mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-02 12:36:54 -06:00
333 lines
11 KiB
C++
333 lines
11 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#ifndef EIGEN_CONSERVATIVESPARSESPARSEPRODUCT_H
|
|
#define EIGEN_CONSERVATIVESPARSESPARSEPRODUCT_H
|
|
|
|
#warning "Using overloaded Eigen::ConservativeSparseSparseProduct.h"
|
|
|
|
#include <algorithm>
|
|
#include <iterator>
|
|
#include <functional>
|
|
#include <limits>
|
|
#include <vector>
|
|
|
|
#include <Eigen/Core>
|
|
|
|
namespace Eigen {
|
|
|
|
// forward declaration of SparseMatrix
|
|
template<typename _Scalar, int _Options, typename _Index>
|
|
class SparseMatrix;
|
|
|
|
|
|
namespace internal {
|
|
|
|
template < unsigned int depth >
|
|
struct QuickSort
|
|
{
|
|
template <typename T>
|
|
static inline void sort(T begin, T end)
|
|
{
|
|
if (begin != end)
|
|
{
|
|
T middle = std::partition (begin, end,
|
|
std::bind2nd(std::less<typename std::iterator_traits<T>::value_type>(), *begin)
|
|
);
|
|
QuickSort< depth-1 >::sort(begin, middle);
|
|
|
|
// std::sort (max(begin + 1, middle), end);
|
|
T new_middle = begin;
|
|
QuickSort< depth-1 >::sort(++new_middle, end);
|
|
}
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct QuickSort< 0 >
|
|
{
|
|
template <typename T>
|
|
static inline void sort(T begin, T end)
|
|
{
|
|
// fall back to standard insertion sort
|
|
std::sort( begin, end );
|
|
}
|
|
};
|
|
|
|
|
|
template<typename Lhs, typename Rhs, typename ResultType>
|
|
static void conservative_sparse_sparse_product_impl(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
|
{
|
|
// if one of the matrices does not contain non zero elements
|
|
// the result will only contain an empty matrix
|
|
if( lhs.nonZeros() == 0 || rhs.nonZeros() == 0 )
|
|
return ;
|
|
|
|
typedef typename remove_all<Lhs>::type::Scalar Scalar;
|
|
typedef typename remove_all<Lhs>::type::Index Index;
|
|
|
|
// make sure to call innerSize/outerSize since we fake the storage order.
|
|
Index rows = lhs.innerSize();
|
|
Index cols = rhs.outerSize();
|
|
eigen_assert(lhs.outerSize() == rhs.innerSize());
|
|
|
|
std::vector<bool> mask(rows,false);
|
|
Matrix<Scalar,Dynamic,1> values(rows);
|
|
Matrix<Index,Dynamic,1> indices(rows);
|
|
|
|
// estimate the number of non zero entries
|
|
// given a rhs column containing Y non zeros, we assume that the respective Y columns
|
|
// of the lhs differs in average of one non zeros, thus the number of non zeros for
|
|
// the product of a rhs column with the lhs is X+Y where X is the average number of non zero
|
|
// per column of the lhs.
|
|
// Therefore, we have nnz(lhs*rhs) = nnz(lhs) + nnz(rhs)
|
|
Index estimated_nnz_prod = lhs.nonZeros() + rhs.nonZeros();
|
|
|
|
res.setZero();
|
|
res.reserve(Index(estimated_nnz_prod));
|
|
|
|
//const Scalar epsilon = std::numeric_limits< Scalar >::epsilon();
|
|
const Scalar epsilon = 1e-15 ;
|
|
|
|
// we compute each column of the result, one after the other
|
|
for (Index j=0; j<cols; ++j)
|
|
{
|
|
Index nnz = 0;
|
|
for (typename Rhs::InnerIterator rhsIt(rhs, j); rhsIt; ++rhsIt)
|
|
{
|
|
const Scalar y = rhsIt.value();
|
|
for (typename Lhs::InnerIterator lhsIt(lhs, rhsIt.index()); lhsIt; ++lhsIt)
|
|
{
|
|
const Index i = lhsIt.index();
|
|
const Scalar val = lhsIt.value() * y;
|
|
if( std::abs( val ) > epsilon )
|
|
{
|
|
if(!mask[i])
|
|
{
|
|
mask[i] = true;
|
|
values[i] = val;
|
|
indices[nnz] = i;
|
|
++nnz;
|
|
}
|
|
else
|
|
values[i] += val;
|
|
}
|
|
}
|
|
}
|
|
|
|
if( nnz > 1 )
|
|
{
|
|
// sort indices for sorted insertion to avoid later copying
|
|
QuickSort< 1 >::sort( indices.data(), indices.data()+nnz );
|
|
}
|
|
|
|
res.startVec(j);
|
|
// ordered insertion
|
|
// still using insertBackByOuterInnerUnordered since we know what we are doing
|
|
for(Index k=0; k<nnz; ++k)
|
|
{
|
|
const Index i = indices[k];
|
|
res.insertBackByOuterInnerUnordered(j,i) = values[i];
|
|
mask[i] = false;
|
|
}
|
|
|
|
#if 0
|
|
// alternative ordered insertion code:
|
|
|
|
Index t200 = rows/(log2(200)*1.39);
|
|
Index t = (rows*100)/139;
|
|
|
|
// FIXME reserve nnz non zeros
|
|
// FIXME implement fast sort algorithms for very small nnz
|
|
// if the result is sparse enough => use a quick sort
|
|
// otherwise => loop through the entire vector
|
|
// In order to avoid to perform an expensive log2 when the
|
|
// result is clearly very sparse we use a linear bound up to 200.
