opm-simulators/opm/simulators/wells/StandardWell_impl.hpp
Arne Morten Kvarving c76803b913 changed: make bhp template hidden and use explicit instantations
this to avoid includes in headers.
2021-05-31 11:42:29 +02:00

4047 lines
171 KiB
C++

/*
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2017 Statoil ASA.
Copyright 2016 - 2017 IRIS AS.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <opm/common/utility/numeric/RootFinders.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/Well/WellInjectionProperties.hpp>
#include <opm/simulators/utils/DeferredLoggingErrorHelpers.hpp>
#include <opm/simulators/linalg/MatrixBlock.hpp>
#include <opm/simulators/wells/VFPHelpers.hpp>
#include <algorithm>
#include <functional>
#include <numeric>
namespace Opm
{
template<typename TypeTag>
StandardWell<TypeTag>::
StandardWell(const Well& well,
const ParallelWellInfo& pw_info,
const int time_step,
const ModelParameters& param,
const RateConverterType& rate_converter,
const int pvtRegionIdx,
const int num_components,
const int num_phases,
const int index_of_well,
const int first_perf_index,
const std::vector<PerforationData>& perf_data)
: Base(well, pw_info, time_step, param, rate_converter, pvtRegionIdx, num_components, num_phases, index_of_well, first_perf_index, perf_data)
, perf_densities_(number_of_perforations_)
, perf_pressure_diffs_(number_of_perforations_)
, parallelB_(duneB_, pw_info)
, F0_(numWellConservationEq)
{
assert(num_components_ == numWellConservationEq);
duneB_.setBuildMode( OffDiagMatWell::row_wise );
duneC_.setBuildMode( OffDiagMatWell::row_wise );
invDuneD_.setBuildMode( DiagMatWell::row_wise );
}
template<typename TypeTag>
void
StandardWell<TypeTag>::
init(const PhaseUsage* phase_usage_arg,
const std::vector<double>& depth_arg,
const double gravity_arg,
const int num_cells,
const std::vector< Scalar >& B_avg)
{
Base::init(phase_usage_arg, depth_arg, gravity_arg, num_cells, B_avg);
perf_depth_.resize(number_of_perforations_, 0.);
for (int perf = 0; perf < number_of_perforations_; ++perf) {
const int cell_idx = well_cells_[perf];
perf_depth_[perf] = depth_arg[cell_idx];
}
// counting/updating primary variable numbers
if constexpr (Base::has_polymermw) {
if (this->isInjector()) {
// adding a primary variable for water perforation rate per connection
numWellEq_ += number_of_perforations_;
// adding a primary variable for skin pressure per connection
numWellEq_ += number_of_perforations_;
}
}
// with the updated numWellEq_, we can initialize the primary variables and matrices now
primary_variables_.resize(numWellEq_, 0.0);
primary_variables_evaluation_.resize(numWellEq_, EvalWell{numWellEq_ + numEq, 0.0});
// setup sparsity pattern for the matrices
//[A C^T [x = [ res
// B D] x_well] res_well]
// set the size of the matrices
invDuneD_.setSize(1, 1, 1);
duneB_.setSize(1, num_cells, number_of_perforations_);
duneC_.setSize(1, num_cells, number_of_perforations_);
for (auto row=invDuneD_.createbegin(), end = invDuneD_.createend(); row!=end; ++row) {
// Add nonzeros for diagonal
row.insert(row.index());
}
// the block size is run-time determined now
invDuneD_[0][0].resize(numWellEq_, numWellEq_);
for (auto row = duneB_.createbegin(), end = duneB_.createend(); row!=end; ++row) {
for (int perf = 0 ; perf < number_of_perforations_; ++perf) {
const int cell_idx = well_cells_[perf];
row.insert(cell_idx);
}
}
for (int perf = 0 ; perf < number_of_perforations_; ++perf) {
const int cell_idx = well_cells_[perf];
// the block size is run-time determined now
duneB_[0][cell_idx].resize(numWellEq_, numEq);
}
// make the C^T matrix
for (auto row = duneC_.createbegin(), end = duneC_.createend(); row!=end; ++row) {
for (int perf = 0; perf < number_of_perforations_; ++perf) {
const int cell_idx = well_cells_[perf];
row.insert(cell_idx);
}
}
for (int perf = 0; perf < number_of_perforations_; ++perf) {
const int cell_idx = well_cells_[perf];
duneC_[0][cell_idx].resize(numWellEq_, numEq);
}
resWell_.resize(1);
// the block size of resWell_ is also run-time determined now
resWell_[0].resize(numWellEq_);
// resize temporary class variables
Bx_.resize( duneB_.N() );
for (unsigned i = 0; i < duneB_.N(); ++i) {
Bx_[i].resize(numWellEq_);
}
invDrw_.resize( invDuneD_.N() );
for (unsigned i = 0; i < invDuneD_.N(); ++i) {
invDrw_[i].resize(numWellEq_);
}
}
template<typename TypeTag>
void StandardWell<TypeTag>::
initPrimaryVariablesEvaluation() const
{
for (int eqIdx = 0; eqIdx < numWellEq_; ++eqIdx) {
primary_variables_evaluation_[eqIdx] =
EvalWell::createVariable(numWellEq_ + numEq, primary_variables_[eqIdx], numEq + eqIdx);
}
}
template<typename TypeTag>
const typename StandardWell<TypeTag>::EvalWell&
StandardWell<TypeTag>::
getBhp() const
{
return primary_variables_evaluation_[Bhp];
}
template<typename TypeTag>
const typename StandardWell<TypeTag>::EvalWell&
StandardWell<TypeTag>::
getWQTotal() const
{
return primary_variables_evaluation_[WQTotal];
}
template<typename TypeTag>
typename StandardWell<TypeTag>::EvalWell
StandardWell<TypeTag>::
getQs(const int comp_idx) const
{
// Note: currently, the WQTotal definition is still depends on Injector/Producer.
assert(comp_idx < num_components_);
if (this->isInjector()) { // only single phase injection
double inj_frac = 0.0;
switch (this->wellEcl().injectorType()) {
case InjectorType::WATER:
if (comp_idx == int(Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx))) {
inj_frac = 1.0;
}
break;
case InjectorType::GAS:
if (has_solvent && comp_idx == contiSolventEqIdx) { // solvent
inj_frac = wsolvent();
} else if (comp_idx == int(Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx))) {
inj_frac = has_solvent ? 1.0 - wsolvent() : 1.0;
}
break;
case InjectorType::OIL:
if (comp_idx == int(Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx))) {
inj_frac = 1.0;
}
break;
case InjectorType::MULTI:
// Not supported.
// deferred_logger.warning("MULTI_PHASE_INJECTOR_NOT_SUPPORTED",
// "Multi phase injectors are not supported, requested for well " + name());
break;
}
return inj_frac * primary_variables_evaluation_[WQTotal];
} else { // producers
return primary_variables_evaluation_[WQTotal] * wellVolumeFractionScaled(comp_idx);
}
}
template<typename TypeTag>
typename StandardWell<TypeTag>::EvalWell
StandardWell<TypeTag>::
wellVolumeFractionScaled(const int compIdx) const
{
const int legacyCompIdx = ebosCompIdxToFlowCompIdx(compIdx);
const double scal = scalingFactor(legacyCompIdx);
if (scal > 0)
return wellVolumeFraction(compIdx) / scal;
// the scaling factor may be zero for RESV controlled wells.
return wellVolumeFraction(compIdx);
}
template<typename TypeTag>
typename StandardWell<TypeTag>::EvalWell
StandardWell<TypeTag>::
wellVolumeFraction(const unsigned compIdx) const
{
if (FluidSystem::numActivePhases() == 1) {
return EvalWell(numWellEq_ + numEq, 1.0);
}
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) && compIdx == Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx)) {
return primary_variables_evaluation_[WFrac];
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) && compIdx == Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx)) {
return primary_variables_evaluation_[GFrac];
}
if (has_solvent && compIdx == (unsigned)contiSolventEqIdx) {
return primary_variables_evaluation_[SFrac];
}
}
else if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) && compIdx == Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx)) {
return primary_variables_evaluation_[GFrac];
}
}
// Oil or WATER fraction
EvalWell well_fraction(numWellEq_ + numEq, 1.0);
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
well_fraction -= primary_variables_evaluation_[WFrac];
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
well_fraction -= primary_variables_evaluation_[GFrac];
}
if (has_solvent) {
well_fraction -= primary_variables_evaluation_[SFrac];
}
}
else if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) && (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx))) {
well_fraction -= primary_variables_evaluation_[GFrac];
}
return well_fraction;
}
template<typename TypeTag>
typename StandardWell<TypeTag>::EvalWell
StandardWell<TypeTag>::
wellSurfaceVolumeFraction(const int compIdx) const
{
EvalWell sum_volume_fraction_scaled(numWellEq_ + numEq, 0.);
for (int idx = 0; idx < num_components_; ++idx) {
sum_volume_fraction_scaled += wellVolumeFractionScaled(idx);
}
assert(sum_volume_fraction_scaled.value() != 0.);
return wellVolumeFractionScaled(compIdx) / sum_volume_fraction_scaled;
}
template<typename TypeTag>
typename StandardWell<TypeTag>::EvalWell
StandardWell<TypeTag>::
extendEval(const Eval& in) const
{
EvalWell out(numWellEq_ + numEq, in.value());
for(int eqIdx = 0; eqIdx < numEq;++eqIdx) {
out.setDerivative(eqIdx, in.derivative(eqIdx));
}
return out;
}
template<typename TypeTag>
typename StandardWell<TypeTag>::Eval
StandardWell<TypeTag>::getPerfCellPressure(const typename StandardWell<TypeTag>::FluidState& fs) const
{
Eval pressure;
if (Indices::oilEnabled) {
pressure = fs.pressure(FluidSystem::oilPhaseIdx);
} else {
if (Indices::waterEnabled) {
pressure = fs.pressure(FluidSystem::waterPhaseIdx);
} else {
pressure = fs.pressure(FluidSystem::gasPhaseIdx);
}
}
return pressure;
}
template<typename TypeTag>
void
StandardWell<TypeTag>::
computePerfRate(const IntensiveQuantities& intQuants,
const std::vector<EvalWell>& mob,
const EvalWell& bhp,
const double Tw,
const int perf,
const bool allow_cf,
std::vector<EvalWell>& cq_s,
double& perf_dis_gas_rate,
double& perf_vap_oil_rate,
DeferredLogger& deferred_logger) const
{
const auto& fs = intQuants.fluidState();
const EvalWell pressure = extendEval(getPerfCellPressure(fs));
const EvalWell rs = extendEval(fs.Rs());
const EvalWell rv = extendEval(fs.Rv());
std::vector<EvalWell> b_perfcells_dense(num_components_, EvalWell{numWellEq_ + numEq, 0.0});
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx)) {
continue;
}
const unsigned compIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
b_perfcells_dense[compIdx] = extendEval(fs.invB(phaseIdx));
}
if constexpr (has_solvent) {
b_perfcells_dense[contiSolventEqIdx] = extendEval(intQuants.solventInverseFormationVolumeFactor());
}
if constexpr (has_zFraction) {
if (this->isInjector()) {
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
b_perfcells_dense[gasCompIdx] *= (1.0 - wsolvent());
b_perfcells_dense[gasCompIdx] += wsolvent()*intQuants.zPureInvFormationVolumeFactor().value();
}
}
// Pressure drawdown (also used to determine direction of flow)
const EvalWell well_pressure = bhp + perf_pressure_diffs_[perf];
EvalWell drawdown = pressure - well_pressure;
if constexpr (Base::has_polymermw) {
if (this->isInjector()) {
const int pskin_index = Bhp + 1 + number_of_perforations_ + perf;
const EvalWell& skin_pressure = primary_variables_evaluation_[pskin_index];
drawdown += skin_pressure;
}
}
// producing perforations
if ( drawdown.value() > 0 ) {
//Do nothing if crossflow is not allowed
if (!allow_cf && this->isInjector()) {
return;
}
// compute component volumetric rates at standard conditions
for (int componentIdx = 0; componentIdx < num_components_; ++componentIdx) {
const EvalWell cq_p = - Tw * (mob[componentIdx] * drawdown);
cq_s[componentIdx] = b_perfcells_dense[componentIdx] * cq_p;
}
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
const EvalWell cq_sOil = cq_s[oilCompIdx];
const EvalWell cq_sGas = cq_s[gasCompIdx];
const EvalWell dis_gas = rs * cq_sOil;
const EvalWell vap_oil = rv * cq_sGas;
cq_s[gasCompIdx] += dis_gas;
cq_s[oilCompIdx] += vap_oil;
// recording the perforation solution gas rate and solution oil rates
if (this->isProducer()) {
perf_dis_gas_rate = dis_gas.value();
perf_vap_oil_rate = vap_oil.value();
}
}
} else {
//Do nothing if crossflow is not allowed
if (!allow_cf && this->isProducer()) {
return;
}
// Using total mobilities
EvalWell total_mob_dense = mob[0];
for (int componentIdx = 1; componentIdx < num_components_; ++componentIdx) {
total_mob_dense += mob[componentIdx];
}
// injection perforations total volume rates
const EvalWell cqt_i = - Tw * (total_mob_dense * drawdown);
// surface volume fraction of fluids within wellbore
std::vector<EvalWell> cmix_s(num_components_, EvalWell{numWellEq_ + numEq});
for (int componentIdx = 0; componentIdx < num_components_; ++componentIdx) {
cmix_s[componentIdx] = wellSurfaceVolumeFraction(componentIdx);
}
// compute volume ratio between connection at standard conditions
EvalWell volumeRatio(numWellEq_ + numEq, 0.);
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
const unsigned waterCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx);
volumeRatio += cmix_s[waterCompIdx] / b_perfcells_dense[waterCompIdx];
}
if constexpr (has_solvent) {
volumeRatio += cmix_s[contiSolventEqIdx] / b_perfcells_dense[contiSolventEqIdx];
}
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
// Incorporate RS/RV factors if both oil and gas active
const EvalWell d = EvalWell(numWellEq_ + numEq, 1.0) - rv * rs;
if (d.value() == 0.0) {
OPM_DEFLOG_THROW(NumericalIssue, "Zero d value obtained for well " << name() << " during flux calcuation"
<< " with rs " << rs << " and rv " << rv, deferred_logger);
}
const EvalWell tmp_oil = (cmix_s[oilCompIdx] - rv * cmix_s[gasCompIdx]) / d;
//std::cout << "tmp_oil " <<tmp_oil << std::endl;
volumeRatio += tmp_oil / b_perfcells_dense[oilCompIdx];
const EvalWell tmp_gas = (cmix_s[gasCompIdx] - rs * cmix_s[oilCompIdx]) / d;
//std::cout << "tmp_gas " <<tmp_gas << std::endl;
volumeRatio += tmp_gas / b_perfcells_dense[gasCompIdx];
}
else {
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
volumeRatio += cmix_s[oilCompIdx] / b_perfcells_dense[oilCompIdx];
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
volumeRatio += cmix_s[gasCompIdx] / b_perfcells_dense[gasCompIdx];
}
}
// injecting connections total volumerates at standard conditions
EvalWell cqt_is = cqt_i/volumeRatio;
//std::cout << "volrat " << volumeRatio << " " << volrat_perf_[perf] << std::endl;
for (int componentIdx = 0; componentIdx < num_components_; ++componentIdx) {
cq_s[componentIdx] = cmix_s[componentIdx] * cqt_is; // * b_perfcells_dense[phase];
}
// calculating the perforation solution gas rate and solution oil rates
if (this->isProducer()) {
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
// TODO: the formulations here remain to be tested with cases with strong crossflow through production wells
// s means standard condition, r means reservoir condition
// q_os = q_or * b_o + rv * q_gr * b_g
// q_gs = q_gr * g_g + rs * q_or * b_o
// d = 1.0 - rs * rv
// q_or = 1 / (b_o * d) * (q_os - rv * q_gs)
// q_gr = 1 / (b_g * d) * (q_gs - rs * q_os)
const double d = 1.0 - rv.value() * rs.value();
// vaporized oil into gas
// rv * q_gr * b_g = rv * (q_gs - rs * q_os) / d
perf_vap_oil_rate = rv.value() * (cq_s[gasCompIdx].value() - rs.value() * cq_s[oilCompIdx].value()) / d;
// dissolved of gas in oil
// rs * q_or * b_o = rs * (q_os - rv * q_gs) / d
perf_dis_gas_rate = rs.value() * (cq_s[oilCompIdx].value() - rv.value() * cq_s[gasCompIdx].value()) / d;
}
}
}
}
template<typename TypeTag>
void
StandardWell<TypeTag>::
assembleWellEqWithoutIteration(const Simulator& ebosSimulator,
const double dt,
const Well::InjectionControls& /*inj_controls*/,
const Well::ProductionControls& /*prod_controls*/,
WellState& well_state,
const GroupState& group_state,
DeferredLogger& deferred_logger)
{
// TODO: only_wells should be put back to save some computation
// for example, the matrices B C does not need to update if only_wells
if (!this->isOperable() && !this->wellIsStopped()) return;
// clear all entries
duneB_ = 0.0;
duneC_ = 0.0;
invDuneD_ = 0.0;
resWell_ = 0.0;
assembleWellEqWithoutIterationImpl(ebosSimulator, dt, well_state, group_state, deferred_logger);
}
template<typename TypeTag>
void
StandardWell<TypeTag>::
assembleWellEqWithoutIterationImpl(const Simulator& ebosSimulator,
const double dt,
WellState& well_state,
const GroupState& group_state,
DeferredLogger& deferred_logger)
{
// TODO: it probably can be static member for StandardWell
const double volume = 0.002831684659200; // 0.1 cu ft;
// the solution gas rate and solution oil rate needs to be reset to be zero for well_state.
well_state.wellVaporizedOilRates(index_of_well_) = 0.;
well_state.wellDissolvedGasRates(index_of_well_) = 0.;
const int np = number_of_phases_;
std::vector<RateVector> connectionRates = connectionRates_; // Copy to get right size.
const int rate_start_offset = first_perf_ * number_of_phases_;
auto * perf_rates = &well_state.mutable_perfPhaseRates()[rate_start_offset];
for (int perf = 0; perf < number_of_perforations_; ++perf) {
// Calculate perforation quantities.
std::vector<EvalWell> cq_s(num_components_, {numWellEq_ + numEq, 0.0});
EvalWell water_flux_s{numWellEq_ + numEq, 0.0};
EvalWell cq_s_zfrac_effective{numWellEq_ + numEq, 0.0};
calculateSinglePerf(ebosSimulator, perf, well_state, connectionRates, cq_s, water_flux_s, cq_s_zfrac_effective, deferred_logger);
// Equation assembly for this perforation.
if constexpr (has_polymer && Base::has_polymermw) {
if (this->isInjector()) {
handleInjectivityEquations(ebosSimulator, well_state, perf, water_flux_s, deferred_logger);
}
}
const int cell_idx = well_cells_[perf];
for (int componentIdx = 0; componentIdx < num_components_; ++componentIdx) {
// the cq_s entering mass balance equations need to consider the efficiency factors.
const EvalWell cq_s_effective = cq_s[componentIdx] * well_efficiency_factor_;
connectionRates[perf][componentIdx] = Base::restrictEval(cq_s_effective);
// subtract sum of phase fluxes in the well equations.
resWell_[0][componentIdx] += cq_s_effective.value();
// assemble the jacobians
for (int pvIdx = 0; pvIdx < numWellEq_; ++pvIdx) {
// also need to consider the efficiency factor when manipulating the jacobians.
duneC_[0][cell_idx][pvIdx][componentIdx] -= cq_s_effective.derivative(pvIdx+numEq); // intput in transformed matrix
invDuneD_[0][0][componentIdx][pvIdx] += cq_s_effective.derivative(pvIdx+numEq);
}
for (int pvIdx = 0; pvIdx < numEq; ++pvIdx) {
duneB_[0][cell_idx][componentIdx][pvIdx] += cq_s_effective.derivative(pvIdx);
}
// Store the perforation phase flux for later usage.
if (has_solvent && componentIdx == contiSolventEqIdx) {
auto * perf_rate_solvent = &well_state.perfRateSolvent()[first_perf_];
perf_rate_solvent[perf] = cq_s[componentIdx].value();
} else {
perf_rates[perf*np + ebosCompIdxToFlowCompIdx(componentIdx)] = cq_s[componentIdx].value();
}
}
if constexpr (has_zFraction) {
for (int pvIdx = 0; pvIdx < numWellEq_; ++pvIdx) {
duneC_[0][cell_idx][pvIdx][contiZfracEqIdx] -= cq_s_zfrac_effective.derivative(pvIdx+numEq);
}
}
}
// Update the connection
connectionRates_ = connectionRates;
// accumulate resWell_ and invDuneD_ in parallel to get effects of all perforations (might be distributed)
wellhelpers::sumDistributedWellEntries(invDuneD_[0][0], resWell_[0],
this->parallel_well_info_.communication());
// add vol * dF/dt + Q to the well equations;
for (int componentIdx = 0; componentIdx < numWellConservationEq; ++componentIdx) {
// TODO: following the development in MSW, we need to convert the volume of the wellbore to be surface volume
// since all the rates are under surface condition
EvalWell resWell_loc(numWellEq_ + numEq, 0.0);
if (FluidSystem::numActivePhases() > 1) {
assert(dt > 0);
resWell_loc += (wellSurfaceVolumeFraction(componentIdx) - F0_[componentIdx]) * volume / dt;
}
resWell_loc -= getQs(componentIdx) * well_efficiency_factor_;
for (int pvIdx = 0; pvIdx < numWellEq_; ++pvIdx) {
invDuneD_[0][0][componentIdx][pvIdx] += resWell_loc.derivative(pvIdx+numEq);
}
resWell_[0][componentIdx] += resWell_loc.value();
}
const auto& summaryState = ebosSimulator.vanguard().summaryState();
const Schedule& schedule = ebosSimulator.vanguard().schedule();
assembleControlEq(well_state, group_state, schedule, summaryState, deferred_logger);
// do the local inversion of D.
try {
Dune::ISTLUtility::invertMatrix(invDuneD_[0][0]);
} catch( ... ) {
OPM_DEFLOG_THROW(NumericalIssue,"Error when inverting local well equations for well " + name(), deferred_logger);
}
}
template<typename TypeTag>
void
StandardWell<TypeTag>::
calculateSinglePerf(const Simulator& ebosSimulator,
const int perf,
WellState& well_state,
std::vector<RateVector>& connectionRates,
std::vector<EvalWell>& cq_s,
EvalWell& water_flux_s,
EvalWell& cq_s_zfrac_effective,
DeferredLogger& deferred_logger) const
{
const bool allow_cf = getAllowCrossFlow() || openCrossFlowAvoidSingularity(ebosSimulator);
const EvalWell& bhp = getBhp();
const int cell_idx = well_cells_[perf];
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/ 0));
std::vector<EvalWell> mob(num_components_, {numWellEq_ + numEq, 0.});
getMobility(ebosSimulator, perf, mob, deferred_logger);
double perf_dis_gas_rate = 0.;
double perf_vap_oil_rate = 0.;
double trans_mult = ebosSimulator.problem().template rockCompTransMultiplier<double>(intQuants, cell_idx);
const double Tw = well_index_[perf] * trans_mult;
computePerfRate(intQuants, mob, bhp, Tw, perf, allow_cf,
cq_s, perf_dis_gas_rate, perf_vap_oil_rate, deferred_logger);
if constexpr (has_polymer && Base::has_polymermw) {
if (this->isInjector()) {
// Store the original water flux computed from the reservoir quantities.
// It will be required to assemble the injectivity equations.
const unsigned water_comp_idx = Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx);
water_flux_s = cq_s[water_comp_idx];
// Modify the water flux for the rest of this function to depend directly on the
// local water velocity primary variable.
handleInjectivityRate(ebosSimulator, perf, cq_s);
}
}
// updating the solution gas rate and solution oil rate
if (this->isProducer()) {
well_state.wellDissolvedGasRates(index_of_well_) += perf_dis_gas_rate;
well_state.wellVaporizedOilRates(index_of_well_) += perf_vap_oil_rate;
}
if constexpr (has_energy) {
connectionRates[perf][contiEnergyEqIdx] = 0.0;
}
if constexpr (has_energy) {
auto fs = intQuants.fluidState();
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx)) {
continue;
}
const unsigned activeCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
// convert to reservoar conditions
EvalWell cq_r_thermal(numWellEq_ + numEq, 0.);
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
if(FluidSystem::waterPhaseIdx == phaseIdx)
cq_r_thermal = cq_s[activeCompIdx] / extendEval(fs.invB(phaseIdx));
// remove dissolved gas and vapporized oil
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
// q_os = q_or * b_o + rv * q_gr * b_g
// q_gs = q_gr * g_g + rs * q_or * b_o
// d = 1.0 - rs * rv
const EvalWell d = extendEval(1.0 - fs.Rv() * fs.Rs());
// q_gr = 1 / (b_g * d) * (q_gs - rs * q_os)
if(FluidSystem::gasPhaseIdx == phaseIdx)
cq_r_thermal = (cq_s[gasCompIdx] - extendEval(fs.Rs()) * cq_s[oilCompIdx]) / (d * extendEval(fs.invB(phaseIdx)) );
// q_or = 1 / (b_o * d) * (q_os - rv * q_gs)
if(FluidSystem::oilPhaseIdx == phaseIdx)
cq_r_thermal = (cq_s[oilCompIdx] - extendEval(fs.Rv()) * cq_s[gasCompIdx]) / (d * extendEval(fs.invB(phaseIdx)) );
} else {
cq_r_thermal = cq_s[activeCompIdx] / extendEval(fs.invB(phaseIdx));
}
// change temperature for injecting fluids
if (this->isInjector() && cq_s[activeCompIdx] > 0.0){
// only handles single phase injection now
assert(this->well_ecl_.injectorType() != InjectorType::MULTI);
fs.setTemperature(this->well_ecl_.temperature());
typedef typename std::decay<decltype(fs)>::type::Scalar FsScalar;
typename FluidSystem::template ParameterCache<FsScalar> paramCache;
const unsigned pvtRegionIdx = intQuants.pvtRegionIndex();
paramCache.setRegionIndex(pvtRegionIdx);
paramCache.setMaxOilSat(ebosSimulator.problem().maxOilSaturation(cell_idx));
paramCache.updatePhase(fs, phaseIdx);
const auto& rho = FluidSystem::density(fs, paramCache, phaseIdx);
fs.setDensity(phaseIdx, rho);
const auto& h = FluidSystem::enthalpy(fs, paramCache, phaseIdx);
fs.setEnthalpy(phaseIdx, h);
}
// compute the thermal flux
cq_r_thermal *= extendEval(fs.enthalpy(phaseIdx)) * extendEval(fs.density(phaseIdx));
connectionRates[perf][contiEnergyEqIdx] += Base::restrictEval(cq_r_thermal);
}
}
if constexpr (has_polymer) {
// TODO: the application of well efficiency factor has not been tested with an example yet
const unsigned waterCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx);
EvalWell cq_s_poly = cq_s[waterCompIdx];
if (this->isInjector()) {
cq_s_poly *= wpolymer();
} else {
cq_s_poly *= extendEval(intQuants.polymerConcentration() * intQuants.polymerViscosityCorrection());
}
// Note. Efficiency factor is handled in the output layer
auto * perf_rate_polymer = &well_state.perfRatePolymer()[first_perf_];
perf_rate_polymer[perf] = cq_s_poly.value();
cq_s_poly *= well_efficiency_factor_;
connectionRates[perf][contiPolymerEqIdx] = Base::restrictEval(cq_s_poly);
if constexpr (Base::has_polymermw) {
updateConnectionRatePolyMW(cq_s_poly, intQuants, well_state, perf, connectionRates, deferred_logger);
}
}
if constexpr (has_foam) {
// TODO: the application of well efficiency factor has not been tested with an example yet
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
EvalWell cq_s_foam = cq_s[gasCompIdx] * well_efficiency_factor_;
if (this->isInjector()) {
cq_s_foam *= wfoam();
} else {
cq_s_foam *= extendEval(intQuants.foamConcentration());
}
connectionRates[perf][contiFoamEqIdx] = Base::restrictEval(cq_s_foam);
}
if constexpr (has_zFraction) {
// TODO: the application of well efficiency factor has not been tested with an example yet
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
cq_s_zfrac_effective = cq_s[gasCompIdx];
if (this->isInjector()) {
cq_s_zfrac_effective *= wsolvent();
} else if (cq_s_zfrac_effective.value() != 0.0) {
const double dis_gas_frac = perf_dis_gas_rate / cq_s_zfrac_effective.value();
cq_s_zfrac_effective *= extendEval(dis_gas_frac*intQuants.xVolume() + (1.0-dis_gas_frac)*intQuants.yVolume());
}
auto * perf_rate_solvent = &well_state.perfRateSolvent()[first_perf_];
perf_rate_solvent[perf] = cq_s_zfrac_effective.value();
cq_s_zfrac_effective *= well_efficiency_factor_;
connectionRates[perf][contiZfracEqIdx] = Base::restrictEval(cq_s_zfrac_effective);
}
if constexpr (has_brine) {
// TODO: the application of well efficiency factor has not been tested with an example yet
const unsigned waterCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx);
EvalWell cq_s_sm = cq_s[waterCompIdx];
if (this->isInjector()) {
cq_s_sm *= wsalt();
} else {
cq_s_sm *= extendEval(intQuants.fluidState().saltConcentration());
}
// Note. Efficiency factor is handled in the output layer
auto * perf_rate_brine = &well_state.perfRateBrine()[this->first_perf_];
perf_rate_brine[perf] = cq_s_sm.value();
cq_s_sm *= well_efficiency_factor_;
connectionRates[perf][contiBrineEqIdx] = Base::restrictEval(cq_s_sm);
}
// Store the perforation pressure for later usage.
auto& perf_press = well_state.perfPress(index_of_well_);
perf_press[perf] = well_state.bhp(index_of_well_) + perf_pressure_diffs_[perf];
}
template <typename TypeTag>
void
StandardWell<TypeTag>::assembleControlEq(const WellState& well_state,
const GroupState& group_state,
const Schedule& schedule,
const SummaryState& summaryState,
DeferredLogger& deferred_logger)
{
EvalWell control_eq(numWellEq_ + numEq, 0.0);
const auto& well = well_ecl_;
auto getRates = [&]() {
std::vector<EvalWell> rates(3, EvalWell(numWellEq_ + numEq, 0.0));
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
rates[Water] = getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx));
}
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
rates[Oil] = getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx));
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
rates[Gas] = getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx));
}
return rates;
};
if (this->wellIsStopped()) {
control_eq = getWQTotal();
} else if (this->isInjector()) {
// Find injection rate.
const EvalWell injection_rate = getWQTotal();
// Setup function for evaluation of BHP from THP (used only if needed).
auto bhp_from_thp = [&]() {
const auto rates = getRates();
return calculateBhpFromThp(well_state, rates, well, summaryState, deferred_logger);
};
// Call generic implementation.
const auto& inj_controls = well.injectionControls(summaryState);
Base::assembleControlEqInj(well_state, group_state, schedule, summaryState, inj_controls, getBhp(), injection_rate, bhp_from_thp, control_eq, deferred_logger);
} else {
// Find rates.
const auto rates = getRates();
// Setup function for evaluation of BHP from THP (used only if needed).
auto bhp_from_thp = [&]() {
return calculateBhpFromThp(well_state, rates, well, summaryState, deferred_logger);
};
// Call generic implementation.
const auto& prod_controls = well.productionControls(summaryState);
Base::assembleControlEqProd(well_state, group_state, schedule, summaryState, prod_controls, getBhp(), rates, bhp_from_thp, control_eq, deferred_logger);
}
// using control_eq to update the matrix and residuals
// TODO: we should use a different index system for the well equations
resWell_[0][Bhp] = control_eq.value();
for (int pv_idx = 0; pv_idx < numWellEq_; ++pv_idx) {
invDuneD_[0][0][Bhp][pv_idx] = control_eq.derivative(pv_idx + numEq);
}
}
template<typename TypeTag>
void
StandardWell<TypeTag>::
getMobility(const Simulator& ebosSimulator,
const int perf,
std::vector<EvalWell>& mob,
DeferredLogger& deferred_logger) const
{
const int cell_idx = well_cells_[perf];
assert (int(mob.size()) == num_components_);
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0));
const auto& materialLawManager = ebosSimulator.problem().materialLawManager();
// either use mobility of the perforation cell or calcualte its own
// based on passing the saturation table index
const int satid = saturation_table_number_[perf] - 1;
const int satid_elem = materialLawManager->satnumRegionIdx(cell_idx);
if( satid == satid_elem ) { // the same saturation number is used. i.e. just use the mobilty from the cell
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx)) {
continue;
}
const unsigned activeCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
mob[activeCompIdx] = extendEval(intQuants.mobility(phaseIdx));
}
if (has_solvent) {
mob[contiSolventEqIdx] = extendEval(intQuants.solventMobility());
}
} else {
const auto& paramsCell = materialLawManager->connectionMaterialLawParams(satid, cell_idx);
Eval relativePerms[3] = { 0.0, 0.0, 0.0 };
MaterialLaw::relativePermeabilities(relativePerms, paramsCell, intQuants.fluidState());
// reset the satnumvalue back to original
materialLawManager->connectionMaterialLawParams(satid_elem, cell_idx);
// compute the mobility
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx)) {
continue;
}
const unsigned activeCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
mob[activeCompIdx] = extendEval(relativePerms[phaseIdx] / intQuants.fluidState().viscosity(phaseIdx));
}
// this may not work if viscosity and relperms has been modified?
if constexpr (has_solvent) {
OPM_DEFLOG_THROW(std::runtime_error, "individual mobility for wells does not work in combination with solvent", deferred_logger);
}
}
// modify the water mobility if polymer is present
if constexpr (has_polymer) {
if (!FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
OPM_DEFLOG_THROW(std::runtime_error, "Water is required when polymer is active", deferred_logger);
}
// for the cases related to polymer molecular weight, we assume fully mixing
// as a result, the polymer and water share the same viscosity
if constexpr (!Base::has_polymermw) {
updateWaterMobilityWithPolymer(ebosSimulator, perf, mob, deferred_logger);
}
}
}
template<typename TypeTag>
void
StandardWell<TypeTag>::
updateWellState(const BVectorWell& dwells,
WellState& well_state,
DeferredLogger& deferred_logger) const
{
if (!this->isOperable() && !this->wellIsStopped()) return;
updatePrimaryVariablesNewton(dwells, well_state);
updateWellStateFromPrimaryVariables(well_state, deferred_logger);
Base::calculateReservoirRates(well_state);
}
template<typename TypeTag>
void
StandardWell<TypeTag>::
updatePrimaryVariablesNewton(const BVectorWell& dwells,
const WellState& /* well_state */) const
{
const double dFLimit = param_.dwell_fraction_max_;
const std::vector<double> old_primary_variables = primary_variables_;
// for injectors, very typical one of the fractions will be one, and it is easy to get zero value
// fractions. not sure what is the best way to handle it yet, so we just use 1.0 here
const double relaxation_factor_fractions = (this->isProducer()) ?
relaxationFactorFractionsProducer(old_primary_variables, dwells)
: 1.0;
// update the second and third well variable (The flux fractions)
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
const int sign2 = dwells[0][WFrac] > 0 ? 1: -1;
const double dx2_limited = sign2 * std::min(std::abs(dwells[0][WFrac] * relaxation_factor_fractions), dFLimit);
// primary_variables_[WFrac] = old_primary_variables[WFrac] - dx2_limited;
primary_variables_[WFrac] = old_primary_variables[WFrac] - dx2_limited;
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
const int sign3 = dwells[0][GFrac] > 0 ? 1: -1;
const double dx3_limited = sign3 * std::min(std::abs(dwells[0][GFrac] * relaxation_factor_fractions), dFLimit);
primary_variables_[GFrac] = old_primary_variables[GFrac] - dx3_limited;
}
if constexpr (has_solvent) {
const int sign4 = dwells[0][SFrac] > 0 ? 1: -1;
const double dx4_limited = sign4 * std::min(std::abs(dwells[0][SFrac]) * relaxation_factor_fractions, dFLimit);
primary_variables_[SFrac] = old_primary_variables[SFrac] - dx4_limited;
}
processFractions();
// updating the total rates Q_t
const double relaxation_factor_rate = relaxationFactorRate(old_primary_variables, dwells);
primary_variables_[WQTotal] = old_primary_variables[WQTotal] - dwells[0][WQTotal] * relaxation_factor_rate;
// updating the bottom hole pressure
{
const double dBHPLimit = param_.dbhp_max_rel_;
const int sign1 = dwells[0][Bhp] > 0 ? 1: -1;
const double dx1_limited = sign1 * std::min(std::abs(dwells[0][Bhp]), std::abs(old_primary_variables[Bhp]) * dBHPLimit);
// 1e5 to make sure bhp will not be below 1bar
primary_variables_[Bhp] = std::max(old_primary_variables[Bhp] - dx1_limited, 1e5);
}
updateExtraPrimaryVariables(dwells);
#ifndef NDEBUG
for (double v : primary_variables_) {
assert(isfinite(v));
}
#endif
}
template<typename TypeTag>
void
StandardWell<TypeTag>::
updateExtraPrimaryVariables(const BVectorWell& dwells) const
{
// for the water velocity and skin pressure
if constexpr (Base::has_polymermw) {
if (this->isInjector()) {
for (int perf = 0; perf < number_of_perforations_; ++perf) {
const int wat_vel_index = Bhp + 1 + perf;
const int pskin_index = Bhp + 1 + number_of_perforations_ + perf;
const double relaxation_factor = 0.9;
const double dx_wat_vel = dwells[0][wat_vel_index];
primary_variables_[wat_vel_index] -= relaxation_factor * dx_wat_vel;
const double dx_pskin = dwells[0][pskin_index];
primary_variables_[pskin_index] -= relaxation_factor * dx_pskin;
}
}
}
}
template<typename TypeTag>
void
StandardWell<TypeTag>::
processFractions() const
{
const auto pu = phaseUsage();
std::vector<double> F(number_of_phases_, 0.0);
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
F[pu.phase_pos[Oil]] = 1.0;
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
F[pu.phase_pos[Water]] = primary_variables_[WFrac];
F[pu.phase_pos[Oil]] -= F[pu.phase_pos[Water]];
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
F[pu.phase_pos[Gas]] = primary_variables_[GFrac];
F[pu.phase_pos[Oil]] -= F[pu.phase_pos[Gas]];
}
}
else if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
F[pu.phase_pos[Water]] = 1.0;
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
F[pu.phase_pos[Gas]] = primary_variables_[GFrac];
F[pu.phase_pos[Water]] -= F[pu.phase_pos[Gas]];
}
}
else if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
F[pu.phase_pos[Gas]] = 1.0;
}
[[maybe_unused]] double F_solvent;
if constexpr (has_solvent) {
F_solvent = primary_variables_[SFrac];
F[pu.phase_pos[Oil]] -= F_solvent;
}
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
if (F[Water] < 0.0) {
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
F[pu.phase_pos[Gas]] /= (1.0 - F[pu.phase_pos[Water]]);
}
if constexpr (has_solvent) {
F_solvent /= (1.0 - F[pu.phase_pos[Water]]);
}
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
F[pu.phase_pos[Oil]] /= (1.0 - F[pu.phase_pos[Water]]);
}
F[pu.phase_pos[Water]] = 0.0;
}
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
if (F[pu.phase_pos[Gas]] < 0.0) {
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
F[pu.phase_pos[Water]] /= (1.0 - F[pu.phase_pos[Gas]]);
}
if constexpr (has_solvent) {
F_solvent /= (1.0 - F[pu.phase_pos[Gas]]);
}
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
F[pu.phase_pos[Oil]] /= (1.0 - F[pu.phase_pos[Gas]]);
}
F[pu.phase_pos[Gas]] = 0.0;
}
}
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
if (F[pu.phase_pos[Oil]] < 0.0) {
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
F[pu.phase_pos[Water]] /= (1.0 - F[pu.phase_pos[Oil]]);
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
F[pu.phase_pos[Gas]] /= (1.0 - F[pu.phase_pos[Oil]]);
}
if constexpr (has_solvent) {
F_solvent /= (1.0 - F[pu.phase_pos[Oil]]);
}
F[pu.phase_pos[Oil]] = 0.0;
}
}
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
primary_variables_[WFrac] = F[pu.phase_pos[Water]];
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
primary_variables_[GFrac] = F[pu.phase_pos[Gas]];
}
if constexpr (has_solvent) {
primary_variables_[SFrac] = F_solvent;
}
}
template<typename TypeTag>
void
StandardWell<TypeTag>::
updateWellStateFromPrimaryVariables(WellState& well_state, DeferredLogger& deferred_logger) const
{
const PhaseUsage& pu = phaseUsage();
std::vector<double> F(number_of_phases_, 0.0);
[[maybe_unused]] double F_solvent = 0.0;
if ( FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) ) {
const int oil_pos = pu.phase_pos[Oil];
F[oil_pos] = 1.0;
if ( FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) ) {
const int water_pos = pu.phase_pos[Water];
F[water_pos] = primary_variables_[WFrac];
F[oil_pos] -= F[water_pos];
}
if ( FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) ) {
const int gas_pos = pu.phase_pos[Gas];
F[gas_pos] = primary_variables_[GFrac];
F[oil_pos] -= F[gas_pos];
}
if constexpr (has_solvent) {
F_solvent = primary_variables_[SFrac];
F[oil_pos] -= F_solvent;
}
}
else if ( FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) ) {
const int water_pos = pu.phase_pos[Water];
F[water_pos] = 1.0;
if ( FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) ) {
const int gas_pos = pu.phase_pos[Gas];
F[gas_pos] = primary_variables_[GFrac];
F[water_pos] -= F[gas_pos];
}
}
else if ( FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) ) {
const int gas_pos = pu.phase_pos[Gas];
F[gas_pos] = 1.0;
}
// convert the fractions to be Q_p / G_total to calculate the phase rates
for (int p = 0; p < number_of_phases_; ++p) {
const double scal = scalingFactor(p);
// for injection wells, there should only one non-zero scaling factor
if (scal > 0) {
F[p] /= scal ;
} else {
// this should only happens to injection wells
F[p] = 0.;
}
}
// F_solvent is added to F_gas. This means that well_rate[Gas] also contains solvent.
// More testing is needed to make sure this is correct for well groups and THP.
if constexpr (has_solvent){
F_solvent /= scalingFactor(contiSolventEqIdx);
F[pu.phase_pos[Gas]] += F_solvent;
}
well_state.update_bhp(index_of_well_, primary_variables_[Bhp]);
// calculate the phase rates based on the primary variables
// for producers, this is not a problem, while not sure for injectors here
if (this->isProducer()) {
const double g_total = primary_variables_[WQTotal];
for (int p = 0; p < number_of_phases_; ++p) {
well_state.wellRates(index_of_well_)[p] = g_total * F[p];
}
} else { // injectors
for (int p = 0; p < number_of_phases_; ++p) {
well_state.wellRates(index_of_well_)[p] = 0.0;
}
switch (this->wellEcl().injectorType()) {
case InjectorType::WATER:
well_state.wellRates(index_of_well_)[pu.phase_pos[Water]] = primary_variables_[WQTotal];
break;
case InjectorType::GAS:
well_state.wellRates(index_of_well_)[pu.phase_pos[Gas]] = primary_variables_[WQTotal];
break;
case InjectorType::OIL:
well_state.wellRates(index_of_well_)[pu.phase_pos[Oil]] = primary_variables_[WQTotal];
break;
case InjectorType::MULTI:
// Not supported.
deferred_logger.warning("MULTI_PHASE_INJECTOR_NOT_SUPPORTED",
"Multi phase injectors are not supported, requested for well " + name());
break;
}
}
updateThp(well_state, deferred_logger);
// other primary variables related to polymer injectivity study
if constexpr (Base::has_polymermw) {
if (this->isInjector()) {
auto * perf_water_velocity = &well_state.perfWaterVelocity()[this->first_perf_];
auto * perf_skin_pressure = &well_state.perfSkinPressure()[this->first_perf_];
for (int perf = 0; perf < number_of_perforations_; ++perf) {
perf_water_velocity[perf] = primary_variables_[Bhp + 1 + perf];
perf_skin_pressure[perf] = primary_variables_[Bhp + 1 + number_of_perforations_ + perf];
}
}
}
}
template<typename TypeTag>
void
StandardWell<TypeTag>::
updateThp(WellState& well_state, DeferredLogger& deferred_logger) const
{
// When there is no vaild VFP table provided, we set the thp to be zero.
if (!this->isVFPActive(deferred_logger) || this->wellIsStopped()) {
well_state.update_thp(index_of_well_, 0);
return;
}
// the well is under other control types, we calculate the thp based on bhp and rates
std::vector<double> rates(3, 0.0);
const PhaseUsage& pu = phaseUsage();
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
rates[ Water ] = well_state.wellRates(index_of_well_)[pu.phase_pos[ Water ] ];
}
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
rates[ Oil ] = well_state.wellRates(index_of_well_)[pu.phase_pos[ Oil ] ];
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
rates[ Gas ] = well_state.wellRates(index_of_well_)[pu.phase_pos[ Gas ] ];
}
const double bhp = well_state.bhp(index_of_well_);
well_state.update_thp(index_of_well_, calculateThpFromBhp(well_state, rates, bhp, deferred_logger));
}
template<typename TypeTag>
void
StandardWell<TypeTag>::
updateWellStateWithTarget(const Simulator& ebos_simulator,
WellState& well_state,
DeferredLogger& deferred_logger) const
{
Base::updateWellStateWithTarget(ebos_simulator, well_state, deferred_logger);
}
template<typename TypeTag>
void
StandardWell<TypeTag>::
updateIPR(const Simulator& ebos_simulator, DeferredLogger& deferred_logger) const
{
// TODO: not handling solvent related here for now
// TODO: it only handles the producers for now
// the formular for the injectors are not formulated yet
if (this->isInjector()) {
return;
}
// initialize all the values to be zero to begin with
std::fill(ipr_a_.begin(), ipr_a_.end(), 0.);
std::fill(ipr_b_.begin(), ipr_b_.end(), 0.);
for (int perf = 0; perf < number_of_perforations_; ++perf) {
std::vector<EvalWell> mob(num_components_, {numWellEq_ + numEq, 0.0});
// TODO: mabye we should store the mobility somewhere, so that we only need to calculate it one per iteration
getMobility(ebos_simulator, perf, mob, deferred_logger);
const int cell_idx = well_cells_[perf];
const auto& int_quantities = *(ebos_simulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/ 0));
const auto& fs = int_quantities.fluidState();
// the pressure of the reservoir grid block the well connection is in
Eval perf_pressure = getPerfCellPressure(fs);
double p_r = perf_pressure.value();
// calculating the b for the connection
std::vector<double> b_perf(num_components_);
for (size_t phase = 0; phase < FluidSystem::numPhases; ++phase) {
if (!FluidSystem::phaseIsActive(phase)) {
continue;
}
const unsigned comp_idx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phase));
b_perf[comp_idx] = fs.invB(phase).value();
}
// the pressure difference between the connection and BHP
const double h_perf = perf_pressure_diffs_[perf];
const double pressure_diff = p_r - h_perf;
// Let us add a check, since the pressure is calculated based on zero value BHP
// it should not be negative anyway. If it is negative, we might need to re-formulate
// to taking into consideration the crossflow here.
if (pressure_diff <= 0.) {
deferred_logger.warning("NON_POSITIVE_DRAWDOWN_IPR",
"non-positive drawdown found when updateIPR for well " + name());
}
// the well index associated with the connection
const double tw_perf = well_index_[perf]*ebos_simulator.problem().template rockCompTransMultiplier<double>(int_quantities, cell_idx);
// TODO: there might be some indices related problems here
// phases vs components
// ipr values for the perforation
std::vector<double> ipr_a_perf(ipr_a_.size());
std::vector<double> ipr_b_perf(ipr_b_.size());
for (int p = 0; p < number_of_phases_; ++p) {
const double tw_mob = tw_perf * mob[p].value() * b_perf[p];
ipr_a_perf[p] += tw_mob * pressure_diff;
ipr_b_perf[p] += tw_mob;
}
// we need to handle the rs and rv when both oil and gas are present
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
const unsigned oil_comp_idx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
const unsigned gas_comp_idx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
const double rs = (fs.Rs()).value();
const double rv = (fs.Rv()).value();
const double dis_gas_a = rs * ipr_a_perf[oil_comp_idx];
const double vap_oil_a = rv * ipr_a_perf[gas_comp_idx];
ipr_a_perf[gas_comp_idx] += dis_gas_a;
ipr_a_perf[oil_comp_idx] += vap_oil_a;
const double dis_gas_b = rs * ipr_b_perf[oil_comp_idx];
const double vap_oil_b = rv * ipr_b_perf[gas_comp_idx];
ipr_b_perf[gas_comp_idx] += dis_gas_b;
ipr_b_perf[oil_comp_idx] += vap_oil_b;
}
for (int p = 0; p < number_of_phases_; ++p) {
// TODO: double check the indices here
ipr_a_[ebosCompIdxToFlowCompIdx(p)] += ipr_a_perf[p];
ipr_b_[ebosCompIdxToFlowCompIdx(p)] += ipr_b_perf[p];
}
}
this->parallel_well_info_.communication().sum(ipr_a_.data(), ipr_a_.size());
this->parallel_well_info_.communication().sum(ipr_b_.data(), ipr_b_.size());
}
template<typename TypeTag>
void
StandardWell<TypeTag>::
checkOperabilityUnderBHPLimitProducer(const WellState& well_state, const Simulator& ebos_simulator, DeferredLogger& deferred_logger)
{
const auto& summaryState = ebos_simulator.vanguard().summaryState();
const double bhp_limit = mostStrictBhpFromBhpLimits(summaryState);
// Crude but works: default is one atmosphere.
// TODO: a better way to detect whether the BHP is defaulted or not
const bool bhp_limit_not_defaulted = bhp_limit > 1.5 * unit::barsa;
if ( bhp_limit_not_defaulted || !this->wellHasTHPConstraints(summaryState) ) {
// if the BHP limit is not defaulted or the well does not have a THP limit
// we need to check the BHP limit
for (int p = 0; p < number_of_phases_; ++p) {
const double temp = ipr_a_[p] - ipr_b_[p] * bhp_limit;
if (temp < 0.) {
this->operability_status_.operable_under_only_bhp_limit = false;
break;
}
}
// checking whether running under BHP limit will violate THP limit
if (this->operability_status_.operable_under_only_bhp_limit && this->wellHasTHPConstraints(summaryState)) {
// option 1: calculate well rates based on the BHP limit.
// option 2: stick with the above IPR curve
// we use IPR here
std::vector<double> well_rates_bhp_limit;
computeWellRatesWithBhp(ebos_simulator, bhp_limit, well_rates_bhp_limit, deferred_logger);
const double thp = calculateThpFromBhp(well_state, well_rates_bhp_limit, bhp_limit, deferred_logger);
const double thp_limit = this->getTHPConstraint(summaryState);
if (thp < thp_limit) {
this->operability_status_.obey_thp_limit_under_bhp_limit = false;
}
}
} else {
// defaulted BHP and there is a THP constraint
// default BHP limit is about 1 atm.
// when applied the hydrostatic pressure correction dp,
// most likely we get a negative value (bhp + dp)to search in the VFP table,
// which is not desirable.
// we assume we can operate under defaulted BHP limit and will violate the THP limit
// when operating under defaulted BHP limit.
this->operability_status_.operable_under_only_bhp_limit = true;
this->operability_status_.obey_thp_limit_under_bhp_limit = false;
}
}
template<typename TypeTag>
void
StandardWell<TypeTag>::
checkOperabilityUnderTHPLimitProducer(const Simulator& ebos_simulator, const WellState& well_state, DeferredLogger& deferred_logger)
{
const auto& summaryState = ebos_simulator.vanguard().summaryState();
const auto obtain_bhp = computeBhpAtThpLimitProd(well_state, ebos_simulator, summaryState, deferred_logger);
if (obtain_bhp) {
this->operability_status_.can_obtain_bhp_with_thp_limit = true;
const double bhp_limit = mostStrictBhpFromBhpLimits(summaryState);
this->operability_status_.obey_bhp_limit_with_thp_limit = (*obtain_bhp >= bhp_limit);
const double thp_limit = this->getTHPConstraint(summaryState);
if (*obtain_bhp < thp_limit) {
const std::string msg = " obtained bhp " + std::to_string(unit::convert::to(*obtain_bhp, unit::barsa))
+ " bars is SMALLER than thp limit "
+ std::to_string(unit::convert::to(thp_limit, unit::barsa))
+ " bars as a producer for well " + name();
deferred_logger.debug(msg);
}
} else {
this->operability_status_.can_obtain_bhp_with_thp_limit = false;
this->operability_status_.obey_bhp_limit_with_thp_limit = false;
if (!this->wellIsStopped()) {
const double thp_limit = this->getTHPConstraint(summaryState);
deferred_logger.debug(" could not find bhp value at thp limit "
+ std::to_string(unit::convert::to(thp_limit, unit::barsa))
+ " bar for well " + name() + ", the well might need to be closed ");
}
}
}
template<typename TypeTag>
bool
StandardWell<TypeTag>::
allDrawDownWrongDirection(const Simulator& ebos_simulator) const
{
bool all_drawdown_wrong_direction = true;
for (int perf = 0; perf < number_of_perforations_; ++perf) {
const int cell_idx = well_cells_[perf];
const auto& intQuants = *(ebos_simulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0));
const auto& fs = intQuants.fluidState();
const double pressure = (fs.pressure(FluidSystem::oilPhaseIdx)).value();
const double bhp = getBhp().value();
// Pressure drawdown (also used to determine direction of flow)
const double well_pressure = bhp + perf_pressure_diffs_[perf];
const double drawdown = pressure - well_pressure;
// for now, if there is one perforation can produce/inject in the correct
// direction, we consider this well can still produce/inject.
// TODO: it can be more complicated than this to cause wrong-signed rates
if ( (drawdown < 0. && this->isInjector()) ||
(drawdown > 0. && this->isProducer()) ) {
all_drawdown_wrong_direction = false;
break;
}
}
const auto& comm = this->parallel_well_info_.communication();
if (comm.size() > 1)
{
all_drawdown_wrong_direction =
(comm.min(all_drawdown_wrong_direction ? 1 : 0) == 1);
}
return all_drawdown_wrong_direction;
}
template<typename TypeTag>
bool
StandardWell<TypeTag>::
canProduceInjectWithCurrentBhp(const Simulator& ebos_simulator,
const WellState& well_state,
DeferredLogger& deferred_logger)
{
const double bhp = well_state.bhp(index_of_well_);
std::vector<double> well_rates;
computeWellRatesWithBhp(ebos_simulator, bhp, well_rates, deferred_logger);
const double sign = (this->isProducer()) ? -1. : 1.;
const double threshold = sign * std::numeric_limits<double>::min();
bool can_produce_inject = false;
for (const auto value : well_rates) {
if (this->isProducer() && value < threshold) {
can_produce_inject = true;
break;
} else if (this->isInjector() && value > threshold) {
can_produce_inject = true;
break;
}
}
if (!can_produce_inject) {
deferred_logger.debug(" well " + name() + " CANNOT produce or inejct ");
}
return can_produce_inject;
}
template<typename TypeTag>
bool
StandardWell<TypeTag>::
openCrossFlowAvoidSingularity(const Simulator& ebos_simulator) const
{
return !getAllowCrossFlow() && allDrawDownWrongDirection(ebos_simulator);
}
template<typename TypeTag>
void
StandardWell<TypeTag>::
computePropertiesForWellConnectionPressures(const Simulator& ebosSimulator,
const WellState& well_state,
std::vector<double>& b_perf,
std::vector<double>& rsmax_perf,
std::vector<double>& rvmax_perf,
std::vector<double>& surf_dens_perf) const
{
const int nperf = number_of_perforations_;
const PhaseUsage& pu = phaseUsage();
b_perf.resize(nperf * num_components_);
surf_dens_perf.resize(nperf * num_components_);
const int w = index_of_well_;
const bool waterPresent = FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx);
const bool oilPresent = FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx);
const bool gasPresent = FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx);
//rs and rv are only used if both oil and gas is present
if (oilPresent && gasPresent) {
rsmax_perf.resize(nperf);
rvmax_perf.resize(nperf);
}
// Compute the average pressure in each well block
const auto& perf_press = well_state.perfPress(w);
auto p_above = this->parallel_well_info_.communicateAboveValues(well_state.bhp(w),
perf_press.data(),
nperf);
for (int perf = 0; perf < nperf; ++perf) {
const int cell_idx = well_cells_[perf];
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0));
const auto& fs = intQuants.fluidState();
// TODO: this is another place to show why WellState need to be a vector of WellState.
// TODO: to check why should be perf - 1
const double p_avg = (perf_press[perf] + p_above[perf])/2;
const double temperature = fs.temperature(FluidSystem::oilPhaseIdx).value();
const double saltConcentration = fs.saltConcentration().value();
if (waterPresent) {
const unsigned waterCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx);
b_perf[ waterCompIdx + perf * num_components_] =
FluidSystem::waterPvt().inverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg, saltConcentration);
}
if (gasPresent) {
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
const int gaspos = gasCompIdx + perf * num_components_;
if (oilPresent) {
const double oilrate = std::abs(well_state.wellRates(w)[pu.phase_pos[Oil]]); //in order to handle negative rates in producers
rvmax_perf[perf] = FluidSystem::gasPvt().saturatedOilVaporizationFactor(fs.pvtRegionIndex(), temperature, p_avg);
if (oilrate > 0) {
const double gasrate = std::abs(well_state.wellRates(w)[pu.phase_pos[Gas]]) - (has_solvent ? well_state.solventWellRate(w) : 0.0);
double rv = 0.0;
if (gasrate > 0) {
rv = oilrate / gasrate;
}
rv = std::min(rv, rvmax_perf[perf]);
b_perf[gaspos] = FluidSystem::gasPvt().inverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg, rv);
}
else {
b_perf[gaspos] = FluidSystem::gasPvt().saturatedInverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg);
}
} else {
b_perf[gaspos] = FluidSystem::gasPvt().saturatedInverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg);
}
}
if (oilPresent) {
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
const int oilpos = oilCompIdx + perf * num_components_;
if (gasPresent) {
rsmax_perf[perf] = FluidSystem::oilPvt().saturatedGasDissolutionFactor(fs.pvtRegionIndex(), temperature, p_avg);
const double gasrate = std::abs(well_state.wellRates(w)[pu.phase_pos[Gas]]) - (has_solvent ? well_state.solventWellRate(w) : 0.0);
if (gasrate > 0) {
const double oilrate = std::abs(well_state.wellRates(w)[pu.phase_pos[Oil]]);
double rs = 0.0;
if (oilrate > 0) {
rs = gasrate / oilrate;
}
rs = std::min(rs, rsmax_perf[perf]);
b_perf[oilpos] = FluidSystem::oilPvt().inverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg, rs);
} else {
b_perf[oilpos] = FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg);
}
} else {
b_perf[oilpos] = FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg);
}
}
// Surface density.
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx)) {
continue;
}
const unsigned compIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
surf_dens_perf[num_components_ * perf + compIdx] = FluidSystem::referenceDensity( phaseIdx, fs.pvtRegionIndex() );
}
// We use cell values for solvent injector
if constexpr (has_solvent) {
b_perf[num_components_ * perf + contiSolventEqIdx] = intQuants.solventInverseFormationVolumeFactor().value();
surf_dens_perf[num_components_ * perf + contiSolventEqIdx] = intQuants.solventRefDensity();
}
}
}
template<typename TypeTag>
void
StandardWell<TypeTag>::
computeConnectionDensities(const std::vector<double>& perfComponentRates,
const std::vector<double>& b_perf,
const std::vector<double>& rsmax_perf,
const std::vector<double>& rvmax_perf,
const std::vector<double>& surf_dens_perf)
{
// Verify that we have consistent input.
const int nperf = number_of_perforations_;
const int num_comp = num_components_;
// 1. Compute the flow (in surface volume units for each
// component) exiting up the wellbore from each perforation,
// taking into account flow from lower in the well, and
// in/out-flow at each perforation.
std::vector<double> q_out_perf((nperf)*num_comp, 0.0);
// Step 1 depends on the order of the perforations. Hence we need to
// do the modifications globally.
// Create and get the global perforation information and do this sequentially
// on each process
const auto& factory = this->parallel_well_info_.getGlobalPerfContainerFactory();
auto global_q_out_perf = factory.createGlobal(q_out_perf, num_comp);
auto global_perf_comp_rates = factory.createGlobal(perfComponentRates, num_comp);
// TODO: investigate whether we should use the following techniques to calcuate the composition of flows in the wellbore
// Iterate over well perforations from bottom to top.
for (int perf = factory.numGlobalPerfs() - 1; perf >= 0; --perf) {
for (int component = 0; component < num_comp; ++component) {
auto index = perf * num_comp + component;
if (perf == factory.numGlobalPerfs() - 1) {
// This is the bottom perforation. No flow from below.
global_q_out_perf[index] = 0.0;
} else {
// Set equal to flow from below.
global_q_out_perf[index] = global_q_out_perf[index + num_comp];
}
// Subtract outflow through perforation.
global_q_out_perf[index] -= global_perf_comp_rates[index];
}
}
// Copy the data back to local view
factory.copyGlobalToLocal(global_q_out_perf, q_out_perf, num_comp);
// 2. Compute the component mix at each perforation as the
// absolute values of the surface rates divided by their sum.
// Then compute volume ratios (formation factors) for each perforation.
// Finally compute densities for the segments associated with each perforation.
std::vector<double> mix(num_comp,0.0);
std::vector<double> x(num_comp);
std::vector<double> surf_dens(num_comp);
for (int perf = 0; perf < nperf; ++perf) {
// Find component mix.
const double tot_surf_rate = std::accumulate(q_out_perf.begin() + num_comp*perf,
q_out_perf.begin() + num_comp*(perf+1), 0.0);
if (tot_surf_rate != 0.0) {
for (int component = 0; component < num_comp; ++component) {
mix[component] = std::fabs(q_out_perf[perf*num_comp + component]/tot_surf_rate);
}
} else if (num_comp == 1) {
mix[num_comp-1] = 1.0;
} else {
std::fill(mix.begin(), mix.end(), 0.0);
// No flow => use well specified fractions for mix.
if (this->isInjector()) {
switch (this->wellEcl().injectorType()) {
case InjectorType::WATER:
mix[FluidSystem::waterCompIdx] = 1.0;
break;
case InjectorType::GAS:
mix[FluidSystem::gasCompIdx] = 1.0;
break;
case InjectorType::OIL:
mix[FluidSystem::oilCompIdx] = 1.0;
break;
case InjectorType::MULTI:
// Not supported.
// deferred_logger.warning("MULTI_PHASE_INJECTOR_NOT_SUPPORTED",
// "Multi phase injectors are not supported, requested for well " + name());
break;
}
} else {
assert(this->isProducer());
// For the frist perforation without flow we use the preferred phase to decide the mix initialization.
if (perf == 0) { //
switch (this->wellEcl().getPreferredPhase()) {
case Phase::OIL:
mix[FluidSystem::oilCompIdx] = 1.0;
break;
case Phase::GAS:
mix[FluidSystem::gasCompIdx] = 1.0;
break;
case Phase::WATER:
mix[FluidSystem::waterCompIdx] = 1.0;
break;
default:
// No others supported.
break;
}
// For the rest of the perforation without flow we use mix from the above perforation.
} else {
mix = x;
}
}
}
// Compute volume ratio.
x = mix;
// Subtract dissolved gas from oil phase and vapporized oil from gas phase
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
const unsigned gaspos = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
const unsigned oilpos = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
double rs = 0.0;
double rv = 0.0;
if (!rsmax_perf.empty() && mix[oilpos] > 1e-12) {
rs = std::min(mix[gaspos]/mix[oilpos], rsmax_perf[perf]);
}
if (!rvmax_perf.empty() && mix[gaspos] > 1e-12) {
rv = std::min(mix[oilpos]/mix[gaspos], rvmax_perf[perf]);
}
if (rs != 0.0) {
// Subtract gas in oil from gas mixture
x[gaspos] = (mix[gaspos] - mix[oilpos]*rs)/(1.0 - rs*rv);
}
if (rv != 0.0) {
// Subtract oil in gas from oil mixture
x[oilpos] = (mix[oilpos] - mix[gaspos]*rv)/(1.0 - rs*rv);;
}
}
double volrat = 0.0;
for (int component = 0; component < num_comp; ++component) {
volrat += x[component] / b_perf[perf*num_comp+ component];
}
for (int component = 0; component < num_comp; ++component) {
surf_dens[component] = surf_dens_perf[perf*num_comp+ component];
}
// Compute segment density.
perf_densities_[perf] = std::inner_product(surf_dens.begin(), surf_dens.end(), mix.begin(), 0.0) / volrat;
}
}
template<typename TypeTag>
void
StandardWell<TypeTag>::
computeConnectionPressureDelta()
{
// Algorithm:
// We'll assume the perforations are given in order from top to
// bottom for each well. By top and bottom we do not necessarily
// mean in a geometric sense (depth), but in a topological sense:
// the 'top' perforation is nearest to the surface topologically.
// Our goal is to compute a pressure delta for each perforation.
// 1. Compute pressure differences between perforations.
// dp_perf will contain the pressure difference between a
// perforation and the one above it, except for the first
// perforation for each well, for which it will be the
// difference to the reference (bhp) depth.
const int nperf = number_of_perforations_;
perf_pressure_diffs_.resize(nperf, 0.0);
auto z_above = this->parallel_well_info_.communicateAboveValues(ref_depth_, perf_depth_);
for (int perf = 0; perf < nperf; ++perf) {
const double dz = perf_depth_[perf] - z_above[perf];
perf_pressure_diffs_[perf] = dz * perf_densities_[perf] * gravity_;
}
// 2. Compute pressure differences to the reference point (bhp) by
// accumulating the already computed adjacent pressure
// differences, storing the result in dp_perf.
// This accumulation must be done per well.
const auto beg = perf_pressure_diffs_.begin();
const auto end = perf_pressure_diffs_.end();
this->parallel_well_info_.partialSumPerfValues(beg, end);
}
template<typename TypeTag>
ConvergenceReport
StandardWell<TypeTag>::
getWellConvergence(const WellState& well_state,
const std::vector<double>& B_avg,
DeferredLogger& deferred_logger,
const bool /*relax_tolerance*/) const
{
// the following implementation assume that the polymer is always after the w-o-g phases
// For the polymer, energy and foam cases, there is one more mass balance equations of reservoir than wells
assert((int(B_avg.size()) == num_components_) || has_polymer || has_energy || has_foam || has_brine || has_zFraction);
const double tol_wells = param_.tolerance_wells_;
const double maxResidualAllowed = param_.max_residual_allowed_;
std::vector<double> res(numWellEq_);
for (int eq_idx = 0; eq_idx < numWellEq_; ++eq_idx) {
// magnitude of the residual matters
res[eq_idx] = std::abs(resWell_[0][eq_idx]);
}
std::vector<double> well_flux_residual(num_components_);
// Finish computation
for ( int compIdx = 0; compIdx < num_components_; ++compIdx )
{
well_flux_residual[compIdx] = B_avg[compIdx] * res[compIdx];
}
ConvergenceReport report;
using CR = ConvergenceReport;
CR::WellFailure::Type type = CR::WellFailure::Type::MassBalance;
// checking if any NaN or too large residuals found
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx)) {
continue;
}
const unsigned canonicalCompIdx = FluidSystem::solventComponentIndex(phaseIdx);
const int compIdx = Indices::canonicalToActiveComponentIndex(canonicalCompIdx);
if (std::isnan(well_flux_residual[compIdx])) {
report.setWellFailed({type, CR::Severity::NotANumber, compIdx, name()});
} else if (well_flux_residual[compIdx] > maxResidualAllowed) {
report.setWellFailed({type, CR::Severity::TooLarge, compIdx, name()});
} else if (well_flux_residual[compIdx] > tol_wells) {
report.setWellFailed({type, CR::Severity::Normal, compIdx, name()});
}
}
checkConvergenceControlEq(well_state, report, deferred_logger);
checkConvergenceExtraEqs(res, report);
return report;
}
template<typename TypeTag>
void
StandardWell<TypeTag>::
updateProductivityIndex(const Simulator& ebosSimulator,
const WellProdIndexCalculator& wellPICalc,
WellState& well_state,
DeferredLogger& deferred_logger) const
{
auto fluidState = [&ebosSimulator, this](const int perf)
{
const auto cell_idx = this->well_cells_[perf];
return ebosSimulator.model()
.cachedIntensiveQuantities(cell_idx, /*timeIdx=*/ 0)->fluidState();
};
const int np = this->number_of_phases_;
auto setToZero = [np](double* x) -> void
{
std::fill_n(x, np, 0.0);
};
auto addVector = [np](const double* src, double* dest) -> void
{
std::transform(src, src + np, dest, dest, std::plus<>{});
};
auto* wellPI = &well_state.productivityIndex()[this->index_of_well_*np + 0];
auto* connPI = &well_state.connectionProductivityIndex()[this->first_perf_*np + 0];
setToZero(wellPI);
const auto preferred_phase = this->well_ecl_.getPreferredPhase();
auto subsetPerfID = 0;
for (const auto& perf : *this->perf_data_) {
auto allPerfID = perf.ecl_index;
auto connPICalc = [&wellPICalc, allPerfID](const double mobility) -> double
{
return wellPICalc.connectionProdIndStandard(allPerfID, mobility);
};
std::vector<EvalWell> mob(num_components_, {numWellEq_ + numEq, 0.0});
getMobility(ebosSimulator, static_cast<int>(subsetPerfID), mob, deferred_logger);
const auto& fs = fluidState(subsetPerfID);
setToZero(connPI);
if (this->isInjector()) {
this->computeConnLevelInjInd(fs, preferred_phase, connPICalc,
mob, connPI, deferred_logger);
}
else { // Production or zero flow rate
this->computeConnLevelProdInd(fs, connPICalc, mob, connPI);
}
addVector(connPI, wellPI);
++subsetPerfID;
connPI += np;
}
// Sum with communication in case of distributed well.
const auto& comm = this->parallel_well_info_.communication();
if (comm.size() > 1) {
comm.sum(wellPI, np);
}
assert ((static_cast<int>(subsetPerfID) == this->number_of_perforations_) &&
"Internal logic error in processing connections for PI/II");
}
template<typename TypeTag>
void
StandardWell<TypeTag>::
computeWellConnectionDensitesPressures(const Simulator& ebosSimulator,
const WellState& well_state,
const std::vector<double>& b_perf,
const std::vector<double>& rsmax_perf,
const std::vector<double>& rvmax_perf,
const std::vector<double>& surf_dens_perf)
{
// Compute densities
const int nperf = number_of_perforations_;
const int np = number_of_phases_;
std::vector<double> perfRates(b_perf.size(),0.0);
const auto * perf_rates_state = &well_state.perfPhaseRates()[first_perf_ * np];
for (int perf = 0; perf < nperf; ++perf) {
for (int comp = 0; comp < np; ++comp) {
perfRates[perf * num_components_ + comp] = perf_rates_state[perf * np + ebosCompIdxToFlowCompIdx(comp)];
}
}
if constexpr (has_solvent) {
const auto * solvent_perf_rates_state = &well_state.perfRateSolvent()[this->first_perf_];
for (int perf = 0; perf < nperf; ++perf) {
perfRates[perf * num_components_ + contiSolventEqIdx] = solvent_perf_rates_state[perf];
}
}
// for producers where all perforations have zero rate we
// approximate the perforation mixture using the mobility ratio
// and weight the perforations using the well transmissibility.
bool all_zero = std::all_of(perfRates.begin(), perfRates.end(), [](double val) { return val == 0.0; });
if ( all_zero && this->isProducer() ) {
double total_tw = 0;
for (int perf = 0; perf < nperf; ++perf) {
total_tw += well_index_[perf];
}
for (int perf = 0; perf < nperf; ++perf) {
const int cell_idx = well_cells_[perf];
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0));
const auto& fs = intQuants.fluidState();
const double well_tw_fraction = well_index_[perf] / total_tw;
double total_mobility = 0.0;
for (int p = 0; p < np; ++p) {
int ebosPhaseIdx = flowPhaseToEbosPhaseIdx(p);
total_mobility += fs.invB(ebosPhaseIdx).value() * intQuants.mobility(ebosPhaseIdx).value();
}
if constexpr (has_solvent) {
total_mobility += intQuants.solventInverseFormationVolumeFactor().value() * intQuants.solventMobility().value();
}
for (int p = 0; p < np; ++p) {
int ebosPhaseIdx = flowPhaseToEbosPhaseIdx(p);
perfRates[perf * num_components_ + p] = well_tw_fraction * intQuants.mobility(ebosPhaseIdx).value() / total_mobility;
}
if constexpr (has_solvent) {
perfRates[perf * num_components_ + contiSolventEqIdx] = well_tw_fraction * intQuants.solventInverseFormationVolumeFactor().value() / total_mobility;
}
}
}
computeConnectionDensities(perfRates, b_perf, rsmax_perf, rvmax_perf, surf_dens_perf);
computeConnectionPressureDelta();
}
template<typename TypeTag>
void
StandardWell<TypeTag>::
computeWellConnectionPressures(const Simulator& ebosSimulator,
const WellState& well_state)
{
// 1. Compute properties required by computeConnectionPressureDelta().
// Note that some of the complexity of this part is due to the function
// taking std::vector<double> arguments, and not Eigen objects.
std::vector<double> b_perf;
std::vector<double> rsmax_perf;
std::vector<double> rvmax_perf;
std::vector<double> surf_dens_perf;
computePropertiesForWellConnectionPressures(ebosSimulator, well_state, b_perf, rsmax_perf, rvmax_perf, surf_dens_perf);
computeWellConnectionDensitesPressures(ebosSimulator, well_state, b_perf, rsmax_perf, rvmax_perf, surf_dens_perf);
}
template<typename TypeTag>
void
StandardWell<TypeTag>::
solveEqAndUpdateWellState(WellState& well_state, DeferredLogger& deferred_logger)
{
if (!this->isOperable() && !this->wellIsStopped()) return;
// We assemble the well equations, then we check the convergence,
// which is why we do not put the assembleWellEq here.
BVectorWell dx_well(1);
dx_well[0].resize(numWellEq_);
invDuneD_.mv(resWell_, dx_well);
updateWellState(dx_well, well_state, deferred_logger);
}
template<typename TypeTag>
void
StandardWell<TypeTag>::
calculateExplicitQuantities(const Simulator& ebosSimulator,
const WellState& well_state,
DeferredLogger& deferred_logger)
{
updatePrimaryVariables(well_state, deferred_logger);
initPrimaryVariablesEvaluation();
computeWellConnectionPressures(ebosSimulator, well_state);
computeAccumWell();
}
template<typename TypeTag>
void
StandardWell<TypeTag>::
computeAccumWell()
{
for (int eq_idx = 0; eq_idx < numWellConservationEq; ++eq_idx) {
F0_[eq_idx] = wellSurfaceVolumeFraction(eq_idx).value();
}
}
template<typename TypeTag>
void
StandardWell<TypeTag>::
apply(const BVector& x, BVector& Ax) const
{
if (!this->isOperable() && !this->wellIsStopped()) return;
if ( param_.matrix_add_well_contributions_ )
{
// Contributions are already in the matrix itself
return;
}
assert( Bx_.size() == duneB_.N() );
assert( invDrw_.size() == invDuneD_.N() );
// Bx_ = duneB_ * x
parallelB_.mv(x, Bx_);
// invDBx = invDuneD_ * Bx_
// TODO: with this, we modified the content of the invDrw_.
// Is it necessary to do this to save some memory?
BVectorWell& invDBx = invDrw_;
invDuneD_.mv(Bx_, invDBx);
// Ax = Ax - duneC_^T * invDBx
duneC_.mmtv(invDBx,Ax);
}
template<typename TypeTag>
void
StandardWell<TypeTag>::
apply(BVector& r) const
{
if (!this->isOperable() && !this->wellIsStopped()) return;
assert( invDrw_.size() == invDuneD_.N() );
// invDrw_ = invDuneD_ * resWell_
invDuneD_.mv(resWell_, invDrw_);
// r = r - duneC_^T * invDrw_
duneC_.mmtv(invDrw_, r);
}
#if HAVE_CUDA || HAVE_OPENCL
template<typename TypeTag>
void
StandardWell<TypeTag>::
addWellContribution(WellContributions& wellContribs) const
{
std::vector<int> colIndices;
std::vector<double> nnzValues;
colIndices.reserve(duneB_.nonzeroes());
nnzValues.reserve(duneB_.nonzeroes()*numStaticWellEq * numEq);
// duneC
for ( auto colC = duneC_[0].begin(), endC = duneC_[0].end(); colC != endC; ++colC )
{
colIndices.emplace_back(colC.index());
for (int i = 0; i < numStaticWellEq; ++i) {
for (int j = 0; j < numEq; ++j) {
nnzValues.emplace_back((*colC)[i][j]);
}
}
}
wellContribs.addMatrix(WellContributions::MatrixType::C, colIndices.data(), nnzValues.data(), duneC_.nonzeroes());
// invDuneD
colIndices.clear();
nnzValues.clear();
colIndices.emplace_back(0);
for (int i = 0; i < numStaticWellEq; ++i)
{
for (int j = 0; j < numStaticWellEq; ++j) {
nnzValues.emplace_back(invDuneD_[0][0][i][j]);
}
}
wellContribs.addMatrix(WellContributions::MatrixType::D, colIndices.data(), nnzValues.data(), 1);
// duneB
colIndices.clear();
nnzValues.clear();
for ( auto colB = duneB_[0].begin(), endB = duneB_[0].end(); colB != endB; ++colB )
{
colIndices.emplace_back(colB.index());
for (int i = 0; i < numStaticWellEq; ++i) {
for (int j = 0; j < numEq; ++j) {
nnzValues.emplace_back((*colB)[i][j]);
}
}
}
wellContribs.addMatrix(WellContributions::MatrixType::B, colIndices.data(), nnzValues.data(), duneB_.nonzeroes());
}
template<typename TypeTag>
void
StandardWell<TypeTag>::
getNumBlocks(unsigned int& numBlocks) const
{
numBlocks = duneB_.nonzeroes();
}
#endif
template<typename TypeTag>
void
StandardWell<TypeTag>::
recoverSolutionWell(const BVector& x, BVectorWell& xw) const
{
if (!this->isOperable() && !this->wellIsStopped()) return;
BVectorWell resWell = resWell_;
// resWell = resWell - B * x
parallelB_.mmv(x, resWell);
// xw = D^-1 * resWell
invDuneD_.mv(resWell, xw);
}
template<typename TypeTag>
void
StandardWell<TypeTag>::
recoverWellSolutionAndUpdateWellState(const BVector& x,
WellState& well_state,
DeferredLogger& deferred_logger) const
{
if (!this->isOperable() && !this->wellIsStopped()) return;
BVectorWell xw(1);
xw[0].resize(numWellEq_);
recoverSolutionWell(x, xw);
updateWellState(xw, well_state, deferred_logger);
}
template<typename TypeTag>
void
StandardWell<TypeTag>::
computeWellRatesWithBhp(const Simulator& ebosSimulator,
const double& bhp,
std::vector<double>& well_flux,
DeferredLogger& deferred_logger) const
{
const int np = number_of_phases_;
well_flux.resize(np, 0.0);
const bool allow_cf = getAllowCrossFlow();
for (int perf = 0; perf < number_of_perforations_; ++perf) {
const int cell_idx = well_cells_[perf];
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/ 0));
// flux for each perforation
std::vector<EvalWell> mob(num_components_, {numWellEq_ + numEq, 0.});
getMobility(ebosSimulator, perf, mob, deferred_logger);
double trans_mult = ebosSimulator.problem().template rockCompTransMultiplier<double>(intQuants, cell_idx);
const double Tw = well_index_[perf] * trans_mult;
std::vector<EvalWell> cq_s(num_components_, {numWellEq_ + numEq, 0.});
double perf_dis_gas_rate = 0.;
double perf_vap_oil_rate = 0.;
computePerfRate(intQuants, mob, EvalWell(numWellEq_ + numEq, bhp), Tw, perf, allow_cf,
cq_s, perf_dis_gas_rate, perf_vap_oil_rate, deferred_logger);
for(int p = 0; p < np; ++p) {
well_flux[ebosCompIdxToFlowCompIdx(p)] += cq_s[p].value();
}
}
this->parallel_well_info_.communication().sum(well_flux.data(), well_flux.size());
}
template<typename TypeTag>
void
StandardWell<TypeTag>::
computeWellRatesWithBhpPotential(const Simulator& ebosSimulator,
const double& bhp,
std::vector<double>& well_flux,
DeferredLogger& deferred_logger)
{
// iterate to get a more accurate well density
// create a copy of the well_state to use. If the operability checking is sucessful, we use this one
// to replace the original one
WellState well_state_copy = ebosSimulator.problem().wellModel().wellState();
const auto& group_state = ebosSimulator.problem().wellModel().groupState();
// Set current control to bhp, and bhp value in state, modify bhp limit in control object.
if (well_ecl_.isInjector()) {
well_state_copy.currentInjectionControl(index_of_well_, Well::InjectorCMode::BHP);
} else {
well_state_copy.currentProductionControl(index_of_well_, Well::ProducerCMode::BHP);
}
well_state_copy.update_bhp(index_of_well_, bhp);
const double dt = ebosSimulator.timeStepSize();
bool converged = this->iterateWellEquations(ebosSimulator, dt, well_state_copy, group_state, deferred_logger);
if (!converged) {
const std::string msg = " well " + name() + " did not get converged during well potential calculations "
"returning zero values for the potential";
deferred_logger.debug(msg);
return;
}
updatePrimaryVariables(well_state_copy, deferred_logger);
computeWellConnectionPressures(ebosSimulator, well_state_copy);
initPrimaryVariablesEvaluation();
computeWellRatesWithBhp(ebosSimulator, bhp, well_flux, deferred_logger);
}
template<typename TypeTag>
std::vector<double>
StandardWell<TypeTag>::
computeWellPotentialWithTHP(const Simulator& ebos_simulator,
DeferredLogger& deferred_logger,
const WellState &well_state) const
{
std::vector<double> potentials(number_of_phases_, 0.0);
const auto& summary_state = ebos_simulator.vanguard().summaryState();
const auto& well = well_ecl_;
if (well.isInjector()){
const auto& controls = well_ecl_.injectionControls(summary_state);
auto bhp_at_thp_limit = computeBhpAtThpLimitInj(ebos_simulator, summary_state, deferred_logger);
if (bhp_at_thp_limit) {
const double bhp = std::min(*bhp_at_thp_limit, controls.bhp_limit);
computeWellRatesWithBhp(ebos_simulator, bhp, potentials, deferred_logger);
} else {
deferred_logger.warning("FAILURE_GETTING_CONVERGED_POTENTIAL",
"Failed in getting converged thp based potential calculation for well "
+ name() + ". Instead the bhp based value is used");
const double bhp = controls.bhp_limit;
computeWellRatesWithBhp(ebos_simulator, bhp, potentials, deferred_logger);
}
} else {
computeWellRatesWithThpAlqProd(
ebos_simulator, summary_state,
deferred_logger, potentials, getALQ(well_state)
);
}
return potentials;
}
/* At this point we know that the well does not have BHP control mode and
that it does have THP constraints, see computeWellPotentials().
* TODO: Currently we limit the application of gas lift optimization to wells
* operating under THP control mode, does it make sense to
* extend it to other modes?
*/
template<typename TypeTag>
bool
StandardWell<TypeTag>::
doGasLiftOptimize(const WellState &well_state, const Simulator &ebos_simulator,
DeferredLogger& deferred_logger) const
{
gliftDebug("checking if GLIFT should be done..", deferred_logger);
if (!well_state.gliftOptimizationEnabled()) {
gliftDebug("Optimization disabled in WellState", deferred_logger);
return false;
}
if (well_state.gliftCheckAlqOscillation(name())) {
gliftDebug("further optimization skipped due to oscillation in ALQ",
deferred_logger);
return false;
}
if (this->glift_optimize_only_thp_wells) {
const int well_index = index_of_well_;
auto control_mode = well_state.currentProductionControl(well_index);
if (control_mode != Well::ProducerCMode::THP ) {
gliftDebug("Not THP control", deferred_logger);
return false;
}
}
if (!checkGliftNewtonIterationIdxOk(ebos_simulator, deferred_logger)) {
return false;
}
const int report_step_idx = ebos_simulator.episodeIndex();
const Schedule& schedule = ebos_simulator.vanguard().schedule();
const GasLiftOpt& glo = schedule.glo(report_step_idx);
if (!glo.has_well(name())) {
gliftDebug("Gas Lift not activated: WLIFTOPT is probably missing",
deferred_logger);
return false;
}
auto increment = glo.gaslift_increment();
// NOTE: According to the manual: LIFTOPT, item 1, :
// "Increment size for lift gas injection rate. Lift gas is
// allocated to individual wells in whole numbers of the increment
// size. If gas lift optimization is no longer required, it can be
// turned off by entering a zero or negative number."
if (increment <= 0) {
if (this->glift_debug) {
const std::string msg = fmt::format(
"Gas Lift switched off in LIFTOPT item 1 due to non-positive "
"value: {}", increment);
gliftDebug(msg, deferred_logger);
}
return false;
}
else {
return true;
}
}
template<typename TypeTag>
bool
StandardWell<TypeTag>::
checkGliftNewtonIterationIdxOk(
const Simulator& ebos_simulator,
DeferredLogger& deferred_logger ) const
{
const int report_step_idx = ebos_simulator.episodeIndex();
const Schedule& schedule = ebos_simulator.vanguard().schedule();
const GasLiftOpt& glo = schedule.glo(report_step_idx);
const int iteration_idx = ebos_simulator.model().newtonMethod().numIterations();
if (glo.all_newton()) {
const int nupcol = schedule[report_step_idx].nupcol();
if (this->glift_debug) {
const std::string msg = fmt::format(
"LIFTOPT item4 == YES, it = {}, nupcol = {} --> GLIFT optimize = {}",
iteration_idx,
nupcol,
((iteration_idx <= nupcol) ? "TRUE" : "FALSE"));
gliftDebug(msg, deferred_logger);
}
return iteration_idx <= nupcol;
}
else {
if (this->glift_debug) {
const std::string msg = fmt::format(
"LIFTOPT item4 == NO, it = {} --> GLIFT optimize = {}",
iteration_idx, ((iteration_idx == 1) ? "TRUE" : "FALSE"));
gliftDebug(msg, deferred_logger);
}
return iteration_idx == 1;
}
}
template<typename TypeTag>
void
StandardWell<TypeTag>::
gliftDebug(
const std::string &msg, DeferredLogger& deferred_logger) const
{
if (this->glift_debug) {
const std::string message = fmt::format(
" GLIFT (DEBUG) : SW : Well {} : {}", this->name(), msg);
deferred_logger.info(message);
}
}
template<typename TypeTag>
double
StandardWell<TypeTag>::
computeWellRatesAndBhpWithThpAlqProd(const Simulator &ebos_simulator,
const SummaryState &summary_state,
DeferredLogger &deferred_logger,
std::vector<double> &potentials,
double alq) const
{
double bhp;
auto bhp_at_thp_limit = computeBhpAtThpLimitProdWithAlq(
ebos_simulator, summary_state, deferred_logger, alq);
if (bhp_at_thp_limit) {
const auto& controls = well_ecl_.productionControls(summary_state);
bhp = std::max(*bhp_at_thp_limit, controls.bhp_limit);
computeWellRatesWithBhp(ebos_simulator, bhp, potentials, deferred_logger);
}
else {
deferred_logger.warning("FAILURE_GETTING_CONVERGED_POTENTIAL",
"Failed in getting converged thp based potential calculation for well "
+ name() + ". Instead the bhp based value is used");
const auto& controls = well_ecl_.productionControls(summary_state);
bhp = controls.bhp_limit;
computeWellRatesWithBhp(ebos_simulator, bhp, potentials, deferred_logger);
}
return bhp;
}
template<typename TypeTag>
void
StandardWell<TypeTag>::
computeWellRatesWithThpAlqProd(const Simulator &ebos_simulator,
const SummaryState &summary_state,
DeferredLogger &deferred_logger,
std::vector<double> &potentials,
double alq) const
{
/*double bhp =*/ computeWellRatesAndBhpWithThpAlqProd(
ebos_simulator, summary_state,
deferred_logger, potentials, alq
);
}
template<typename TypeTag>
void
StandardWell<TypeTag>::
gasLiftOptimizationStage1(
WellState& well_state,
const Simulator& ebos_simulator,
DeferredLogger& deferred_logger,
GLiftProdWells &prod_wells,
GLiftOptWells &glift_wells,
GLiftWellStateMap &glift_state_map
//std::map<std::string, WellInterface *> &prod_wells
) const
{
const auto& well = well_ecl_;
if (well.isProducer()) {
const auto& summary_state = ebos_simulator.vanguard().summaryState();
if ( this->Base::wellHasTHPConstraints(summary_state) ) {
if (doGasLiftOptimize(well_state, ebos_simulator, deferred_logger)) {
std::unique_ptr<GasLiftSingleWell> glift
= std::make_unique<GasLiftSingleWell>(
*this, ebos_simulator, summary_state,
deferred_logger, well_state);
auto state = glift->runOptimize(ebos_simulator.model().newtonMethod().numIterations());
if (state) {
glift_state_map.insert({this->name(), std::move(state)});
glift_wells.insert({this->name(), std::move(glift)});
return;
}
}
}
prod_wells.insert({this->name(), this});
}
}
template<typename TypeTag>
void
StandardWell<TypeTag>::
computeWellPotentials(const Simulator& ebosSimulator,
const WellState& well_state,
std::vector<double>& well_potentials,
DeferredLogger& deferred_logger) // const
{
const int np = number_of_phases_;
well_potentials.resize(np, 0.0);
if (this->wellIsStopped()) {
return;
}
// If the well is pressure controlled the potential equals the rate.
bool pressure_controlled_well = false;
if (this->isInjector()) {
const Well::InjectorCMode& current = well_state.currentInjectionControl(index_of_well_);
if (current == Well::InjectorCMode::BHP || current == Well::InjectorCMode::THP) {
pressure_controlled_well = true;
}
} else {
const Well::ProducerCMode& current = well_state.currentProductionControl(index_of_well_);
if (current == Well::ProducerCMode::BHP || current == Well::ProducerCMode::THP) {
pressure_controlled_well = true;
}
}
if (pressure_controlled_well) {
// initialized the well rates with the potentials i.e. the well rates based on bhp
const double sign = this->well_ecl_.isInjector() ? 1.0 : -1.0;
for (int phase = 0; phase < np; ++phase){
well_potentials[phase] = sign * well_state.wellRates(index_of_well_)[phase];
}
return;
}
// creating a copy of the well itself, to avoid messing up the explicit informations
// during this copy, the only information not copied properly is the well controls
StandardWell<TypeTag> well(*this);
well.calculateExplicitQuantities(ebosSimulator, well_state, deferred_logger);
// does the well have a THP related constraint?
const auto& summaryState = ebosSimulator.vanguard().summaryState();
if (!well.Base::wellHasTHPConstraints(summaryState)) {
// get the bhp value based on the bhp constraints
const double bhp = well.mostStrictBhpFromBhpLimits(summaryState);
assert(std::abs(bhp) != std::numeric_limits<double>::max());
well.computeWellRatesWithBhpPotential(ebosSimulator, bhp, well_potentials, deferred_logger);
} else {
// the well has a THP related constraint
well_potentials = well.computeWellPotentialWithTHP(ebosSimulator, deferred_logger, well_state);
}
}
template<typename TypeTag>
void
StandardWell<TypeTag>::
updatePrimaryVariables(const WellState& well_state, DeferredLogger& deferred_logger) const
{
if (!this->isOperable() && !this->wellIsStopped()) return;
const int well_index = index_of_well_;
const int np = number_of_phases_;
const auto& pu = phaseUsage();
// the weighted total well rate
double total_well_rate = 0.0;
for (int p = 0; p < np; ++p) {
total_well_rate += scalingFactor(p) * well_state.wellRates(well_index)[p];
}
// Not: for the moment, the first primary variable for the injectors is not G_total. The injection rate
// under surface condition is used here
if (this->isInjector()) {
switch (this->wellEcl().injectorType()) {
case InjectorType::WATER:
primary_variables_[WQTotal] = well_state.wellRates(well_index)[pu.phase_pos[Water]];
break;
case InjectorType::GAS:
primary_variables_[WQTotal] = well_state.wellRates(well_index)[pu.phase_pos[Gas]];
break;
case InjectorType::OIL:
primary_variables_[WQTotal] = well_state.wellRates(well_index)[pu.phase_pos[Oil]];
break;
case InjectorType::MULTI:
// Not supported.
deferred_logger.warning("MULTI_PHASE_INJECTOR_NOT_SUPPORTED",
"Multi phase injectors are not supported, requested for well " + name());
break;
}
} else {
primary_variables_[WQTotal] = total_well_rate;
}
if (std::abs(total_well_rate) > 0.) {
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
primary_variables_[WFrac] = scalingFactor(pu.phase_pos[Water]) * well_state.wellRates(well_index)[pu.phase_pos[Water]] / total_well_rate;
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
primary_variables_[GFrac] = scalingFactor(pu.phase_pos[Gas]) * (well_state.wellRates(well_index)[pu.phase_pos[Gas]]
- (has_solvent ? well_state.solventWellRate(well_index) : 0.0) ) / total_well_rate ;
}
if constexpr (has_solvent) {
primary_variables_[SFrac] = scalingFactor(pu.phase_pos[Gas]) * well_state.solventWellRate(well_index) / total_well_rate ;
}
} else { // total_well_rate == 0
if (this->isInjector()) {
auto phase = well_ecl_.getInjectionProperties().injectorType;
// only single phase injection handled
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
if (phase == InjectorType::WATER) {
primary_variables_[WFrac] = 1.0;
} else {
primary_variables_[WFrac] = 0.0;
}
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
if (phase == InjectorType::GAS) {
primary_variables_[GFrac] = 1.0;
if constexpr (has_solvent) {
primary_variables_[GFrac] = 1.0 - wsolvent();
primary_variables_[SFrac] = wsolvent();
}
} else {
primary_variables_[GFrac] = 0.0;
}
}
// TODO: it is possible to leave injector as a oil well,
// when F_w and F_g both equals to zero, not sure under what kind of circumstance
// this will happen.
} else if (this->isProducer()) { // producers
// TODO: the following are not addressed for the solvent case yet
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
primary_variables_[WFrac] = 1.0 / np;
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
primary_variables_[GFrac] = 1.0 / np;
}
} else {
OPM_DEFLOG_THROW(std::logic_error, "Expected PRODUCER or INJECTOR type of well", deferred_logger);
}
}
// BHP
primary_variables_[Bhp] = well_state.bhp(index_of_well_);
// other primary variables related to polymer injection
if constexpr (Base::has_polymermw) {
if (this->isInjector()) {
const auto * water_velocity = &well_state.perfWaterVelocity()[first_perf_];
const auto * skin_pressure = &well_state.perfSkinPressure()[first_perf_];
for (int perf = 0; perf < number_of_perforations_; ++perf) {
primary_variables_[Bhp + 1 + perf] = water_velocity[perf];
primary_variables_[Bhp + 1 + number_of_perforations_ + perf] = skin_pressure[perf];
}
}
}
#ifndef NDEBUG
for (double v : primary_variables_) {
assert(isfinite(v));
}
#endif
}
template<typename TypeTag>
double
StandardWell<TypeTag>::
calculateThpFromBhp(const WellState &well_state, const std::vector<double>& rates,
const double bhp,
DeferredLogger& deferred_logger) const
{
assert(int(rates.size()) == 3); // the vfp related only supports three phases now.
const double aqua = rates[Water];
const double liquid = rates[Oil];
const double vapour = rates[Gas];
// pick the density in the top layer
const double rho = getRefDensity();
double thp = 0.0;
if (this->isInjector()) {
const int table_id = well_ecl_.vfp_table_number();
const double vfp_ref_depth = vfp_properties_->getInj()->getTable(table_id).getDatumDepth();
const double dp = wellhelpers::computeHydrostaticCorrection(ref_depth_, vfp_ref_depth, rho, gravity_);
thp = vfp_properties_->getInj()->thp(table_id, aqua, liquid, vapour, bhp + dp);
}
else if (this->isProducer()) {
const int table_id = well_ecl_.vfp_table_number();
const double alq = getALQ(well_state);
const double vfp_ref_depth = vfp_properties_->getProd()->getTable(table_id).getDatumDepth();
const double dp = wellhelpers::computeHydrostaticCorrection(ref_depth_, vfp_ref_depth, rho, gravity_);
thp = vfp_properties_->getProd()->thp(table_id, aqua, liquid, vapour, bhp + dp, alq);
}
else {
OPM_DEFLOG_THROW(std::logic_error, "Expected INJECTOR or PRODUCER well", deferred_logger);
}
return thp;
}
template<typename TypeTag>
double
StandardWell<TypeTag>::
getRefDensity() const
{
return perf_densities_[0];
}
template<typename TypeTag>
void
StandardWell<TypeTag>::
updateWaterMobilityWithPolymer(const Simulator& ebos_simulator,
const int perf,
std::vector<EvalWell>& mob,
DeferredLogger& deferred_logger) const
{
const int cell_idx = well_cells_[perf];
const auto& int_quant = *(ebos_simulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/ 0));
const EvalWell polymer_concentration = extendEval(int_quant.polymerConcentration());
// TODO: not sure should based on the well type or injecting/producing peforations
// it can be different for crossflow
if (this->isInjector()) {
// assume fully mixing within injecting wellbore
const auto& visc_mult_table = PolymerModule::plyviscViscosityMultiplierTable(int_quant.pvtRegionIndex());
const unsigned waterCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx);
mob[waterCompIdx] /= (extendEval(int_quant.waterViscosityCorrection()) * visc_mult_table.eval(polymer_concentration, /*extrapolate=*/true) );
}
if (PolymerModule::hasPlyshlog()) {
// we do not calculate the shear effects for injection wells when they do not
// inject polymer.
if (this->isInjector() && wpolymer() == 0.) {
return;
}
// compute the well water velocity with out shear effects.
// TODO: do we need to turn on crossflow here?
const bool allow_cf = getAllowCrossFlow() || openCrossFlowAvoidSingularity(ebos_simulator);
const EvalWell& bhp = getBhp();
std::vector<EvalWell> cq_s(num_components_, {numWellEq_ + numEq, 0.});
double perf_dis_gas_rate = 0.;
double perf_vap_oil_rate = 0.;
double trans_mult = ebos_simulator.problem().template rockCompTransMultiplier<double>(int_quant, cell_idx);
const double Tw = well_index_[perf] * trans_mult;
computePerfRate(int_quant, mob, bhp, Tw, perf, allow_cf,
cq_s, perf_dis_gas_rate, perf_vap_oil_rate, deferred_logger);
// TODO: make area a member
const double area = 2 * M_PI * perf_rep_radius_[perf] * perf_length_[perf];
const auto& material_law_manager = ebos_simulator.problem().materialLawManager();
const auto& scaled_drainage_info =
material_law_manager->oilWaterScaledEpsInfoDrainage(cell_idx);
const double swcr = scaled_drainage_info.Swcr;
const EvalWell poro = extendEval(int_quant.porosity());
const EvalWell sw = extendEval(int_quant.fluidState().saturation(FluidSystem::waterPhaseIdx));
// guard against zero porosity and no water
const EvalWell denom = max( (area * poro * (sw - swcr)), 1e-12);
const unsigned waterCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx);
EvalWell water_velocity = cq_s[waterCompIdx] / denom * extendEval(int_quant.fluidState().invB(FluidSystem::waterPhaseIdx));
if (PolymerModule::hasShrate()) {
// the equation for the water velocity conversion for the wells and reservoir are from different version
// of implementation. It can be changed to be more consistent when possible.
water_velocity *= PolymerModule::shrate( int_quant.pvtRegionIndex() ) / bore_diameters_[perf];
}
const EvalWell shear_factor = PolymerModule::computeShearFactor(polymer_concentration,
int_quant.pvtRegionIndex(),
water_velocity);
// modify the mobility with the shear factor.
mob[waterCompIdx] /= shear_factor;
}
}
template<typename TypeTag>
void
StandardWell<TypeTag>::addWellContributions(SparseMatrixAdapter& jacobian) const
{
// We need to change matrx A as follows
// A -= C^T D^-1 B
// D is diagonal
// B and C have 1 row, nc colums and nonzero
// at (0,j) only if this well has a perforation at cell j.
typename SparseMatrixAdapter::MatrixBlock tmpMat;
Dune::DynamicMatrix<Scalar> tmp;
for ( auto colC = duneC_[0].begin(), endC = duneC_[0].end(); colC != endC; ++colC )
{
const auto row_index = colC.index();
for ( auto colB = duneB_[0].begin(), endB = duneB_[0].end(); colB != endB; ++colB )
{
Detail::multMatrix(invDuneD_[0][0], (*colB), tmp);
Detail::negativeMultMatrixTransposed((*colC), tmp, tmpMat);
jacobian.addToBlock( row_index, colB.index(), tmpMat );
}
}
}
template<typename TypeTag>
double
StandardWell<TypeTag>::
relaxationFactorFraction(const double old_value,
const double dx)
{
assert(old_value >= 0. && old_value <= 1.0);
double relaxation_factor = 1.;
// updated values without relaxation factor
const double possible_updated_value = old_value - dx;
// 0.95 is an experimental value remains to be optimized
if (possible_updated_value < 0.0) {
relaxation_factor = std::abs(old_value / dx) * 0.95;
} else if (possible_updated_value > 1.0) {
relaxation_factor = std::abs((1. - old_value) / dx) * 0.95;
}
// if possible_updated_value is between 0. and 1.0, then relaxation_factor
// remains to be one
assert(relaxation_factor >= 0. && relaxation_factor <= 1.);
return relaxation_factor;
}
template<typename TypeTag>
double
StandardWell<TypeTag>::
relaxationFactorFractionsProducer(const std::vector<double>& primary_variables,
const BVectorWell& dwells)
{
// TODO: not considering solvent yet
// 0.95 is a experimental value, which remains to be optimized
double relaxation_factor = 1.0;
if (FluidSystem::numActivePhases() > 1) {
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
const double relaxation_factor_w = relaxationFactorFraction(primary_variables[WFrac], dwells[0][WFrac]);
relaxation_factor = std::min(relaxation_factor, relaxation_factor_w);
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
const double relaxation_factor_g = relaxationFactorFraction(primary_variables[GFrac], dwells[0][GFrac]);
relaxation_factor = std::min(relaxation_factor, relaxation_factor_g);
}
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
// We need to make sure the even with the relaxation_factor, the sum of F_w and F_g is below one, so there will
// not be negative oil fraction later
const double original_sum = primary_variables[WFrac] + primary_variables[GFrac];
const double relaxed_update = (dwells[0][WFrac] + dwells[0][GFrac]) * relaxation_factor;
const double possible_updated_sum = original_sum - relaxed_update;
if (possible_updated_sum > 1.0) {
assert(relaxed_update != 0.);
const double further_relaxation_factor = std::abs((1. - original_sum) / relaxed_update) * 0.95;
relaxation_factor *= further_relaxation_factor;
}
}
assert(relaxation_factor >= 0.0 && relaxation_factor <= 1.0);
}
return relaxation_factor;
}
template<typename TypeTag>
double
StandardWell<TypeTag>::
relaxationFactorRate(const std::vector<double>& primary_variables,
const BVectorWell& dwells)
{
double relaxation_factor = 1.0;
// For injector, we only check the total rates to avoid sign change of rates
const double original_total_rate = primary_variables[WQTotal];
const double newton_update = dwells[0][WQTotal];
const double possible_update_total_rate = primary_variables[WQTotal] - newton_update;
// 0.8 here is a experimental value, which remains to be optimized
// if the original rate is zero or possible_update_total_rate is zero, relaxation_factor will
// always be 1.0, more thoughts might be needed.
if (original_total_rate * possible_update_total_rate < 0.) { // sign changed
relaxation_factor = std::abs(original_total_rate / newton_update) * 0.8;
}
assert(relaxation_factor >= 0.0 && relaxation_factor <= 1.0);
return relaxation_factor;
}
template<typename TypeTag>
typename StandardWell<TypeTag>::EvalWell
StandardWell<TypeTag>::
pskinwater(const double throughput,
const EvalWell& water_velocity,
DeferredLogger& deferred_logger) const
{
if constexpr (Base::has_polymermw) {
const int water_table_id = well_ecl_.getPolymerProperties().m_skprwattable;
if (water_table_id <= 0) {
OPM_DEFLOG_THROW(std::runtime_error, "Unused SKPRWAT table id used for well " << name(), deferred_logger);
}
const auto& water_table_func = PolymerModule::getSkprwatTable(water_table_id);
const EvalWell throughput_eval(numWellEq_ + numEq, throughput);
// the skin pressure when injecting water, which also means the polymer concentration is zero
EvalWell pskin_water(numWellEq_ + numEq, 0.0);
pskin_water = water_table_func.eval(throughput_eval, water_velocity);
return pskin_water;
} else {
OPM_DEFLOG_THROW(std::runtime_error, "Polymermw is not activated, "
"while injecting skin pressure is requested for well " << name(), deferred_logger);
}
}
template<typename TypeTag>
typename StandardWell<TypeTag>::EvalWell
StandardWell<TypeTag>::
pskin(const double throughput,
const EvalWell& water_velocity,
const EvalWell& poly_inj_conc,
DeferredLogger& deferred_logger) const
{
if constexpr (Base::has_polymermw) {
const double sign = water_velocity >= 0. ? 1.0 : -1.0;
const EvalWell water_velocity_abs = abs(water_velocity);
if (poly_inj_conc == 0.) {
return sign * pskinwater(throughput, water_velocity_abs, deferred_logger);
}
const int polymer_table_id = well_ecl_.getPolymerProperties().m_skprpolytable;
if (polymer_table_id <= 0) {
OPM_DEFLOG_THROW(std::runtime_error, "Unavailable SKPRPOLY table id used for well " << name(), deferred_logger);
}
const auto& skprpolytable = PolymerModule::getSkprpolyTable(polymer_table_id);
const double reference_concentration = skprpolytable.refConcentration;
const EvalWell throughput_eval(numWellEq_ + numEq, throughput);
// the skin pressure when injecting water, which also means the polymer concentration is zero
EvalWell pskin_poly(numWellEq_ + numEq, 0.0);
pskin_poly = skprpolytable.table_func.eval(throughput_eval, water_velocity_abs);
if (poly_inj_conc == reference_concentration) {
return sign * pskin_poly;
}
// poly_inj_conc != reference concentration of the table, then some interpolation will be required
const EvalWell pskin_water = pskinwater(throughput, water_velocity_abs, deferred_logger);
const EvalWell pskin = pskin_water + (pskin_poly - pskin_water) / reference_concentration * poly_inj_conc;
return sign * pskin;
} else {
OPM_DEFLOG_THROW(std::runtime_error, "Polymermw is not activated, "
"while injecting skin pressure is requested for well " << name(), deferred_logger);
}
}
template<typename TypeTag>
typename StandardWell<TypeTag>::EvalWell
StandardWell<TypeTag>::
wpolymermw(const double throughput,
const EvalWell& water_velocity,
DeferredLogger& deferred_logger) const
{
if constexpr (Base::has_polymermw) {
const int table_id = well_ecl_.getPolymerProperties().m_plymwinjtable;
const auto& table_func = PolymerModule::getPlymwinjTable(table_id);
const EvalWell throughput_eval(numWellEq_ + numEq, throughput);
EvalWell molecular_weight(numWellEq_ + numEq, 0.);
if (wpolymer() == 0.) { // not injecting polymer
return molecular_weight;
}
molecular_weight = table_func.eval(throughput_eval, abs(water_velocity));
return molecular_weight;
} else {
OPM_DEFLOG_THROW(std::runtime_error, "Polymermw is not activated, "
"while injecting polymer molecular weight is requested for well " << name(), deferred_logger);
}
}
template<typename TypeTag>
void
StandardWell<TypeTag>::
updateWaterThroughput(const double dt, WellState &well_state) const
{
if constexpr (Base::has_polymermw) {
if (this->isInjector()) {
auto * perf_water_throughput = &well_state.perfThroughput()[first_perf_];
for (int perf = 0; perf < number_of_perforations_; ++perf) {
const double perf_water_vel = primary_variables_[Bhp + 1 + perf];
// we do not consider the formation damage due to water flowing from reservoir into wellbore
if (perf_water_vel > 0.) {
perf_water_throughput[perf] += perf_water_vel * dt;
}
}
}
}
}
template<typename TypeTag>
void
StandardWell<TypeTag>::
handleInjectivityRate(const Simulator& ebosSimulator,
const int perf,
std::vector<EvalWell>& cq_s) const
{
const int cell_idx = well_cells_[perf];
const auto& int_quants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/ 0));
const auto& fs = int_quants.fluidState();
const EvalWell b_w = extendEval(fs.invB(FluidSystem::waterPhaseIdx));
const double area = M_PI * bore_diameters_[perf] * perf_length_[perf];
const int wat_vel_index = Bhp + 1 + perf;
const unsigned water_comp_idx = Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx);
// water rate is update to use the form from water velocity, since water velocity is
// a primary variable now
cq_s[water_comp_idx] = area * primary_variables_evaluation_[wat_vel_index] * b_w;
}
template<typename TypeTag>
void
StandardWell<TypeTag>::
handleInjectivityEquations(const Simulator& ebosSimulator,
const WellState& well_state,
const int perf,
const EvalWell& water_flux_s,
DeferredLogger& deferred_logger)
{
const int cell_idx = well_cells_[perf];
const auto& int_quants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/ 0));
const auto& fs = int_quants.fluidState();
const EvalWell b_w = extendEval(fs.invB(FluidSystem::waterPhaseIdx));
const EvalWell water_flux_r = water_flux_s / b_w;
const double area = M_PI * bore_diameters_[perf] * perf_length_[perf];
const EvalWell water_velocity = water_flux_r / area;
const int wat_vel_index = Bhp + 1 + perf;
// equation for the water velocity
const EvalWell eq_wat_vel = primary_variables_evaluation_[wat_vel_index] - water_velocity;
resWell_[0][wat_vel_index] = eq_wat_vel.value();
const auto * perf_water_throughput = &well_state.perfThroughput()[this->first_perf_];
const double throughput = perf_water_throughput[perf];
const int pskin_index = Bhp + 1 + number_of_perforations_ + perf;
EvalWell poly_conc(numWellEq_ + numEq, 0.0);
poly_conc.setValue(wpolymer());
// equation for the skin pressure
const EvalWell eq_pskin = primary_variables_evaluation_[pskin_index]
- pskin(throughput, primary_variables_evaluation_[wat_vel_index], poly_conc, deferred_logger);
resWell_[0][pskin_index] = eq_pskin.value();
for (int pvIdx = 0; pvIdx < numWellEq_; ++pvIdx) {
invDuneD_[0][0][wat_vel_index][pvIdx] = eq_wat_vel.derivative(pvIdx+numEq);
invDuneD_[0][0][pskin_index][pvIdx] = eq_pskin.derivative(pvIdx+numEq);
}
// the water velocity is impacted by the reservoir primary varaibles. It needs to enter matrix B
for (int pvIdx = 0; pvIdx < numEq; ++pvIdx) {
duneB_[0][cell_idx][wat_vel_index][pvIdx] = eq_wat_vel.derivative(pvIdx);
}
}
template<typename TypeTag>
void
StandardWell<TypeTag>::
checkConvergenceControlEq(const WellState& well_state,
ConvergenceReport& report,
DeferredLogger& deferred_logger) const
{
double control_tolerance = 0.;
using CR = ConvergenceReport;
CR::WellFailure::Type ctrltype = CR::WellFailure::Type::Invalid;
const int well_index = index_of_well_;
if (this->wellIsStopped()) {
ctrltype = CR::WellFailure::Type::ControlRate;
control_tolerance = 1.e-6; // use smaller tolerance for zero control?
}
else if (this->isInjector() )
{
auto current = well_state.currentInjectionControl(well_index);
switch(current) {
case Well::InjectorCMode::THP:
ctrltype = CR::WellFailure::Type::ControlTHP;
control_tolerance = 1.e4; // 0.1 bar
break;
case Well::InjectorCMode::BHP:
ctrltype = CR::WellFailure::Type::ControlBHP;
control_tolerance = 1.e3; // 0.01 bar
break;
case Well::InjectorCMode::RATE:
case Well::InjectorCMode::RESV:
ctrltype = CR::WellFailure::Type::ControlRate;
control_tolerance = 1.e-4; //
break;
case Well::InjectorCMode::GRUP:
ctrltype = CR::WellFailure::Type::ControlRate;
control_tolerance = 1.e-6; //
break;
default:
OPM_DEFLOG_THROW(std::runtime_error, "Unknown well control control types for well " << name(), deferred_logger);
}
}
else if (this->isProducer() )
{
auto current = well_state.currentProductionControl(well_index);
switch(current) {
case Well::ProducerCMode::THP:
ctrltype = CR::WellFailure::Type::ControlTHP;
control_tolerance = 1.e4; // 0.1 bar
break;
case Well::ProducerCMode::BHP:
ctrltype = CR::WellFailure::Type::ControlBHP;
control_tolerance = 1.e3; // 0.01 bar
break;
case Well::ProducerCMode::ORAT:
case Well::ProducerCMode::WRAT:
case Well::ProducerCMode::GRAT:
case Well::ProducerCMode::LRAT:
case Well::ProducerCMode::RESV:
case Well::ProducerCMode::CRAT:
ctrltype = CR::WellFailure::Type::ControlRate;
control_tolerance = 1.e-4; // smaller tolerance for rate control
break;
case Well::ProducerCMode::GRUP:
ctrltype = CR::WellFailure::Type::ControlRate;
control_tolerance = 1.e-6; // smaller tolerance for rate control
break;
default:
OPM_DEFLOG_THROW(std::runtime_error, "Unknown well control control types for well " << name(), deferred_logger);
}
}
const double well_control_residual = std::abs(resWell_[0][Bhp]);
const int dummy_component = -1;
const double max_residual_allowed = param_.max_residual_allowed_;
if (std::isnan(well_control_residual)) {
report.setWellFailed({ctrltype, CR::Severity::NotANumber, dummy_component, name()});
} else if (well_control_residual > max_residual_allowed * 10.) {
report.setWellFailed({ctrltype, CR::Severity::TooLarge, dummy_component, name()});
} else if ( well_control_residual > control_tolerance) {
report.setWellFailed({ctrltype, CR::Severity::Normal, dummy_component, name()});
}
}
template<typename TypeTag>
void
StandardWell<TypeTag>::
checkConvergenceExtraEqs(const std::vector<double>& res,
ConvergenceReport& report) const
{
// if different types of extra equations are involved, this function needs to be refactored further
// checking the convergence of the extra equations related to polymer injectivity
if constexpr (Base::has_polymermw) {
if (this->isInjector()) {
// checking the convergence of the perforation rates
const double wat_vel_tol = 1.e-8;
const int dummy_component = -1;
const double maxResidualAllowed = param_.max_residual_allowed_;
using CR = ConvergenceReport;
const auto wat_vel_failure_type = CR::WellFailure::Type::MassBalance;
for (int perf = 0; perf < number_of_perforations_; ++perf) {
const double wat_vel_residual = res[Bhp + 1 + perf];
if (std::isnan(wat_vel_residual)) {
report.setWellFailed({wat_vel_failure_type, CR::Severity::NotANumber, dummy_component, name()});
} else if (wat_vel_residual > maxResidualAllowed * 10.) {
report.setWellFailed({wat_vel_failure_type, CR::Severity::TooLarge, dummy_component, name()});
} else if (wat_vel_residual > wat_vel_tol) {
report.setWellFailed({wat_vel_failure_type, CR::Severity::Normal, dummy_component, name()});
}
}
// checking the convergence of the skin pressure
const double pskin_tol = 1000.; // 1000 pascal
const auto pskin_failure_type = CR::WellFailure::Type::Pressure;
for (int perf = 0; perf < number_of_perforations_; ++perf) {
const double pskin_residual = res[Bhp + 1 + perf + number_of_perforations_];
if (std::isnan(pskin_residual)) {
report.setWellFailed({pskin_failure_type, CR::Severity::NotANumber, dummy_component, name()});
} else if (pskin_residual > maxResidualAllowed * 10.) {
report.setWellFailed({pskin_failure_type, CR::Severity::TooLarge, dummy_component, name()});
} else if (pskin_residual > pskin_tol) {
report.setWellFailed({pskin_failure_type, CR::Severity::Normal, dummy_component, name()});
}
}
}
}
}
template<typename TypeTag>
void
StandardWell<TypeTag>::
updateConnectionRatePolyMW(const EvalWell& cq_s_poly,
const IntensiveQuantities& int_quants,
const WellState& well_state,
const int perf,
std::vector<RateVector>& connectionRates,
DeferredLogger& deferred_logger) const
{
// the source term related to transport of molecular weight
EvalWell cq_s_polymw = cq_s_poly;
if (this->isInjector()) {
const int wat_vel_index = Bhp + 1 + perf;
const EvalWell water_velocity = primary_variables_evaluation_[wat_vel_index];
if (water_velocity > 0.) { // injecting
const auto * perf_water_throughput = &well_state.perfThroughput()[this->first_perf_];
const double throughput = perf_water_throughput[perf];
const EvalWell molecular_weight = wpolymermw(throughput, water_velocity, deferred_logger);
cq_s_polymw *= molecular_weight;
} else {
// we do not consider the molecular weight from the polymer
// going-back to the wellbore through injector
cq_s_polymw *= 0.;
}
} else if (this->isProducer()) {
if (cq_s_polymw < 0.) {
cq_s_polymw *= extendEval(int_quants.polymerMoleWeight() );
} else {
// we do not consider the molecular weight from the polymer
// re-injecting back through producer
cq_s_polymw *= 0.;
}
}
connectionRates[perf][this->contiPolymerMWEqIdx] = Base::restrictEval(cq_s_polymw);
}
template<typename TypeTag>
std::optional<double>
StandardWell<TypeTag>::
computeBhpAtThpLimitProd(const WellState& well_state,
const Simulator& ebos_simulator,
const SummaryState& summary_state,
DeferredLogger& deferred_logger) const
{
return computeBhpAtThpLimitProdWithAlq(
ebos_simulator, summary_state, deferred_logger, getALQ(well_state));
}
template<typename TypeTag>
std::optional<double>
StandardWell<TypeTag>::
computeBhpAtThpLimitProdWithAlq(const Simulator& ebos_simulator,
const SummaryState& summary_state,
DeferredLogger& deferred_logger,
double alq_value) const
{
// Given a VFP function returning bhp as a function of phase
// rates and thp:
// fbhp(rates, thp),
// a function extracting the particular flow rate used for VFP
// lookups:
// flo(rates)
// and the inflow function (assuming the reservoir is fixed):
// frates(bhp)
// we want to solve the equation:
// fbhp(frates(bhp, thplimit)) - bhp = 0
// for bhp.
//
// This may result in 0, 1 or 2 solutions. If two solutions,
// the one corresponding to the lowest bhp (and therefore
// highest rate) is returned.
//
// In order to detect these situations, we will find piecewise
// linear approximations both to the inverse of the frates
// function and to the fbhp function.
//
// We first take the FLO sample points of the VFP curve, and
// find the corresponding bhp values by solving the equation:
// flo(frates(bhp)) - flo_sample = 0
// for bhp, for each flo_sample. The resulting (flo_sample,
// bhp_sample) values give a piecewise linear approximation to
// the true inverse inflow function, at the same flo values as
// the VFP data.
//
// Then we extract a piecewise linear approximation from the
// multilinear fbhp() by evaluating it at the flo_sample
// points, with fractions given by the frates(bhp_sample)
// values.
//
// When we have both piecewise linear curves defined on the
// same flo_sample points, it is easy to distinguish between
// the 0, 1 or 2 solution cases, and obtain the right interval
// in which to solve for the solution we want (with highest
// flow in case of 2 solutions).
// Make the fbhp() function.
const auto& controls = well_ecl_.productionControls(summary_state);
const auto& table = vfp_properties_->getProd()->getTable(controls.vfp_table_number);
const double vfp_ref_depth = table.getDatumDepth();
const double rho = getRefDensity(); // Use the density at the top perforation.
const double thp_limit = this->getTHPConstraint(summary_state);
const double dp = wellhelpers::computeHydrostaticCorrection(ref_depth_, vfp_ref_depth, rho, gravity_);
auto fbhp = [this, &controls, thp_limit, dp, alq_value](const std::vector<double>& rates) {
assert(rates.size() == 3);
return this->vfp_properties_->getProd()
->bhp(controls.vfp_table_number, rates[Water], rates[Oil], rates[Gas], thp_limit, alq_value) - dp;
};
// Make the flo() function.
auto flo = [&table](const std::vector<double>& rates) {
return detail::getFlo(table, rates[Water], rates[Oil], rates[Gas]);
};
// Make the frates() function.
auto frates = [this, &ebos_simulator, &deferred_logger](const double bhp) {
// Not solving the well equations here, which means we are
// calculating at the current Fg/Fw values of the
// well. This does not matter unless the well is
// crossflowing, and then it is likely still a good
// approximation.
std::vector<double> rates(3);
computeWellRatesWithBhp(ebos_simulator, bhp, rates, deferred_logger);
return rates;
};
// Get the flo samples, add extra samples at low rates and bhp
// limit point if necessary. Then the sign must be flipped
// since the VFP code expects that production flo values are
// negative.
std::vector<double> flo_samples = table.getFloAxis();
if (flo_samples[0] > 0.0) {
const double f0 = flo_samples[0];
flo_samples.insert(flo_samples.begin(), { f0/20.0, f0/10.0, f0/5.0, f0/2.0 });
}
const double flo_bhp_limit = -flo(frates(controls.bhp_limit));
if (flo_samples.back() < flo_bhp_limit) {
flo_samples.push_back(flo_bhp_limit);
}
for (double& x : flo_samples) {
x = -x;
}
// Find bhp values for inflow relation corresponding to flo samples.
std::vector<double> bhp_samples;
for (double flo_sample : flo_samples) {
if (flo_sample < -flo_bhp_limit) {
// We would have to go under the bhp limit to obtain a
// flow of this magnitude. We associate all such flows
// with simply the bhp limit. The first one
// encountered is considered valid, the rest not. They
// are therefore skipped.
bhp_samples.push_back(controls.bhp_limit);
break;
}
auto eq = [&flo, &frates, flo_sample](double bhp) {
return flo(frates(bhp)) - flo_sample;
};
// TODO: replace hardcoded low/high limits.
const double low = 10.0 * unit::barsa;
const double high = 600.0 * unit::barsa;
const int max_iteration = 50;
const double flo_tolerance = 1e-6 * std::fabs(flo_samples.back());
int iteration = 0;
try {
const double solved_bhp = RegulaFalsiBisection<>::
solve(eq, low, high, max_iteration, flo_tolerance, iteration);
bhp_samples.push_back(solved_bhp);
}
catch (...) {
// Use previous value (or max value if at start) if we failed.
bhp_samples.push_back(bhp_samples.empty() ? high : bhp_samples.back());
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_EXTRACT_SAMPLES",
"Robust bhp(thp) solve failed extracting bhp values at flo samples for well " + name());
}
}
// Find bhp values for VFP relation corresponding to flo samples.
const int num_samples = bhp_samples.size(); // Note that this can be smaller than flo_samples.size()
std::vector<double> fbhp_samples(num_samples);
for (int ii = 0; ii < num_samples; ++ii) {
fbhp_samples[ii] = fbhp(frates(bhp_samples[ii]));
}
// #define EXTRA_THP_DEBUGGING
#ifdef EXTRA_THP_DEBUGGING
std::string dbgmsg;
dbgmsg += "flo: ";
for (int ii = 0; ii < num_samples; ++ii) {
dbgmsg += " " + std::to_string(flo_samples[ii]);
}
dbgmsg += "\nbhp: ";
for (int ii = 0; ii < num_samples; ++ii) {
dbgmsg += " " + std::to_string(bhp_samples[ii]);
}
dbgmsg += "\nfbhp: ";
for (int ii = 0; ii < num_samples; ++ii) {
dbgmsg += " " + std::to_string(fbhp_samples[ii]);
}
OpmLog::debug(dbgmsg);
#endif // EXTRA_THP_DEBUGGING
// Look for sign changes for the (fbhp_samples - bhp_samples) piecewise linear curve.
// We only look at the valid
int sign_change_index = -1;
for (int ii = 0; ii < num_samples - 1; ++ii) {
const double curr = fbhp_samples[ii] - bhp_samples[ii];
const double next = fbhp_samples[ii + 1] - bhp_samples[ii + 1];
if (curr * next < 0.0) {
// Sign change in the [ii, ii + 1] interval.
sign_change_index = ii; // May overwrite, thereby choosing the highest-flo solution.
}
}
// Handle the no solution case.
if (sign_change_index == -1) {
return std::optional<double>();
}
// Solve for the proper solution in the given interval.
auto eq = [&fbhp, &frates](double bhp) {
return fbhp(frates(bhp)) - bhp;
};
// TODO: replace hardcoded low/high limits.
const double low = bhp_samples[sign_change_index + 1];
const double high = bhp_samples[sign_change_index];
const int max_iteration = 50;
const double bhp_tolerance = 0.01 * unit::barsa;
int iteration = 0;
if (low == high) {
// We are in the high flow regime where the bhp_samples
// are all equal to the bhp_limit.
assert(low == controls.bhp_limit);
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE",
"Robust bhp(thp) solve failed for well " + name());
return std::optional<double>();
}
try {
const double solved_bhp = RegulaFalsiBisection<>::
solve(eq, low, high, max_iteration, bhp_tolerance, iteration);
#ifdef EXTRA_THP_DEBUGGING
OpmLog::debug("***** " + name() + " solved_bhp = " + std::to_string(solved_bhp)
+ " flo_bhp_limit = " + std::to_string(flo_bhp_limit));
#endif // EXTRA_THP_DEBUGGING
return solved_bhp;
}
catch (...) {
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE",
"Robust bhp(thp) solve failed for well " + name());
return std::optional<double>();
}
}
template<typename TypeTag>
std::optional<double>
StandardWell<TypeTag>::
computeBhpAtThpLimitInj(const Simulator& ebos_simulator,
const SummaryState& summary_state,
DeferredLogger& deferred_logger) const
{
// Given a VFP function returning bhp as a function of phase
// rates and thp:
// fbhp(rates, thp),
// a function extracting the particular flow rate used for VFP
// lookups:
// flo(rates)
// and the inflow function (assuming the reservoir is fixed):
// frates(bhp)
// we want to solve the equation:
// fbhp(frates(bhp, thplimit)) - bhp = 0
// for bhp.
//
// This may result in 0, 1 or 2 solutions. If two solutions,
// the one corresponding to the lowest bhp (and therefore
// highest rate) is returned.
//
// In order to detect these situations, we will find piecewise
// linear approximations both to the inverse of the frates
// function and to the fbhp function.
//
// We first take the FLO sample points of the VFP curve, and
// find the corresponding bhp values by solving the equation:
// flo(frates(bhp)) - flo_sample = 0
// for bhp, for each flo_sample. The resulting (flo_sample,
// bhp_sample) values give a piecewise linear approximation to
// the true inverse inflow function, at the same flo values as
// the VFP data.
//
// Then we extract a piecewise linear approximation from the
// multilinear fbhp() by evaluating it at the flo_sample
// points, with fractions given by the frates(bhp_sample)
// values.
//
// When we have both piecewise linear curves defined on the
// same flo_sample points, it is easy to distinguish between
// the 0, 1 or 2 solution cases, and obtain the right interval
// in which to solve for the solution we want (with highest
// flow in case of 2 solutions).
// Make the fbhp() function.
const auto& controls = well_ecl_.injectionControls(summary_state);
const auto& table = vfp_properties_->getInj()->getTable(controls.vfp_table_number);
const double vfp_ref_depth = table.getDatumDepth();
const double rho = getRefDensity(); // Use the density at the top perforation.
const double thp_limit = this->getTHPConstraint(summary_state);
const double dp = wellhelpers::computeHydrostaticCorrection(ref_depth_, vfp_ref_depth, rho, gravity_);
auto fbhp = [this, &controls, thp_limit, dp](const std::vector<double>& rates) {
assert(rates.size() == 3);
return this->vfp_properties_->getInj()
->bhp(controls.vfp_table_number, rates[Water], rates[Oil], rates[Gas], thp_limit) - dp;
};
// Make the flo() function.
auto flo = [&table](const std::vector<double>& rates) {
return detail::getFlo(table, rates[Water], rates[Oil], rates[Gas]);
};
// Make the frates() function.
auto frates = [this, &ebos_simulator, &deferred_logger](const double bhp) {
// Not solving the well equations here, which means we are
// calculating at the current Fg/Fw values of the
// well. This does not matter unless the well is
// crossflowing, and then it is likely still a good
// approximation.
std::vector<double> rates(3);
computeWellRatesWithBhp(ebos_simulator, bhp, rates, deferred_logger);
return rates;
};
// Get the flo samples, add extra samples at low rates and bhp
// limit point if necessary.
std::vector<double> flo_samples = table.getFloAxis();
if (flo_samples[0] > 0.0) {
const double f0 = flo_samples[0];
flo_samples.insert(flo_samples.begin(), { f0/20.0, f0/10.0, f0/5.0, f0/2.0 });
}
const double flo_bhp_limit = flo(frates(controls.bhp_limit));
if (flo_samples.back() < flo_bhp_limit) {
flo_samples.push_back(flo_bhp_limit);
}
// Find bhp values for inflow relation corresponding to flo samples.
std::vector<double> bhp_samples;
for (double flo_sample : flo_samples) {
if (flo_sample > flo_bhp_limit) {
// We would have to go over the bhp limit to obtain a
// flow of this magnitude. We associate all such flows
// with simply the bhp limit. The first one
// encountered is considered valid, the rest not. They
// are therefore skipped.
bhp_samples.push_back(controls.bhp_limit);
break;
}
auto eq = [&flo, &frates, flo_sample](double bhp) {
return flo(frates(bhp)) - flo_sample;
};
// TODO: replace hardcoded low/high limits.
const double low = 10.0 * unit::barsa;
const double high = 800.0 * unit::barsa;
const int max_iteration = 50;
const double flo_tolerance = 1e-6 * std::fabs(flo_samples.back());
int iteration = 0;
try {
const double solved_bhp = RegulaFalsiBisection<>::
solve(eq, low, high, max_iteration, flo_tolerance, iteration);
bhp_samples.push_back(solved_bhp);
}
catch (...) {
// Use previous value (or max value if at start) if we failed.
bhp_samples.push_back(bhp_samples.empty() ? low : bhp_samples.back());
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_EXTRACT_SAMPLES",
"Robust bhp(thp) solve failed extracting bhp values at flo samples for well " + name());
}
}
// Find bhp values for VFP relation corresponding to flo samples.
const int num_samples = bhp_samples.size(); // Note that this can be smaller than flo_samples.size()
std::vector<double> fbhp_samples(num_samples);
for (int ii = 0; ii < num_samples; ++ii) {
fbhp_samples[ii] = fbhp(frates(bhp_samples[ii]));
}
// #define EXTRA_THP_DEBUGGING
#ifdef EXTRA_THP_DEBUGGING
std::string dbgmsg;
dbgmsg += "flo: ";
for (int ii = 0; ii < num_samples; ++ii) {
dbgmsg += " " + std::to_string(flo_samples[ii]);
}
dbgmsg += "\nbhp: ";
for (int ii = 0; ii < num_samples; ++ii) {
dbgmsg += " " + std::to_string(bhp_samples[ii]);
}
dbgmsg += "\nfbhp: ";
for (int ii = 0; ii < num_samples; ++ii) {
dbgmsg += " " + std::to_string(fbhp_samples[ii]);
}
OpmLog::debug(dbgmsg);
#endif // EXTRA_THP_DEBUGGING
// Look for sign changes for the (fbhp_samples - bhp_samples) piecewise linear curve.
// We only look at the valid
int sign_change_index = -1;
for (int ii = 0; ii < num_samples - 1; ++ii) {
const double curr = fbhp_samples[ii] - bhp_samples[ii];
const double next = fbhp_samples[ii + 1] - bhp_samples[ii + 1];
if (curr * next < 0.0) {
// Sign change in the [ii, ii + 1] interval.
sign_change_index = ii; // May overwrite, thereby choosing the highest-flo solution.
}
}
// Handle the no solution case.
if (sign_change_index == -1) {
return std::optional<double>();
}
// Solve for the proper solution in the given interval.
auto eq = [&fbhp, &frates](double bhp) {
return fbhp(frates(bhp)) - bhp;
};
// TODO: replace hardcoded low/high limits.
const double low = bhp_samples[sign_change_index + 1];
const double high = bhp_samples[sign_change_index];
const int max_iteration = 50;
const double bhp_tolerance = 0.01 * unit::barsa;
int iteration = 0;
if (low == high) {
// We are in the high flow regime where the bhp_samples
// are all equal to the bhp_limit.
assert(low == controls.bhp_limit);
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE",
"Robust bhp(thp) solve failed for well " + name());
return std::optional<double>();
}
try {
const double solved_bhp = RegulaFalsiBisection<>::
solve(eq, low, high, max_iteration, bhp_tolerance, iteration);
#ifdef EXTRA_THP_DEBUGGING
OpmLog::debug("***** " + name() + " solved_bhp = " + std::to_string(solved_bhp)
+ " flo_bhp_limit = " + std::to_string(flo_bhp_limit));
#endif // EXTRA_THP_DEBUGGING
return solved_bhp;
}
catch (...) {
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE",
"Robust bhp(thp) solve failed for well " + name());
return std::optional<double>();
}
}
template<typename TypeTag>
bool
StandardWell<TypeTag>::
iterateWellEqWithControl(const Simulator& ebosSimulator,
const double dt,
const Well::InjectionControls& inj_controls,
const Well::ProductionControls& prod_controls,
WellState& well_state,
const GroupState& group_state,
DeferredLogger& deferred_logger)
{
const int max_iter = param_.max_inner_iter_wells_;
int it = 0;
bool converged;
do {
assembleWellEqWithoutIteration(ebosSimulator, dt, inj_controls, prod_controls, well_state, group_state, deferred_logger);
auto report = getWellConvergence(well_state, Base::B_avg_, deferred_logger);
converged = report.converged();
if (converged) {
break;
}
++it;
solveEqAndUpdateWellState(well_state, deferred_logger);
// TODO: when this function is used for well testing purposes, will need to check the controls, so that we will obtain convergence
// under the most restrictive control. Based on this converged results, we can check whether to re-open the well. Either we refactor
// this function or we use different functions for the well testing purposes.
// We don't allow for switching well controls while computing well potentials and testing wells
// updateWellControl(ebosSimulator, well_state, deferred_logger);
initPrimaryVariablesEvaluation();
} while (it < max_iter);
return converged;
}
template<typename TypeTag>
std::vector<double>
StandardWell<TypeTag>::
computeCurrentWellRates(const Simulator& ebosSimulator,
DeferredLogger& deferred_logger) const
{
// Calculate the rates that follow from the current primary variables.
std::vector<EvalWell> well_q_s(num_components_, {numWellEq_ + numEq, 0.});
const EvalWell& bhp = getBhp();
const bool allow_cf = getAllowCrossFlow() || openCrossFlowAvoidSingularity(ebosSimulator);
for (int perf = 0; perf < number_of_perforations_; ++perf) {
const int cell_idx = well_cells_[perf];
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/ 0));
std::vector<EvalWell> mob(num_components_, {numWellEq_ + numEq, 0.});
getMobility(ebosSimulator, perf, mob, deferred_logger);
std::vector<EvalWell> cq_s(num_components_, {numWellEq_ + numEq, 0.});
double perf_dis_gas_rate = 0.;
double perf_vap_oil_rate = 0.;
double trans_mult = ebosSimulator.problem().template rockCompTransMultiplier<double>(intQuants, cell_idx);
const double Tw = well_index_[perf] * trans_mult;
computePerfRate(intQuants, mob, bhp, Tw, perf, allow_cf,
cq_s, perf_dis_gas_rate, perf_vap_oil_rate, deferred_logger);
for (int comp = 0; comp < num_components_; ++comp) {
well_q_s[comp] += cq_s[comp];
}
}
std::vector<double> well_q_s_noderiv(well_q_s.size());
for (int comp = 0; comp < num_components_; ++comp) {
well_q_s_noderiv[comp] = well_q_s[comp].value();
}
const auto& comm = this->parallel_well_info_.communication();
if (comm.size() > 1)
{
comm.sum(well_q_s_noderiv.data(), well_q_s_noderiv.size());
}
return well_q_s_noderiv;
}
template <typename TypeTag>
void
StandardWell<TypeTag>::
computeConnLevelProdInd(const typename StandardWell<TypeTag>::FluidState& fs,
const std::function<double(const double)>& connPICalc,
const std::vector<EvalWell>& mobility,
double* connPI) const
{
const auto& pu = this->phaseUsage();
const int np = this->number_of_phases_;
for (int p = 0; p < np; ++p) {
// Note: E100's notion of PI value phase mobility includes
// the reciprocal FVF.
const auto connMob =
mobility[ flowPhaseToEbosCompIdx(p) ].value()
* fs.invB(flowPhaseToEbosPhaseIdx(p)).value();
connPI[p] = connPICalc(connMob);
}
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) &&
FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx))
{
const auto io = pu.phase_pos[Oil];
const auto ig = pu.phase_pos[Gas];
const auto vapoil = connPI[ig] * fs.Rv().value();
const auto disgas = connPI[io] * fs.Rs().value();
connPI[io] += vapoil;
connPI[ig] += disgas;
}
}
template <typename TypeTag>
void
StandardWell<TypeTag>::
computeConnLevelInjInd(const typename StandardWell<TypeTag>::FluidState& fs,
const Phase preferred_phase,
const std::function<double(const double)>& connIICalc,
const std::vector<EvalWell>& mobility,
double* connII,
DeferredLogger& deferred_logger) const
{
// Assumes single phase injection
const auto& pu = this->phaseUsage();
auto phase_pos = 0;
if (preferred_phase == Phase::GAS) {
phase_pos = pu.phase_pos[Gas];
}
else if (preferred_phase == Phase::OIL) {
phase_pos = pu.phase_pos[Oil];
}
else if (preferred_phase == Phase::WATER) {
phase_pos = pu.phase_pos[Water];
}
else {
OPM_DEFLOG_THROW(NotImplemented,
"Unsupported Injector Type ("
<< static_cast<int>(preferred_phase)
<< ") for well " << this->name()
<< " during connection I.I. calculation",
deferred_logger);
}
const auto zero = EvalWell { this->numWellEq_ + this->numEq, 0.0 };
const auto mt = std::accumulate(mobility.begin(), mobility.end(), zero);
connII[phase_pos] = connIICalc(mt.value() * fs.invB(flowPhaseToEbosPhaseIdx(phase_pos)).value());
}
} // namespace Opm