opm-simulators/examples/problems/powerinjectionproblem.hh
2020-06-09 10:43:28 +02:00

469 lines
14 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::PowerInjectionProblem
*/
#ifndef EWOMS_POWER_INJECTION_PROBLEM_HH
#define EWOMS_POWER_INJECTION_PROBLEM_HH
#include <opm/models/immiscible/immisciblemodel.hh>
#include <opm/models/io/cubegridvanguard.hh>
#include <opm/material/fluidmatrixinteractions/RegularizedVanGenuchten.hpp>
#include <opm/material/fluidmatrixinteractions/LinearMaterial.hpp>
#include <opm/material/fluidmatrixinteractions/EffToAbsLaw.hpp>
#include <opm/material/fluidmatrixinteractions/MaterialTraits.hpp>
#include <opm/material/fluidsystems/TwoPhaseImmiscibleFluidSystem.hpp>
#include <opm/material/fluidstates/ImmiscibleFluidState.hpp>
#include <opm/material/components/SimpleH2O.hpp>
#include <opm/material/components/Air.hpp>
#include <opm/material/common/Unused.hpp>
#include <dune/grid/yaspgrid.hh>
#include <dune/common/version.hh>
#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>
#include <sstream>
#include <string>
#include <type_traits>
#include <iostream>
namespace Opm {
template <class TypeTag>
class PowerInjectionProblem;
}
namespace Opm::Properties {
NEW_TYPE_TAG(PowerInjectionBaseProblem);
// Set the grid implementation to be used
template<class TypeTag>
struct Grid<TypeTag, TTag::PowerInjectionBaseProblem> { using type = Dune::YaspGrid</*dim=*/1>; };
// set the Vanguard property
SET_TYPE_PROP(PowerInjectionBaseProblem, Vanguard,
Opm::CubeGridVanguard<TypeTag>);
// Set the problem property
SET_TYPE_PROP(PowerInjectionBaseProblem, Problem,
Opm::PowerInjectionProblem<TypeTag>);
// Set the wetting phase
template<class TypeTag>
struct WettingPhase<TypeTag, TTag::PowerInjectionBaseProblem>
{
private:
typedef GetPropType<TypeTag, Properties::Scalar> Scalar;
public:
typedef Opm::LiquidPhase<Scalar, Opm::SimpleH2O<Scalar> > type;
};
// Set the non-wetting phase
template<class TypeTag>
struct NonwettingPhase<TypeTag, TTag::PowerInjectionBaseProblem>
{
private:
typedef GetPropType<TypeTag, Properties::Scalar> Scalar;
public:
typedef Opm::GasPhase<Scalar, Opm::Air<Scalar> > type;
};
// Set the material Law
template<class TypeTag>
struct MaterialLaw<TypeTag, TTag::PowerInjectionBaseProblem>
{
private:
typedef GetPropType<TypeTag, Properties::FluidSystem> FluidSystem;
enum { wettingPhaseIdx = FluidSystem::wettingPhaseIdx };
enum { nonWettingPhaseIdx = FluidSystem::nonWettingPhaseIdx };
typedef GetPropType<TypeTag, Properties::Scalar> Scalar;
typedef Opm::TwoPhaseMaterialTraits<Scalar,
/*wettingPhaseIdx=*/FluidSystem::wettingPhaseIdx,
/*nonWettingPhaseIdx=*/FluidSystem::nonWettingPhaseIdx>
Traits;
// define the material law which is parameterized by effective
// saturations
typedef Opm::RegularizedVanGenuchten<Traits> EffectiveLaw;
public:
// define the material law parameterized by absolute saturations
typedef Opm::EffToAbsLaw<EffectiveLaw> type;
};
// Write out the filter velocities for this problem
template<class TypeTag>
struct VtkWriteFilterVelocities<TypeTag, TTag::PowerInjectionBaseProblem> { static constexpr bool value = true; };
// Disable gravity
template<class TypeTag>
struct EnableGravity<TypeTag, TTag::PowerInjectionBaseProblem> { static constexpr bool value = false; };
// define the properties specific for the power injection problem
template<class TypeTag>
struct DomainSizeX<TypeTag, TTag::PowerInjectionBaseProblem>
{
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 100.0;
};
template<class TypeTag>
struct DomainSizeY<TypeTag, TTag::PowerInjectionBaseProblem>
{
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 1.0;
};
template<class TypeTag>
struct DomainSizeZ<TypeTag, TTag::PowerInjectionBaseProblem>
{
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 1.0;
};
template<class TypeTag>
struct CellsX<TypeTag, TTag::PowerInjectionBaseProblem> { static constexpr int value = 250; };
template<class TypeTag>
struct CellsY<TypeTag, TTag::PowerInjectionBaseProblem> { static constexpr int value = 1; };
template<class TypeTag>
struct CellsZ<TypeTag, TTag::PowerInjectionBaseProblem> { static constexpr int value = 1; };
// The default for the end time of the simulation
template<class TypeTag>
struct EndTime<TypeTag, TTag::PowerInjectionBaseProblem>
{
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 100;
};
// The default for the initial time step size of the simulation
template<class TypeTag>
struct InitialTimeStepSize<TypeTag, TTag::PowerInjectionBaseProblem>
{
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 1e-3;
};
} // namespace Opm::Properties
namespace Opm {
/*!
* \ingroup TestProblems
* \brief 1D Problem with very fast injection of gas on the left.
*
* The velocity model is chosen in the .cc file in this problem. The
* spatial parameters are inspired by the ones given by
*
* V. Jambhekar: "Forchheimer Porous-media Flow models -- Numerical
* Investigation and Comparison with Experimental Data", Master's
* Thesis at Institute for Modelling Hydraulic and Environmental
* Systems, University of Stuttgart, 2011
*/
template <class TypeTag>
class PowerInjectionProblem : public GetPropType<TypeTag, Properties::BaseProblem>
{
typedef GetPropType<TypeTag, Properties::BaseProblem> ParentType;
typedef GetPropType<TypeTag, Properties::Scalar> Scalar;
typedef GetPropType<TypeTag, Properties::GridView> GridView;
typedef GetPropType<TypeTag, Properties::Indices> Indices;
typedef GetPropType<TypeTag, Properties::FluidSystem> FluidSystem;
typedef GetPropType<TypeTag, Properties::WettingPhase> WettingPhase;
typedef GetPropType<TypeTag, Properties::NonwettingPhase> NonwettingPhase;
typedef GetPropType<TypeTag, Properties::PrimaryVariables> PrimaryVariables;
typedef GetPropType<TypeTag, Properties::EqVector> EqVector;
typedef GetPropType<TypeTag, Properties::RateVector> RateVector;
typedef GetPropType<TypeTag, Properties::BoundaryRateVector> BoundaryRateVector;
typedef GetPropType<TypeTag, Properties::Simulator> Simulator;
enum {
// number of phases
numPhases = FluidSystem::numPhases,
// phase indices
wettingPhaseIdx = FluidSystem::wettingPhaseIdx,
nonWettingPhaseIdx = FluidSystem::nonWettingPhaseIdx,
// equation indices
contiNEqIdx = Indices::conti0EqIdx + nonWettingPhaseIdx,
// Grid and world dimension
dim = GridView::dimension,
dimWorld = GridView::dimensionworld
};
typedef GetPropType<TypeTag, Properties::MaterialLaw> MaterialLaw;
typedef GetPropType<TypeTag, Properties::MaterialLawParams> MaterialLawParams;
typedef typename GridView::ctype CoordScalar;
typedef Dune::FieldVector<CoordScalar, dimWorld> GlobalPosition;
typedef Dune::FieldMatrix<Scalar, dimWorld, dimWorld> DimMatrix;
public:
/*!
* \copydoc Doxygen::defaultProblemConstructor
*/
PowerInjectionProblem(Simulator& simulator)
: ParentType(simulator)
{ }
/*!
* \copydoc FvBaseProblem::finishInit
*/
void finishInit()
{
ParentType::finishInit();
eps_ = 3e-6;
FluidSystem::init();
temperature_ = 273.15 + 26.6;
// parameters for the Van Genuchten law
// alpha and n
materialParams_.setVgAlpha(0.00045);
materialParams_.setVgN(7.3);
materialParams_.finalize();
K_ = this->toDimMatrix_(5.73e-08); // [m^2]
setupInitialFluidState_();
}
/*!
* \name Auxiliary methods
*/
//! \{
/*!
* \copydoc FvBaseProblem::name
*/
std::string name() const
{
std::ostringstream oss;
oss << "powerinjection_";
if (std::is_same<GetPropType<TypeTag, Properties::FluxModule>,
Opm::DarcyFluxModule<TypeTag> >::value)
oss << "darcy";
else
oss << "forchheimer";
if (std::is_same<GetPropType<TypeTag, Properties::LocalLinearizerSplice>,
Properties::TTag::AutoDiffLocalLinearizer>::value)
oss << "_" << "ad";
else
oss << "_" << "fd";
return oss.str();
}
/*!
* \copydoc FvBaseProblem::endTimeStep
*/
void endTimeStep()
{
#ifndef NDEBUG
this->model().checkConservativeness();
// Calculate storage terms
EqVector storage;
this->model().globalStorage(storage);
// Write mass balance information for rank 0
if (this->gridView().comm().rank() == 0) {
std::cout << "Storage: " << storage << std::endl << std::flush;
}
#endif // NDEBUG
}
//! \}
/*!
* \name Soil parameters
*/
//! \{
/*!
* \copydoc FvBaseMultiPhaseProblem::intrinsicPermeability
*/
template <class Context>
const DimMatrix& intrinsicPermeability(const Context& context OPM_UNUSED,
unsigned spaceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED) const
{ return K_; }
/*!
* \copydoc ForchheimerBaseProblem::ergunCoefficient
*/
template <class Context>
Scalar ergunCoefficient(const Context& context OPM_UNUSED,
unsigned spaceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED) const
{ return 0.3866; }
/*!
* \copydoc FvBaseMultiPhaseProblem::porosity
*/
template <class Context>
Scalar porosity(const Context& context OPM_UNUSED,
unsigned spaceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED) const
{ return 0.558; }
/*!
* \copydoc FvBaseMultiPhaseProblem::materialLawParams
*/
template <class Context>
const MaterialLawParams&
materialLawParams(const Context& context OPM_UNUSED,
unsigned spaceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED) const
{ return materialParams_; }
/*!
* \copydoc FvBaseMultiPhaseProblem::temperature
*/
template <class Context>
Scalar temperature(const Context& context OPM_UNUSED,
unsigned spaceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED) const
{ return temperature_; }
//! \}
/*!
* \name Boundary conditions
*/
//! \{
/*!
* \copydoc FvBaseProblem::boundary
*
* This problem sets a very high injection rate of nitrogen on the
* left and a free-flow boundary on the right.
*/
template <class Context>
void boundary(BoundaryRateVector& values,
const Context& context,
unsigned spaceIdx,
unsigned timeIdx) const
{
const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
if (onLeftBoundary_(pos)) {
RateVector massRate(0.0);
massRate = 0.0;
massRate[contiNEqIdx] = -1.00; // kg / (m^2 * s)
// impose a forced flow boundary
values.setMassRate(massRate);
}
else if (onRightBoundary_(pos))
// free flow boundary with initial condition on the right
values.setFreeFlow(context, spaceIdx, timeIdx, initialFluidState_);
else
values.setNoFlow();
}
//! \}
/*!
* \name Volumetric terms
*/
//! \{
/*!
* \copydoc FvBaseProblem::initial
*/
template <class Context>
void initial(PrimaryVariables& values,
const Context& context OPM_UNUSED,
unsigned spaceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED) const
{
// assign the primary variables
values.assignNaive(initialFluidState_);
}
/*!
* \copydoc FvBaseProblem::source
*
* For this problem, the source term of all components is 0
* everywhere.
*/
template <class Context>
void source(RateVector& rate,
const Context& context OPM_UNUSED,
unsigned spaceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED) const
{ rate = Scalar(0.0); }
//! \}
private:
bool onLeftBoundary_(const GlobalPosition& pos) const
{ return pos[0] < this->boundingBoxMin()[0] + eps_; }
bool onRightBoundary_(const GlobalPosition& pos) const
{ return pos[0] > this->boundingBoxMax()[0] - eps_; }
void setupInitialFluidState_()
{
initialFluidState_.setTemperature(temperature_);
Scalar Sw = 1.0;
initialFluidState_.setSaturation(wettingPhaseIdx, Sw);
initialFluidState_.setSaturation(nonWettingPhaseIdx, 1 - