mat;
|
|
typedef Dune::BlockVector<VectorBlockType> BVector;
|
|
|
|
typedef ISTLSolverEbos<TypeTag> ISTLSolverType;
|
|
//typedef typename SolutionVector :: value_type PrimaryVariables ;
|
|
|
|
// --------- Public methods ---------
|
|
|
|
/// Construct the model. It will retain references to the
|
|
/// arguments of this functions, and they are expected to
|
|
/// remain in scope for the lifetime of the solver.
|
|
/// \param[in] param parameters
|
|
/// \param[in] grid grid data structure
|
|
/// \param[in] wells well structure
|
|
/// \param[in] vfp_properties Vertical flow performance tables
|
|
/// \param[in] linsolver linear solver
|
|
/// \param[in] eclState eclipse state
|
|
/// \param[in] terminal_output request output to cout/cerr
|
|
BlackoilModelEbos(Simulator& ebosSimulator,
|
|
const ModelParameters& param,
|
|
BlackoilWellModel<TypeTag>& well_model,
|
|
const bool terminal_output)
|
|
: ebosSimulator_(ebosSimulator)
|
|
, grid_(ebosSimulator_.vanguard().grid())
|
|
, phaseUsage_(phaseUsageFromDeck(eclState()))
|
|
, param_( param )
|
|
, well_model_ (well_model)
|
|
, terminal_output_ (terminal_output)
|
|
, current_relaxation_(1.0)
|
|
, dx_old_(ebosSimulator_.model().numGridDof())
|
|
{
|
|
// compute global sum of number of cells
|
|
global_nc_ = detail::countGlobalCells(grid_);
|
|
convergence_reports_.reserve(300); // Often insufficient, but avoids frequent moves.
|
|
}
|
|
|
|
bool isParallel() const
|
|
{ return grid_.comm().size() > 1; }
|
|
|
|
const EclipseState& eclState() const
|
|
{ return ebosSimulator_.vanguard().eclState(); }
|
|
|
|
/// Called once before each time step.
|
|
/// \param[in] timer simulation timer
|
|
SimulatorReportSingle prepareStep(const SimulatorTimerInterface& timer)
|
|
{
|
|
SimulatorReportSingle report;
|
|
Dune::Timer perfTimer;
|
|
perfTimer.start();
|
|
// update the solution variables in ebos
|
|
if ( timer.lastStepFailed() ) {
|
|
ebosSimulator_.model().updateFailed();
|
|
} else {
|
|
ebosSimulator_.model().advanceTimeLevel();
|
|
}
|
|
|
|
// Set the timestep size, episode index, and non-linear iteration index
|
|
// for ebos explicitly. ebos needs to know the report step/episode index
|
|
// because of timing dependent data despite the fact that flow uses its
|
|
// own time stepper. (The length of the episode does not matter, though.)
|
|
ebosSimulator_.setTime(timer.simulationTimeElapsed());
|
|
ebosSimulator_.setTimeStepSize(timer.currentStepLength());
|
|
ebosSimulator_.model().newtonMethod().setIterationIndex(0);
|
|
|
|
ebosSimulator_.problem().beginTimeStep();
|
|
|
|
unsigned numDof = ebosSimulator_.model().numGridDof();
|
|
wasSwitched_.resize(numDof);
|
|
std::fill(wasSwitched_.begin(), wasSwitched_.end(), false);
|
|
|
|
if (param_.update_equations_scaling_) {
|
|
std::cout << "equation scaling not supported yet" << std::endl;
|
|
//updateEquationsScaling();
|
|
}
|
|
report.pre_post_time += perfTimer.stop();
|
|
|
|
return report;
|
|
}
|
|
|
|
|
|
/// Called once per nonlinear iteration.
|
|
/// This model will perform a Newton-Raphson update, changing reservoir_state
|
|
/// and well_state. It will also use the nonlinear_solver to do relaxation of
|
|
/// updates if necessary.
|
|
/// \param[in] iteration should be 0 for the first call of a new timestep
|
|
/// \param[in] timer simulation timer
|
|
/// \param[in] nonlinear_solver nonlinear solver used (for oscillation/relaxation control)
|
|
/// \param[in, out] reservoir_state reservoir state variables
|
|
/// \param[in, out] well_state well state variables
|
|
template <class NonlinearSolverType>
|
|
SimulatorReportSingle nonlinearIteration(const int iteration,
|
|
const SimulatorTimerInterface& timer,
|
|
NonlinearSolverType& nonlinear_solver)
|
|
{
|
|
SimulatorReportSingle report;
|
|
failureReport_ = SimulatorReportSingle();
|
|
Dune::Timer perfTimer;
|
|
|
|
perfTimer.start();
|
|
if (iteration == 0) {
|
|
// For each iteration we store in a vector the norms of the residual of
|
|
// the mass balance for each active phase, the well flux and the well equations.
|
|
residual_norms_history_.clear();
|
|
current_relaxation_ = 1.0;
|
|
dx_old_ = 0.0;
|
|
convergence_reports_.push_back({timer.reportStepNum(), timer.currentStepNum(), {}});
|
|
convergence_reports_.back().report.reserve(11);
|
|
}
|
|
|
|
report.total_linearizations = 1;
|
|
|
|
try {
|
|
report += assembleReservoir(timer, iteration);
|
|
report.assemble_time += perfTimer.stop();
|
|
}
|
|
catch (...) {
|
|
report.assemble_time += perfTimer.stop();
|
|
failureReport_ += report;
|
|
// todo (?): make the report an attribute of the class
|
|
throw; // continue throwing the stick
|
|
}
|
|
|
|
std::vector<double> residual_norms;
|
|
perfTimer.reset();
|
|
perfTimer.start();
|
|
// the step is not considered converged until at least minIter iterations is done
|
|
{
|
|
auto convrep = getConvergence(timer, iteration,residual_norms);
|
|
report.converged = convrep.converged() && iteration > nonlinear_solver.minIter();;
|
|
ConvergenceReport::Severity severity = convrep.severityOfWorstFailure();
|
|
convergence_reports_.back().report.push_back(std::move(convrep));
|
|
|
|
// Throw if any NaN or too large residual found.
|
|
if (severity == ConvergenceReport::Severity::NotANumber) {
|
|
OPM_THROW(NumericalIssue, "NaN residual found!");
|
|
} else if (severity == ConvergenceReport::Severity::TooLarge) {
|
|
OPM_THROW_NOLOG(NumericalIssue, "Too large residual found!");
|
|
}
|
|
}
|
|
report.update_time += perfTimer.stop();
|
|
residual_norms_history_.push_back(residual_norms);
|
|
if (!report.converged) {
|
|
perfTimer.reset();
|
|
perfTimer.start();
|
|
report.total_newton_iterations = 1;
|
|
|
|
// enable single precision for solvers when dt is smaller then 20 days
|
|
//residual_.singlePrecision = (unit::convert::to(dt, unit::day) < 20.) ;
|
|
|
|
// Compute the nonlinear update.
|
|
unsigned nc = ebosSimulator_.model().numGridDof();
|
|
BVector x(nc);
|
|
|
|
// Solve the linear system.
|
|
linear_solve_setup_time_ = 0.0;
|
|
try {
|
|
// apply the Schur compliment of the well model to the reservoir linearized
|
|
// equations
|
|
// Note that linearize may throw for MSwells.
|
|
wellModel().linearize(ebosSimulator().model().linearizer().jacobian(),
|
|
ebosSimulator().model().linearizer().residual());
|
|
|
|
solveJacobianSystem(x);
|
|
report.linear_solve_setup_time += linear_solve_setup_time_;
|
|
report.linear_solve_time += perfTimer.stop();
|
|
report.total_linear_iterations += linearIterationsLastSolve();
|
|
}
|
|
catch (...) {
|
|
report.linear_solve_setup_time += linear_solve_setup_time_;
|
|
report.linear_solve_time += perfTimer.stop();
|
|
report.total_linear_iterations += linearIterationsLastSolve();
|
|
|
|
failureReport_ += report;
|
|
throw; // re-throw up
|
|
}
|
|
|
|
perfTimer.reset();
|
|
perfTimer.start();
|
|
|
|
// handling well state update before oscillation treatment is a decision based
|
|
// on observation to avoid some big performance degeneration under some circumstances.
|
|
// there is no theorectical explanation which way is better for sure.
|
|
wellModel().postSolve(x);
|
|
|
|
if (param_.use_update_stabilization_) {
|
|
// Stabilize the nonlinear update.
|
|
bool isOscillate = false;
|
|
bool isStagnate = false;
|
|
nonlinear_solver.detectOscillations(residual_norms_history_, iteration, isOscillate, isStagnate);
|
|
if (isOscillate) {
|
|
current_relaxation_ -= nonlinear_solver.relaxIncrement();
|
|
current_relaxation_ = std::max(current_relaxation_, nonlinear_solver.relaxMax());
|
|
if (terminalOutputEnabled()) {
|
|
std::string msg = " Oscillating behavior detected: Relaxation set to "
|
|
+ std::to_string(current_relaxation_);
|
|
OpmLog::info(msg);
|
|
}
|
|
}
|
|
nonlinear_solver.stabilizeNonlinearUpdate(x, dx_old_, current_relaxation_);
|
|
}
|
|
|
|
// Apply the update, with considering model-dependent limitations and
|
|
// chopping of the update.
|
|
updateSolution(x);
|
|
|
|
report.update_time += perfTimer.stop();
|
|
}
|
|
|
|
return report;
|
|
}
|
|
|
|
void printIf(int c, double x, double y, double eps, std::string type) {
|
|
if (std::abs(x-y) > eps) {
|
|
std::cout << type << " " <<c << ": "<<x << " " << y << std::endl;
|
|
}
|
|
}
|
|
|
|
|
|
/// Called once after each time step.
|
|
/// In this class, this function does nothing.
|
|
/// \param[in] timer simulation timer
|
|
SimulatorReportSingle afterStep(const SimulatorTimerInterface&)
|
|
{
|
|
SimulatorReportSingle report;
|
|
Dune::Timer perfTimer;
|
|
perfTimer.start();
|
|
ebosSimulator_.problem().endTimeStep();
|
|
report.pre_post_time += perfTimer.stop();
|
|
return report;
|
|
}
|
|
|
|
/// Assemble the residual and Jacobian of the nonlinear system.
|
|
/// \param[in] reservoir_state reservoir state variables
|
|
/// \param[in, out] well_state well state variables
|
|
/// \param[in] initial_assembly pass true if this is the first call to assemble() in this timestep
|
|
SimulatorReportSingle assembleReservoir(const SimulatorTimerInterface& /* timer */,
|
|
const int iterationIdx)
|
|
{
|
|
// -------- Mass balance equations --------
|
|
ebosSimulator_.model().newtonMethod().setIterationIndex(iterationIdx);
|
|
ebosSimulator_.problem().beginIteration();
|
|
ebosSimulator_.model().linearizer().linearizeDomain();
|
|
ebosSimulator_.problem().endIteration();
|
|
|
|
return wellModel().lastReport();
|
|
}
|
|
|
|
// compute the "relative" change of the solution between time steps
|
|
double relativeChange() const
|
|
{
|
|
Scalar resultDelta = 0.0;
|
|
Scalar resultDenom = 0.0;
|
|
|
|
const auto& elemMapper = ebosSimulator_.model().elementMapper();
|
|
const auto& gridView = ebosSimulator_.gridView();
|
|
auto elemIt = gridView.template begin</*codim=*/0>();
|
|
const auto& elemEndIt = gridView.template end</*codim=*/0>();
|
|
for (; elemIt != elemEndIt; ++elemIt) {
|
|
const auto& elem = *elemIt;
|
|
if (elem.partitionType() != Dune::InteriorEntity)
|
|
continue;
|
|
|
|
unsigned globalElemIdx = elemMapper.index(elem);
|
|
const auto& priVarsNew = ebosSimulator_.model().solution(/*timeIdx=*/0)[globalElemIdx];
|
|
|
|
Scalar pressureNew;
|
|
pressureNew = priVarsNew[Indices::pressureSwitchIdx];
|
|
|
|
Scalar saturationsNew[FluidSystem::numPhases] = { 0.0 };
|
|
Scalar oilSaturationNew = 1.0;
|
|
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) && FluidSystem::numActivePhases() > 1) {
|
|
saturationsNew[FluidSystem::waterPhaseIdx] = priVarsNew[Indices::waterSaturationIdx];
|
|
oilSaturationNew -= saturationsNew[FluidSystem::waterPhaseIdx];
|
|
}
|
|
|
|
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) &&
|
|
FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) &&
|
|
priVarsNew.primaryVarsMeaning() == PrimaryVariables::Sw_po_Sg) {
|
|
assert(Indices::compositionSwitchIdx >= 0 );
|
|
saturationsNew[FluidSystem::gasPhaseIdx] = priVarsNew[Indices::compositionSwitchIdx];
|
|
oilSaturationNew -= saturationsNew[FluidSystem::gasPhaseIdx];
|
|
}
|
|
|
|
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
|
|
saturationsNew[FluidSystem::oilPhaseIdx] = oilSaturationNew;
|
|
}
|
|
|
|
const auto& priVarsOld = ebosSimulator_.model().solution(/*timeIdx=*/1)[globalElemIdx];
|
|
|
|
Scalar pressureOld;
|
|
pressureOld = priVarsOld[Indices::pressureSwitchIdx];
|
|
|
|
Scalar saturationsOld[FluidSystem::numPhases] = { 0.0 };
|
|
Scalar oilSaturationOld = 1.0;
|
|
|
|
// NB fix me! adding pressures changes to satutation changes does not make sense
|
|
Scalar tmp = pressureNew - pressureOld;
|
|
resultDelta += tmp*tmp;
|
|
resultDenom += pressureNew*pressureNew;
|
|
|
|
if (FluidSystem::numActivePhases() > 1) {
|
|
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
|
|
saturationsOld[FluidSystem::waterPhaseIdx] = priVarsOld[Indices::waterSaturationIdx];
|
|
oilSaturationOld -= saturationsOld[FluidSystem::waterPhaseIdx];
|
|
}
|
|
|
|
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) &&
|
|
FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) &&
|
|
priVarsOld.primaryVarsMeaning() == PrimaryVariables::Sw_po_Sg)
|
|
{
|
|
assert(Indices::compositionSwitchIdx >= 0 );
|
|
saturationsOld[FluidSystem::gasPhaseIdx] = priVarsOld[Indices::compositionSwitchIdx];
|
|
oilSaturationOld -= saturationsOld[FluidSystem::gasPhaseIdx];
|
|
}
|
|
|
|
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
|
|
saturationsOld[FluidSystem::oilPhaseIdx] = oilSaturationOld;
|
|
}
|
|
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++ phaseIdx) {
|
|
Scalar tmpSat = saturationsNew[phaseIdx] - saturationsOld[phaseIdx];
|
|
resultDelta += tmpSat*tmpSat;
|
|
resultDenom += saturationsNew[phaseIdx]*saturationsNew[phaseIdx];
|
|
assert(std::isfinite(resultDelta));
|
|
assert(std::isfinite(resultDenom));
|
|
}
|
|
}
|
|
}
|
|
|
|
resultDelta = gridView.comm().sum(resultDelta);
|
|
resultDenom = gridView.comm().sum(resultDenom);
|
|
|
|
if (resultDenom > 0.0)
|
|
return resultDelta/resultDenom;
|
|
return 0.0;
|
|
}
|
|
|
|
|
|
/// Number of linear iterations used in last call to solveJacobianSystem().
|
|
int linearIterationsLastSolve() const
|
|
{
|
|
return ebosSimulator_.model().newtonMethod().linearSolver().iterations ();
|
|
}
|
|
|
|
/// Solve the Jacobian system Jx = r where J is the Jacobian and
|
|
/// r is the residual.
|
|
void solveJacobianSystem(BVector& x)
|
|
{
|
|
|
|
auto& ebosJac = ebosSimulator_.model().linearizer().jacobian();
|
|
auto& ebosResid = ebosSimulator_.model().linearizer().residual();
|
|
|
|
// set initial guess
|
|
x = 0.0;
|
|
|
|
auto& ebosSolver = ebosSimulator_.model().newtonMethod().linearSolver();
|
|
Dune::Timer perfTimer;
|
|
perfTimer.start();
|
|
ebosSolver.prepare(ebosJac, ebosResid);
|
|
linear_solve_setup_time_ = perfTimer.stop();
|
|
ebosSolver.setResidual(ebosResid);
|
|
// actually, the error needs to be calculated after setResidual in order to
|
|
// account for parallelization properly. since the residual of ECFV
|
|
// discretizations does not need to be synchronized across processes to be
|
|
// consistent, this is not relevant for OPM-flow...
|
|
ebosSolver.setMatrix(ebosJac);
|
|
ebosSolver.solve(x);
|
|
}
|
|
|
|
|
|
|
|
/// Apply an update to the primary variables.
|
|
void updateSolution(const BVector& dx)
|
|
{
|
|
auto& ebosNewtonMethod = ebosSimulator_.model().newtonMethod();
|
|
SolutionVector& solution = ebosSimulator_.model().solution(/*timeIdx=*/0);
|
|
|
|
ebosNewtonMethod.update_(/*nextSolution=*/solution,
|
|
/*curSolution=*/solution,
|
|
/*update=*/dx,
|
|
/*resid=*/dx); // the update routines of the black
|
|
// oil model do not care about the
|
|
// residual
|
|
|
|
// if the solution is updated, the intensive quantities need to be recalculated
|
|
ebosSimulator_.model().invalidateAndUpdateIntensiveQuantities(/*timeIdx=*/0);
|
|
}
|
|
|
|
/// Return true if output to cout is wanted.
|
|
bool terminalOutputEnabled() const
|
|
{
|
|
return terminal_output_;
|
|
}
|
|
|
|
template <class CollectiveCommunication>
|
|
std::tuple<double,double> convergenceReduction(const CollectiveCommunication& comm,
|
|
const double pvSumLocal,
|
|
const double numAquiferPvSumLocal,
|
|
std::vector< Scalar >& R_sum,
|
|
std::vector< Scalar >& maxCoeff,
|
|
std::vector< Scalar >& B_avg)
|
|
{
|
|
// Compute total pore volume (use only owned entries)
|
|
double pvSum = pvSumLocal;
|
|
double numAquiferPvSum = numAquiferPvSumLocal;
|
|
|
|
if( comm.size() > 1 )
|
|
{
|
|
// global reduction
|
|
std::vector< Scalar > sumBuffer;
|
|
std::vector< Scalar > maxBuffer;
|
|
const int numComp = B_avg.size();
|
|
sumBuffer.reserve( 2*numComp + 2 ); // +2 for (numAquifer)pvSum
|
|
maxBuffer.reserve( numComp );
|
|
for( int compIdx = 0; compIdx < numComp; ++compIdx )
|
|
{
|
|
sumBuffer.push_back( B_avg[ compIdx ] );
|
|
sumBuffer.push_back( R_sum[ compIdx ] );
|
|
maxBuffer.push_back( maxCoeff[ compIdx ] );
|
|
}
|
|
|
|
// Compute total pore volume
|
|
sumBuffer.push_back( pvSum );
|
|
sumBuffer.push_back( numAquiferPvSum );
|
|
|
|
// compute global sum
|
|
comm.sum( sumBuffer.data(), sumBuffer.size() );
|
|
|
|
// compute global max
|
|
comm.max( maxBuffer.data(), maxBuffer.size() );
|
|
|
|
// restore values to local variables
|
|
for( int compIdx = 0, buffIdx = 0; compIdx < numComp; ++compIdx, ++buffIdx )
|
|
{
|
|
B_avg[ compIdx ] = sumBuffer[ buffIdx ];
|
|
++buffIdx;
|
|
|
|
R_sum[ compIdx ] = sumBuffer[ buffIdx ];
|
|
}
|
|
|
|
for( int compIdx = 0; compIdx < numComp; ++compIdx )
|
|
{
|
|
maxCoeff[ compIdx ] = maxBuffer[ compIdx ];
|
|
}
|
|
|
|
// restore global pore volume
|
|
pvSum = sumBuffer[sumBuffer.size()-2];
|
|
numAquiferPvSum = sumBuffer.back();
|
|
}
|
|
|
|
// return global pore volume
|
|
return {pvSum, numAquiferPvSum};
|
|
}
|
|
|
|
/// \brief Get reservoir quantities on this process needed for convergence calculations.
|
|
/// \return A pair of the local pore volume of interior cells and the pore volumes
|
|
/// of the cells associated with a numerical aquifer.
|
|
std::tuple<double,double> localConvergenceData(std::vector<Scalar>& R_sum,
|
|
std::vector<Scalar>& maxCoeff,
|
|
std::vector<Scalar>& B_avg)
|
|
{
|
|
double pvSumLocal = 0.0;
|
|
double numAquiferPvSumLocal = 0.0;
|
|
const auto& ebosModel = ebosSimulator_.model();
|
|
const auto& ebosProblem = ebosSimulator_.problem();
|
|
|
|
const auto& ebosResid = ebosSimulator_.model().linearizer().residual();
|
|
|
|
ElementContext elemCtx(ebosSimulator_);
|
|
const auto& gridView = ebosSimulator().gridView();
|
|
const auto& elemEndIt = gridView.template end</*codim=*/0, Dune::Interior_Partition>();
|
|
OPM_BEGIN_PARALLEL_TRY_CATCH();
|
|
|
|
for (auto elemIt = gridView.template begin</*codim=*/0, Dune::Interior_Partition>();
|
|
elemIt != elemEndIt;
|
|
++elemIt)
|
|
{
|
|
const auto& elem = *elemIt;
|
|
elemCtx.updatePrimaryStencil(elem);
|
|
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
|
|
const unsigned cell_idx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
|
|
const auto& intQuants = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
|
|
const auto& fs = intQuants.fluidState();
|
|
|
|
const double pvValue = ebosProblem.referencePorosity(cell_idx, /*timeIdx=*/0) * ebosModel.dofTotalVolume( cell_idx );
|
|
pvSumLocal += pvValue;
|
|
|
|
if (isNumericalAquiferCell(gridView.grid(), elem))
|
|
{
|
|
numAquiferPvSumLocal += pvValue;
|
|
}
|
|
|
|
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx)
|
|
{
|
|
if (!FluidSystem::phaseIsActive(phaseIdx)) {
|
|
continue;
|
|
}
|
|
|
|
const unsigned compIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
|
|
|
|
B_avg[ compIdx ] += 1.0 / fs.invB(phaseIdx).value();
|
|
const auto R2 = ebosResid[cell_idx][compIdx];
|
|
|
|
R_sum[ compIdx ] += R2;
|
|
maxCoeff[ compIdx ] = std::max( maxCoeff[ compIdx ], std::abs( R2 ) / pvValue );
|
|
}
|
|
|
|
if constexpr (has_solvent_) {
|
|
B_avg[ contiSolventEqIdx ] += 1.0 / intQuants.solventInverseFormationVolumeFactor().value();
|
|
const auto R2 = ebosResid[cell_idx][contiSolventEqIdx];
|
|
R_sum[ contiSolventEqIdx ] += R2;
|
|
maxCoeff[ contiSolventEqIdx ] = std::max( maxCoeff[ contiSolventEqIdx ], std::abs( R2 ) / pvValue );
|
|
}
|
|
if constexpr (has_extbo_) {
|
|
B_avg[ contiZfracEqIdx ] += 1.0 / fs.invB(FluidSystem::gasPhaseIdx).value();
|
|
const auto R2 = ebosResid[cell_idx][contiZfracEqIdx];
|
|
R_sum[ contiZfracEqIdx ] += R2;
|
|
maxCoeff[ contiZfracEqIdx ] = std::max( maxCoeff[ contiZfracEqIdx ], std::abs( R2 ) / pvValue );
|
|
}
|
|
if constexpr (has_polymer_) {
|
|
B_avg[ contiPolymerEqIdx ] += 1.0 / fs.invB(FluidSystem::waterPhaseIdx).value();
|
|
const auto R2 = ebosResid[cell_idx][contiPolymerEqIdx];
|
|
R_sum[ contiPolymerEqIdx ] += R2;
|
|
maxCoeff[ contiPolymerEqIdx ] = std::max( maxCoeff[ contiPolymerEqIdx ], std::abs( R2 ) / pvValue );
|
|
}
|
|
if constexpr (has_foam_) {
|
|
B_avg[ contiFoamEqIdx ] += 1.0 / fs.invB(FluidSystem::gasPhaseIdx).value();
|
|
const auto R2 = ebosResid[cell_idx][contiFoamEqIdx];
|
|
R_sum[ contiFoamEqIdx ] += R2;
|
|
maxCoeff[ contiFoamEqIdx ] = std::max( maxCoeff[ contiFoamEqIdx ], std::abs( R2 ) / pvValue );
|
|
}
|
|
if constexpr (has_brine_) {
|
|
B_avg[ contiBrineEqIdx ] += 1.0 / fs.invB(FluidSystem::waterPhaseIdx).value();
|
|
const auto R2 = ebosResid[cell_idx][contiBrineEqIdx];
|
|
R_sum[ contiBrineEqIdx ] += R2;
|
|
maxCoeff[ contiBrineEqIdx ] = std::max( maxCoeff[ contiBrineEqIdx ], std::abs( R2 ) / pvValue );
|
|
}
|
|
|
|
if constexpr (has_polymermw_) {
|
|
static_assert(has_polymer_);
|
|
|
|
B_avg[contiPolymerMWEqIdx] += 1.0 / fs.invB(FluidSystem::waterPhaseIdx).value();
|
|
// the residual of the polymer molecular equation is scaled down by a 100, since molecular weight
|
|
// can be much bigger than 1, and this equation shares the same tolerance with other mass balance equations
|
|
// TODO: there should be a more general way to determine the scaling-down coefficient
|
|
const auto R2 = ebosResid[cell_idx][contiPolymerMWEqIdx] / 100.;
|
|
R_sum[contiPolymerMWEqIdx] += R2;
|
|
maxCoeff[contiPolymerMWEqIdx] = std::max( maxCoeff[contiPolymerMWEqIdx], std::abs( R2 ) / pvValue );
|
|
}
|
|
|
|
if constexpr (has_energy_) {
|
|
B_avg[ contiEnergyEqIdx ] += 1.0;
|
|
const auto R2 = ebosResid[cell_idx][contiEnergyEqIdx];
|
|
R_sum[ contiEnergyEqIdx ] += R2;
|
|
maxCoeff[ contiEnergyEqIdx ] = std::max( maxCoeff[ contiEnergyEqIdx ], std::abs( R2 ) / pvValue );
|
|
}
|
|
|
|
if constexpr (has_micp_) {
|
|
B_avg[ contiMicrobialEqIdx ] += 1.0 / fs.invB(FluidSystem::waterPhaseIdx).value();
|
|
const auto R1 = ebosResid[cell_idx][contiMicrobialEqIdx];
|
|
R_sum[ contiMicrobialEqIdx ] += R1;
|
|
maxCoeff[ contiMicrobialEqIdx ] = std::max( maxCoeff[ contiMicrobialEqIdx ], std::abs( R1 ) / pvValue );
|
|
B_avg[ contiOxygenEqIdx ] += 1.0 / fs.invB(FluidSystem::waterPhaseIdx).value();
|
|
const auto R2 = ebosResid[cell_idx][contiOxygenEqIdx];
|
|
R_sum[ contiOxygenEqIdx ] += R2;
|
|
maxCoeff[ contiOxygenEqIdx ] = std::max( maxCoeff[ contiOxygenEqIdx ], std::abs( R2 ) / pvValue );
|
|
B_avg[ contiUreaEqIdx ] += 1.0 / fs.invB(FluidSystem::waterPhaseIdx).value();
|
|
const auto R3 = ebosResid[cell_idx][contiUreaEqIdx];
|
|
R_sum[ contiUreaEqIdx ] += R3;
|
|
maxCoeff[ contiUreaEqIdx ] = std::max( maxCoeff[ contiUreaEqIdx ], std::abs( R3 ) / pvValue );
|
|
B_avg[ contiBiofilmEqIdx ] += 1.0 / fs.invB(FluidSystem::waterPhaseIdx).value();
|
|
const auto R4 = ebosResid[cell_idx][contiBiofilmEqIdx];
|
|
R_sum[ contiBiofilmEqIdx ] += R4;
|
|
maxCoeff[ contiBiofilmEqIdx ] = std::max( maxCoeff[ contiBiofilmEqIdx ], std::abs( R4 ) / pvValue );
|
|
B_avg[ contiCalciteEqIdx ] += 1.0 / fs.invB(FluidSystem::waterPhaseIdx).value();
|
|
const auto R5 = ebosResid[cell_idx][contiCalciteEqIdx];
|
|
R_sum[ contiCalciteEqIdx ] += R5;
|
|
maxCoeff[ contiCalciteEqIdx ] = std::max( maxCoeff[ contiCalciteEqIdx ], std::abs( R5 ) / pvValue );
|
|
}
|
|
}
|
|
|
|
OPM_END_PARALLEL_TRY_CATCH("BlackoilModelEbos::localConvergenceData() failed: ", grid_.comm());
|
|
|
|
// compute local average in terms of global number of elements
|
|
const int bSize = B_avg.size();
|
|
for ( int i = 0; i<bSize; ++i )
|
|
{
|
|
B_avg[ i ] /= Scalar( global_nc_ );
|
|
}
|
|
|
|
return {pvSumLocal, numAquiferPvSumLocal};
|
|
}
|
|
|
|
/// \brief Compute the total pore volume of cells violating CNV that are not part
|
|
/// of a numerical aquifer.
|
|
double computeCnvErrorPv(const std::vector<Scalar>& B_avg, double dt)
|
|
{
|
|
double errorPV{};
|
|
const auto& ebosModel = ebosSimulator_.model();
|
|
const auto& ebosProblem = ebosSimulator_.problem();
|
|
const auto& ebosResid = ebosSimulator_.model().linearizer().residual();
|
|
const auto& gridView = ebosSimulator().gridView();
|
|
ElementContext elemCtx(ebosSimulator_);
|
|
|
|
OPM_BEGIN_PARALLEL_TRY_CATCH();
|
|
|
|
for (const auto& elem: elements(gridView, Dune::Partitions::interiorBorder))
|
|
{
|
|
// Skip cells of numerical Aquifer
|
|
if (isNumericalAquiferCell(gridView.grid(), elem))
|
|
{
|
|
continue;
|
|
}
|
|
elemCtx.updatePrimaryStencil(elem);
|
|
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
|
|
const unsigned cell_idx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
|
|
const double pvValue = ebosProblem.referencePorosity(cell_idx, /*timeIdx=*/0) * ebosModel.dofTotalVolume( cell_idx );
|
|
const auto& cellResidual = ebosResid[cell_idx];
|
|
bool cnvViolated = false;
|
|
|
|
for (unsigned eqIdx = 0; eqIdx < cellResidual.size(); ++eqIdx)
|
|
{
|
|
using std::abs;
|
|
Scalar CNV = cellResidual[eqIdx] * dt * B_avg[eqIdx] / pvValue;
|
|
cnvViolated = cnvViolated || (abs(CNV) > param_.tolerance_cnv_);
|
|
}
|
|
|
|
if (cnvViolated)
|
|
{
|
|
errorPV += pvValue;
|
|
}
|
|
}
|
|
|
|
OPM_END_PARALLEL_TRY_CATCH("BlackoilModelEbos::ComputeCnvError() failed: ", grid_.comm());
|
|
|
|
return grid_.comm().sum(errorPV);
|
|
}
|
|
|
|
ConvergenceReport getReservoirConvergence(const double dt,
|
|
const int iteration,
|
|
std::vector<Scalar>& B_avg,
|
|
std::vector<Scalar>& residual_norms)
|
|
{
|
|
typedef std::vector< Scalar > Vector;
|
|
|
|
const int numComp = numEq;
|
|
Vector R_sum(numComp, 0.0 );
|
|
Vector maxCoeff(numComp, std::numeric_limits< Scalar >::lowest() );
|
|
const auto [ pvSumLocal, numAquiferPvSumLocal] = localConvergenceData(R_sum, maxCoeff, B_avg);
|
|
|
|
// compute global sum and max of quantities
|
|
const auto [ pvSum, numAquiferPvSum ] =
|
|
convergenceReduction(grid_.comm(), pvSumLocal,
|
|
numAquiferPvSumLocal,
|
|
R_sum, maxCoeff, B_avg);
|
|
|
|
auto cnvErrorPvFraction = computeCnvErrorPv(B_avg, dt);
|
|
cnvErrorPvFraction /= (pvSum - numAquiferPvSum);
|
|
|
|
const double tol_mb = param_.tolerance_mb_;
|
|
// Default value of relaxed_max_pv_fraction_ is 1 and
|
|
// max_strict_iter_ is 8. Hence only iteration chooses
|
|
// whether to use relaxed or not.
|
|
// To activate only fraction use fraction below 1 and iter 0.
|
|
const bool use_relaxed = cnvErrorPvFraction < param_.relaxed_max_pv_fraction_ && iteration >= param_.max_strict_iter_;
|
|
const double tol_cnv = use_relaxed ? param_.tolerance_cnv_relaxed_ : param_.tolerance_cnv_;
|
|
|
|
// Finish computation
|
|
std::vector<Scalar> CNV(numComp);
|
|
std::vector<Scalar> mass_balance_residual(numComp);
|
|
for ( int compIdx = 0; compIdx < numComp; ++compIdx )
|
|
{
|
|
CNV[compIdx] = B_avg[compIdx] * dt * maxCoeff[compIdx];
|
|
mass_balance_residual[compIdx] = std::abs(B_avg[compIdx]*R_sum[compIdx]) * dt / pvSum;
|
|
residual_norms.push_back(CNV[compIdx]);
|
|
}
|
|
|
|
// Setup component names, only the first time the function is run.
|
|
static std::vector<std::string> compNames;
|
|
if (compNames.empty()) {
|
|
compNames.resize(numComp);
|
|
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) {
|
|
if (!FluidSystem::phaseIsActive(phaseIdx)) {
|
|
continue;
|
|
}
|
|
const unsigned canonicalCompIdx = FluidSystem::solventComponentIndex(phaseIdx);
|
|
const unsigned compIdx = Indices::canonicalToActiveComponentIndex(canonicalCompIdx);
|
|
compNames[compIdx] = FluidSystem::componentName(canonicalCompIdx);
|
|
}
|
|
if constexpr (has_solvent_) {
|
|
compNames[solventSaturationIdx] = "Solvent";
|
|
}
|
|
if constexpr (has_extbo_) {
|
|
compNames[zFractionIdx] = "ZFraction";
|
|
}
|
|
if constexpr (has_polymer_) {
|
|
compNames[polymerConcentrationIdx] = "Polymer";
|
|
}
|
|
if constexpr (has_polymermw_) {
|
|
assert(has_polymer_);
|
|
compNames[polymerMoleWeightIdx] = "MolecularWeightP";
|
|
}
|
|
if constexpr (has_energy_) {
|
|
compNames[temperatureIdx] = "Energy";
|
|
}
|
|
if constexpr (has_foam_) {
|
|
compNames[foamConcentrationIdx] = "Foam";
|
|
}
|
|
if constexpr (has_brine_) {
|
|
compNames[saltConcentrationIdx] = "Brine";
|
|
}
|
|
if constexpr (has_micp_) {
|
|
compNames[microbialConcentrationIdx] = "Microbes";
|
|
compNames[oxygenConcentrationIdx] = "Oxygen";
|
|
compNames[ureaConcentrationIdx] = "Urea";
|
|
compNames[biofilmConcentrationIdx] = "Biofilm";
|
|
compNames[calciteConcentrationIdx] = "Calcite";
|
|
}
|
|
}
|
|
|
|
// Create convergence report.
|
|
ConvergenceReport report;
|
|
using CR = ConvergenceReport;
|
|
for (int compIdx = 0; compIdx < numComp; ++compIdx) {
|
|
double res[2] = { mass_balance_residual[compIdx], CNV[compIdx] };
|
|
CR::ReservoirFailure::Type types[2] = { CR::ReservoirFailure::Type::MassBalance,
|
|
CR::ReservoirFailure::Type::Cnv };
|
|
double tol[2] = { tol_mb, tol_cnv };
|
|
for (int ii : {0, 1}) {
|
|
if (std::isnan(res[ii])) {
|
|
report.setReservoirFailed({types[ii], CR::Severity::NotANumber, compIdx});
|
|
if ( terminal_output_ ) {
|
|
OpmLog::debug("NaN residual for " + compNames[compIdx] + " equation.");
|
|
}
|
|
} else if (res[ii] > maxResidualAllowed()) {
|
|
report.setReservoirFailed({types[ii], CR::Severity::TooLarge, compIdx});
|
|
if ( terminal_output_ ) {
|
|
OpmLog::debug("Too large residual for " + compNames[compIdx] + " equation.");
|
|
}
|
|
} else if (res[ii] < 0.0) {
|
|
report.setReservoirFailed({types[ii], CR::Severity::Normal, compIdx});
|
|
if ( terminal_output_ ) {
|
|
OpmLog::debug("Negative residual for " + compNames[compIdx] + " equation.");
|
|
}
|
|
} else if (res[ii] > tol[ii]) {
|
|
report.setReservoirFailed({types[ii], CR::Severity::Normal, compIdx});
|
|
}
|
|
}
|
|
}
|
|
|
|
// Output of residuals.
|
|
if ( terminal_output_ )
|
|
{
|
|
// Only rank 0 does print to std::cout
|
|
if (iteration == 0) {
|
|
std::string msg = "Iter";
|
|
for (int compIdx = 0; compIdx < numComp; ++compIdx) {
|
|
msg += " MB(";
|
|
msg += compNames[compIdx][0];
|
|
msg += ") ";
|
|
}
|
|
for (int compIdx = 0; compIdx < numComp; ++compIdx) {
|
|
msg += " CNV(";
|
|
msg += compNames[compIdx][0];
|
|
msg += ") ";
|
|
}
|
|
OpmLog::debug(msg);
|
|
}
|
|
std::ostringstream ss;
|
|
const std::streamsize oprec = ss.precision(3);
|
|
const std::ios::fmtflags oflags = ss.setf(std::ios::scientific);
|
|
ss << std::setw(4) << iteration;
|
|
for (int compIdx = 0; compIdx < numComp; ++compIdx) {
|
|
ss << std::setw(11) << mass_balance_residual[compIdx];
|
|
}
|
|
for (int compIdx = 0; compIdx < numComp; ++compIdx) {
|
|
ss << std::setw(11) << CNV[compIdx];
|
|
}
|
|
ss.precision(oprec);
|
|
ss.flags(oflags);
|
|
OpmLog::debug(ss.str());
|
|
}
|
|
|
|
return report;
|
|
}
|
|
|
|
/// Compute convergence based on total mass balance (tol_mb) and maximum
|
|
/// residual mass balance (tol_cnv).
|
|
/// \param[in] timer simulation timer
|
|
/// \param[in] iteration current iteration number
|
|
/// \param[out] residual_norms CNV residuals by phase
|
|
ConvergenceReport getConvergence(const SimulatorTimerInterface& timer,
|
|
const int iteration,
|
|
std::vector<double>& residual_norms)
|
|
{
|
|
// Get convergence reports for reservoir and wells.
|
|
std::vector<Scalar> B_avg(numEq, 0.0);
|
|
auto report = getReservoirConvergence(timer.currentStepLength(), iteration, B_avg, residual_norms);
|
|
report += wellModel().getWellConvergence(B_avg);
|
|
|
|
return report;
|
|
}
|
|
|
|
|
|
/// The number of active fluid phases in the model.
|
|
int numPhases() const
|
|
{
|
|
return phaseUsage_.num_phases;
|
|
}
|
|
|
|
/// Wrapper required due to not following generic API
|
|
template<class T>
|
|
std::vector<std::vector<double> >
|
|
computeFluidInPlace(const T&, const std::vector<int>& fipnum) const
|
|
{
|
|
return computeFluidInPlace(fipnum);
|
|
}
|
|
|
|
/// Should not be called
|
|
std::vector<std::vector<double> >
|
|
computeFluidInPlace(const std::vector<int>& /*fipnum*/) const
|
|
{
|
|
//assert(true)
|
|
//return an empty vector
|
|
std::vector<std::vector<double> > regionValues(0, std::vector<double>(0,0.0));
|
|
return regionValues;
|
|
}
|
|
|
|
const Simulator& ebosSimulator() const
|
|
{ return ebosSimulator_; }
|
|
|
|
Simulator& ebosSimulator()
|
|
{ return ebosSimulator_; }
|
|
|
|
/// return the statistics if the nonlinearIteration() method failed
|
|
const SimulatorReportSingle& failureReport() const
|
|
{ return failureReport_; }
|
|
|
|
struct StepReport
|
|
{
|
|
int report_step;
|
|
int current_step;
|
|
std::vector<ConvergenceReport> report;
|
|
};
|
|
|
|
const std::vector<StepReport>& stepReports() const
|
|
{
|
|
return convergence_reports_;
|
|
}
|
|
|
|
protected:
|
|
// --------- Data members ---------
|
|
|
|
Simulator& ebosSimulator_;
|
|
const Grid& grid_;
|
|
const PhaseUsage phaseUsage_;
|
|
static constexpr bool has_solvent_ = getPropValue<TypeTag, Properties::EnableSolvent>();
|
|
static constexpr bool has_extbo_ = getPropValue<TypeTag, Properties::EnableExtbo>();
|
|
static constexpr bool has_polymer_ = getPropValue<TypeTag, Properties::EnablePolymer>();
|
|
static constexpr bool has_polymermw_ = getPropValue<TypeTag, Properties::EnablePolymerMW>();
|
|
static constexpr bool has_energy_ = getPropValue<TypeTag, Properties::EnableEnergy>();
|
|
static constexpr bool has_foam_ = getPropValue<TypeTag, Properties::EnableFoam>();
|
|
static constexpr bool has_brine_ = getPropValue<TypeTag, Properties::EnableBrine>();
|
|
static constexpr bool has_micp_ = getPropValue<TypeTag, Properties::EnableMICP>();
|
|
|
|
ModelParameters param_;
|
|
SimulatorReportSingle failureReport_;
|
|
|
|
// Well Model
|
|
BlackoilWellModel<TypeTag>& well_model_;
|
|
|
|
/// \brief Whether we print something to std::cout
|
|
bool terminal_output_;
|
|
/// \brief The number of cells of the global grid.
|
|
long int global_nc_;
|
|
|
|
std::vector<std::vector<double>> residual_norms_history_;
|
|
double current_relaxation_;
|
|
BVector dx_old_;
|
|
|
|
std::vector<StepReport> convergence_reports_;
|
|
public:
|
|
/// return the StandardWells object
|
|
BlackoilWellModel<TypeTag>&
|
|
wellModel() { return well_model_; }
|
|
|
|
const BlackoilWellModel<TypeTag>&
|
|
wellModel() const { return well_model_; }
|
|
|
|
void beginReportStep()
|
|
{
|
|
ebosSimulator_.problem().beginEpisode();
|
|
}
|
|
|
|
void endReportStep()
|
|
{
|
|
ebosSimulator_.problem().endEpisode();
|
|
}
|
|
|
|
private:
|
|
template<class T>
|
|
bool isNumericalAquiferCell(const Dune::CpGrid& grid, const T& elem)
|
|
{
|
|
const auto& aquiferCells = grid.sortedNumAquiferCells();
|
|
if (aquiferCells.empty())
|
|
{
|
|
return false;
|
|
}
|
|
auto candidate = std::lower_bound(aquiferCells.begin(), aquiferCells.end(),
|
|
elem.index());
|
|
return candidate != aquiferCells.end() && *candidate == elem.index();
|
|
}
|
|
|
|
template<class G, class T>
|
|
typename std::enable_if<!std::is_same<G,Dune::CpGrid>::value, bool>::type
|
|
isNumericalAquiferCell(const G&, const T&)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
double dpMaxRel() const { return param_.dp_max_rel_; }
|
|
double dsMax() const { return param_.ds_max_; }
|
|
double drMaxRel() const { return param_.dr_max_rel_; }
|
|
double maxResidualAllowed() const { return param_.max_residual_allowed_; }
|
|
double linear_solve_setup_time_;
|
|
public:
|
|
std::vector<bool> wasSwitched_;
|
|
};
|
|
} // namespace Opm
|
|
|
|
#endif // OPM_BLACKOILMODELBASE_IMPL_HEADER_INCLUDED
|