|
|
//if((nnz<200 && nnz<t200) || nnz * log2(nnz) < t)
|
|
//res.startVec(j);
|
|
if(true)
|
|
{
|
|
if(nnz>1) std::sort(indices.data(),indices.data()+nnz);
|
|
for(Index k=0; k<nnz; ++k)
|
|
{
|
|
Index i = indices[k];
|
|
res.insertBackByOuterInner(j,i) = values[i];
|
|
mask[i] = false;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// dense path
|
|
for(Index i=0; i<rows; ++i)
|
|
{
|
|
if(mask[i])
|
|
{
|
|
mask[i] = false;
|
|
res.insertBackByOuterInner(j,i) = values[i];
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
}
|
|
res.finalize();
|
|
}
|
|
|
|
} // end namespace internal
|
|
|
|
namespace internal {
|
|
|
|
template<typename Lhs, typename Rhs, typename ResultType,
|
|
int LhsStorageOrder = (traits<Lhs>::Flags&RowMajorBit) ? RowMajor : ColMajor,
|
|
int RhsStorageOrder = (traits<Rhs>::Flags&RowMajorBit) ? RowMajor : ColMajor,
|
|
int ResStorageOrder = (traits<ResultType>::Flags&RowMajorBit) ? RowMajor : ColMajor>
|
|
struct conservative_sparse_sparse_product_selector;
|
|
|
|
template<typename Lhs, typename Rhs, typename ResultType>
|
|
struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,ColMajor,ColMajor>
|
|
{
|
|
typedef typename remove_all<Lhs>::type LhsCleaned;
|
|
typedef typename LhsCleaned::Scalar Scalar;
|
|
|
|
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
|
{
|
|
//typedef SparseMatrix<typename ResultType::Scalar,RowMajor,typename ResultType::Index> RowMajorMatrix;
|
|
typedef SparseMatrix<typename ResultType::Scalar,ColMajor,typename ResultType::Index> ColMajorMatrix;
|
|
//ColMajorMatrix resCol(lhs.rows(),rhs.cols());
|
|
res = ColMajorMatrix(lhs.rows(),rhs.cols());
|
|
internal::conservative_sparse_sparse_product_impl<Lhs,Rhs,ColMajorMatrix>(lhs, rhs, res);
|
|
//internal::conservative_sparse_sparse_product_impl<Lhs,Rhs,ColMajorMatrix>(lhs, rhs, resCol);
|
|
// sort the non zeros:
|
|
//RowMajorMatrix resRow(resCol);
|
|
//res = resRow;
|
|
}
|
|
};
|
|
|
|
template<typename Lhs, typename Rhs, typename ResultType>
|
|
struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,RowMajor,ColMajor,ColMajor>
|
|
{
|
|
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
|
{
|
|
typedef SparseMatrix<typename ResultType::Scalar,ColMajor,typename ResultType::Index> ColMajorMatrix;
|
|
//RowMajorMatrix rhsRow = rhs;
|
|
//RowMajorMatrix resRow(lhs.rows(), rhs.cols());
|
|
ColMajorMatrix lhsCol = lhs;
|
|
res = ResultType( lhs.rows(), rhs.cols() );
|
|
internal::conservative_sparse_sparse_product_impl<ColMajorMatrix, Rhs, ResultType>( lhsCol, rhs, res );
|
|
//internal::conservative_sparse_sparse_product_impl<RowMajorMatrix,Lhs,RowMajorMatrix>(rhsRow, lhs, resRow);
|
|
//res = resRow;
|
|
}
|
|
};
|
|
|
|
template<typename Lhs, typename Rhs, typename ResultType>
|
|
struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,RowMajor,ColMajor>
|
|
{
|
|
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
|
{
|
|
typedef SparseMatrix<typename ResultType::Scalar,ColMajor,typename ResultType::Index> ColMajorMatrix;
|
|
ColMajorMatrix rhsCol = rhs;
|
|
res = ResultType( lhs.rows(), rhs.cols() );
|
|
internal::conservative_sparse_sparse_product_impl<Lhs, ColMajorMatrix, ResultType>( lhs, rhsCol, res);
|
|
/*
|
|
typedef SparseMatrix<typename ResultType::Scalar,RowMajor,typename ResultType::Index> RowMajorMatrix;
|
|
RowMajorMatrix lhsRow = lhs;
|
|
RowMajorMatrix resRow(lhs.rows(), rhs.cols());
|
|
internal::conservative_sparse_sparse_product_impl<Rhs,RowMajorMatrix,RowMajorMatrix>(rhs, lhsRow, resRow);
|
|
res = resRow;
|
|
*/
|
|
}
|
|
};
|
|
|
|
template<typename Lhs, typename Rhs, typename ResultType>
|
|
struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,RowMajor,RowMajor,ColMajor>
|
|
{
|
|
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
|
{
|
|
typedef SparseMatrix<typename ResultType::Scalar,RowMajor,typename ResultType::Index> RowMajorMatrix;
|
|
RowMajorMatrix resRow(lhs.rows(), rhs.cols());
|
|
internal::conservative_sparse_sparse_product_impl<Rhs,Lhs,RowMajorMatrix>(rhs, lhs, resRow);
|
|
res = resRow;
|
|
}
|
|
};
|
|
|
|
|
|
template<typename Lhs, typename Rhs, typename ResultType>
|
|
struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,ColMajor,RowMajor>
|
|
{
|
|
typedef typename traits<typename remove_all<Lhs>::type>::Scalar Scalar;
|
|
|
|
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
|
{
|
|
typedef SparseMatrix<typename ResultType::Scalar,ColMajor,typename ResultType::Index> ColMajorMatrix;
|
|
ColMajorMatrix resCol(lhs.rows(), rhs.cols());
|
|
internal::conservative_sparse_sparse_product_impl<Lhs,Rhs,ColMajorMatrix>(lhs, rhs, resCol);
|
|
res = resCol;
|
|
}
|
|
};
|
|
|
|
template<typename Lhs, typename Rhs, typename ResultType>
|
|
struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,RowMajor,ColMajor,RowMajor>
|
|
{
|
|
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
|
{
|
|
typedef SparseMatrix<typename ResultType::Scalar,RowMajor,typename ResultType::Index> RowMajorMatrix;
|
|
RowMajorMatrix rhsRow = rhs;
|
|
res = ResultType( lhs.rows(), rhs.cols() );
|
|
internal::conservative_sparse_sparse_product_impl<Lhs, RowMajorMatrix, ResultType>(rhsRow, lhs, res);
|
|
/*
|
|
typedef SparseMatrix<typename ResultType::Scalar,ColMajor,typename ResultType::Index> ColMajorMatrix;
|
|
ColMajorMatrix lhsCol = lhs;
|
|
ColMajorMatrix resCol(lhs.rows(), rhs.cols());
|
|
internal::conservative_sparse_sparse_product_impl<ColMajorMatrix,Rhs,ColMajorMatrix>(lhsCol, rhs, resCol);
|
|
res = resCol;
|
|
*/
|
|
}
|
|
};
|
|
|
|
template<typename Lhs, typename Rhs, typename ResultType>
|
|
struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,RowMajor,RowMajor>
|
|
{
|
|
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
|
{
|
|
typedef SparseMatrix<typename ResultType::Scalar,RowMajor,typename ResultType::Index> RowMajorMatrix;
|
|
RowMajorMatrix lhsRow = lhs;
|
|
res = RowMajorMatrix( lhs.rows(), rhs.cols() );
|
|
internal::conservative_sparse_sparse_product_impl<Rhs, RowMajorMatrix, ResultType>(rhs, lhsRow, res);
|
|
/*
|
|
typedef SparseMatrix<typename ResultType::Scalar,ColMajor,typename ResultType::Index> ColMajorMatrix;
|
|
ColMajorMatrix rhsCol = rhs;
|
|
ColMajorMatrix resCol(lhs.rows(), rhs.cols());
|
|
internal::conservative_sparse_sparse_product_impl<Lhs,ColMajorMatrix,ColMajorMatrix>(lhs, rhsCol, resCol);
|
|
res = resCol;
|
|
*/
|
|
}
|
|
};
|
|
|
|
template<typename Lhs, typename Rhs, typename ResultType>
|
|
struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,RowMajor,RowMajor,RowMajor>
|
|
{
|
|
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
|
{
|
|
typedef SparseMatrix<typename ResultType::Scalar,RowMajor,typename ResultType::Index> RowMajorMatrix;
|
|
//typedef SparseMatrix<typename ResultType::Scalar,ColMajor,typename ResultType::Index> ColMajorMatrix;
|
|
res = RowMajorMatrix( lhs.rows(),rhs.cols() );
|
|
//RowMajorMatrix resRow(lhs.rows(),rhs.cols());
|
|
internal::conservative_sparse_sparse_product_impl<Rhs,Lhs,RowMajorMatrix>(rhs, lhs, res);
|
|
// sort the non zeros:
|
|
//ColMajorMatrix resCol(resRow);
|
|
//res = resCol;
|
|
}
|
|
};
|
|
|
|
} // end namespace internal
|
|
|
|
} // end namespace Eigen
|
|
|
|
#endif // EIGEN_CONSERVATIVESPARSESPARSEPRODUCT_H
|