opm-simulators/opm/core/props/rock/RockFromDeck.cpp
2013-09-05 13:04:37 +02:00

339 lines
13 KiB
C++

/*
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include "config.h"
#include <opm/core/props/rock/RockFromDeck.hpp>
#include <opm/core/grid.h>
#include <array>
namespace Opm
{
// Helper functions
namespace
{
enum PermeabilityKind { ScalarPerm, DiagonalPerm, TensorPerm, None, Invalid };
PermeabilityKind classifyPermeability(const EclipseGridParser& parser);
void setScalarPermIfNeeded(std::array<int,9>& kmap,
int i, int j, int k);
PermeabilityKind fillTensor(const EclipseGridParser& parser,
std::vector<const std::vector<double>*>& tensor,
std::array<int,9>& kmap);
} // anonymous namespace
// ---- RockFromDeck methods ----
/// Default constructor.
RockFromDeck::RockFromDeck()
{
}
/// Initialize from deck and cell mapping.
/// \param deck Deck input parser
/// \param grid grid to which property object applies, needed for the
/// mapping from cell indices (typically from a processed grid)
/// to logical cartesian indices consistent with the deck.
void RockFromDeck::init(const EclipseGridParser& deck,
const UnstructuredGrid& grid)
{
assignPorosity(deck, grid);
permfield_valid_.assign(grid.number_of_cells, false);
const double perm_threshold = 0.0; // Maybe turn into parameter?
assignPermeability(deck, grid, perm_threshold);
}
void RockFromDeck::assignPorosity(const EclipseGridParser& parser,
const UnstructuredGrid& grid)
{
porosity_.assign(grid.number_of_cells, 1.0);
const int* gc = grid.global_cell;
if (parser.hasField("PORO")) {
const std::vector<double>& poro = parser.getFloatingPointValue("PORO");
for (int c = 0; c < int(porosity_.size()); ++c) {
const int deck_pos = (gc == NULL) ? c : gc[c];
porosity_[c] = poro[deck_pos];
}
}
}
void RockFromDeck::assignPermeability(const EclipseGridParser& parser,
const UnstructuredGrid& grid,
double perm_threshold)
{
const int dim = 3;
const int num_global_cells = grid.cartdims[0]*grid.cartdims[1]*grid.cartdims[2];
const int nc = grid.number_of_cells;
ASSERT (num_global_cells > 0);
permeability_.assign(dim * dim * nc, 0.0);
std::vector<const std::vector<double>*> tensor;
tensor.reserve(10);
const std::vector<double> zero(num_global_cells, 0.0);
tensor.push_back(&zero);
std::array<int,9> kmap;
PermeabilityKind pkind = fillTensor(parser, tensor, kmap);
if (pkind == Invalid) {
OPM_THROW(std::runtime_error, "Invalid permeability field.");
}
// Assign permeability values only if such values are
// given in the input deck represented by 'parser'. In
// other words: Don't set any (arbitrary) default values.
// It is infinitely better to experience a reproducible
// crash than subtle errors resulting from a (poorly
// chosen) default value...
//
if (tensor.size() > 1) {
const int* gc = grid.global_cell;
int off = 0;
for (int c = 0; c < nc; ++c, off += dim*dim) {
// SharedPermTensor K(dim, dim, &permeability_[off]);
int kix = 0;
const int glob = (gc == NULL) ? c : gc[c];
for (int i = 0; i < dim; ++i) {
for (int j = 0; j < dim; ++j, ++kix) {
// K(i,j) = (*tensor[kmap[kix]])[glob];
permeability_[off + kix] = (*tensor[kmap[kix]])[glob];
}
// K(i,i) = std::max(K(i,i), perm_threshold);
permeability_[off + 3*i + i] = std::max(permeability_[off + 3*i + i], perm_threshold);
}
permfield_valid_[c] = std::vector<unsigned char>::value_type(1);
}
}
}
namespace {
/// @brief
/// Classify and verify a given permeability specification
/// from a structural point of view. In particular, we
/// verify that there are no off-diagonal permeability
/// components such as @f$k_{xy}@f$ unless the
/// corresponding diagonal components are known as well.
///
/// @param parser [in]
/// An Eclipse data parser capable of answering which
/// permeability components are present in a given input
/// deck.
///
/// @return
/// An enum value with the following possible values:
/// ScalarPerm only one component was given.
/// DiagonalPerm more than one component given.
/// TensorPerm at least one cross-component given.
/// None no components given.
/// Invalid invalid set of components given.
PermeabilityKind classifyPermeability(const EclipseGridParser& parser)
{
const bool xx = parser.hasField("PERMX" );
const bool xy = parser.hasField("PERMXY");
const bool xz = parser.hasField("PERMXZ");
const bool yx = parser.hasField("PERMYX");
const bool yy = parser.hasField("PERMY" );
const bool yz = parser.hasField("PERMYZ");
const bool zx = parser.hasField("PERMZX");
const bool zy = parser.hasField("PERMZY");
const bool zz = parser.hasField("PERMZ" );
int num_cross_comp = xy + xz + yx + yz + zx + zy;
int num_comp = xx + yy + zz + num_cross_comp;
PermeabilityKind retval = None;
if (num_cross_comp > 0) {
retval = TensorPerm;
} else {
if (num_comp == 1) {
retval = ScalarPerm;
} else if (num_comp >= 2) {
retval = DiagonalPerm;
}
}
bool ok = true;
if (num_comp > 0) {
// At least one tensor component specified on input.
// Verify that any remaining components are OK from a
// structural point of view. In particular, there
// must not be any cross-components (e.g., k_{xy})
// unless the corresponding diagonal component (e.g.,
// k_{xx}) is present as well...
//
ok = xx || !(xy || xz || yx || zx) ;
ok = ok && (yy || !(yx || yz || xy || zy));
ok = ok && (zz || !(zx || zy || xz || yz));
}
if (!ok) {
retval = Invalid;
}
return retval;
}
/// @brief
/// Copy isotropic (scalar) permeability to other diagonal
/// components if the latter have not (yet) been assigned a
/// separate value. Specifically, this function assigns
/// copies of the @f$i@f$ permeability component (e.g.,
/// 'PERMX') to the @f$j@f$ and @f$k@f$ permeability (e.g.,
/// 'PERMY' and 'PERMZ') components if these have not
/// previously been assigned.
///
/// @param kmap
/// Permeability indirection map. In particular @code
/// kmap[i] @endcode is the index (an integral number in
/// the set [1..9]) into the permeability tensor
/// representation of function @code fillTensor @endcode
/// which represents permeability component @code i
/// @endcode.
///
/// @param [in] i
/// @param [in] j
/// @param [in] k
void setScalarPermIfNeeded(std::array<int,9>& kmap,
int i, int j, int k)
{
if (kmap[j] == 0) { kmap[j] = kmap[i]; }
if (kmap[k] == 0) { kmap[k] = kmap[i]; }
}
/// @brief
/// Extract pointers to appropriate tensor components from
/// input deck. The permeability tensor is, generally,
/// @code
/// [ kxx kxy kxz ]
/// K = [ kyx kyy kyz ]
/// [ kzx kzy kzz ]
/// @endcode
/// We store these values in a linear array using natural
/// ordering with the column index cycling the most rapidly.
/// In particular we use the representation
/// @code
/// [ 0 1 2 3 4 5 6 7 8 ]
/// K = [ kxx, kxy, kxz, kyx, kyy, kyz, kzx, kzy, kzz ]
/// @endcode
/// Moreover, we explicitly enforce symmetric tensors by
/// assigning
/// @code
/// 3 1 6 2 7 5
/// kyx = kxy, kzx = kxz, kzy = kyz
/// @endcode
/// However, we make no attempt at enforcing positive
/// definite tensors.
///
/// @param [in] parser
/// An Eclipse data parser capable of answering which
/// permeability components are present in a given input
/// deck as well as retrieving the numerical value of each
/// permeability component in each grid cell.
///
/// @param [out] tensor
/// @param [out] kmap
PermeabilityKind fillTensor(const EclipseGridParser& parser,
std::vector<const std::vector<double>*>& tensor,
std::array<int,9>& kmap)
{
PermeabilityKind kind = classifyPermeability(parser);
if (kind == Invalid) {
OPM_THROW(std::runtime_error, "Invalid set of permeability fields given.");
}
ASSERT (tensor.size() == 1);
for (int i = 0; i < 9; ++i) { kmap[i] = 0; }
enum { xx, xy, xz, // 0, 1, 2
yx, yy, yz, // 3, 4, 5
zx, zy, zz }; // 6, 7, 8
// -----------------------------------------------------------
// 1st row: [kxx, kxy, kxz]
if (parser.hasField("PERMX" )) {
kmap[xx] = tensor.size();
tensor.push_back(&parser.getFloatingPointValue("PERMX" ));
setScalarPermIfNeeded(kmap, xx, yy, zz);
}
if (parser.hasField("PERMXY")) {
kmap[xy] = kmap[yx] = tensor.size(); // Enforce symmetry.
tensor.push_back(&parser.getFloatingPointValue("PERMXY"));
}
if (parser.hasField("PERMXZ")) {
kmap[xz] = kmap[zx] = tensor.size(); // Enforce symmetry.
tensor.push_back(&parser.getFloatingPointValue("PERMXZ"));
}
// -----------------------------------------------------------
// 2nd row: [kyx, kyy, kyz]
if (parser.hasField("PERMYX")) {
kmap[yx] = kmap[xy] = tensor.size(); // Enforce symmetry.
tensor.push_back(&parser.getFloatingPointValue("PERMYX"));
}
if (parser.hasField("PERMY" )) {
kmap[yy] = tensor.size();
tensor.push_back(&parser.getFloatingPointValue("PERMY" ));
setScalarPermIfNeeded(kmap, yy, zz, xx);
}
if (parser.hasField("PERMYZ")) {
kmap[yz] = kmap[zy] = tensor.size(); // Enforce symmetry.
tensor.push_back(&parser.getFloatingPointValue("PERMYZ"));
}
// -----------------------------------------------------------
// 3rd row: [kzx, kzy, kzz]
if (parser.hasField("PERMZX")) {
kmap[zx] = kmap[xz] = tensor.size(); // Enforce symmetry.
tensor.push_back(&parser.getFloatingPointValue("PERMZX"));
}
if (parser.hasField("PERMZY")) {
kmap[zy] = kmap[yz] = tensor.size(); // Enforce symmetry.
tensor.push_back(&parser.getFloatingPointValue("PERMZY"));
}
if (parser.hasField("PERMZ" )) {
kmap[zz] = tensor.size();
tensor.push_back(&parser.getFloatingPointValue("PERMZ" ));
setScalarPermIfNeeded(kmap, zz, xx, yy);
}
return kind;
}
} // anonymous namespace
} // namespace Opm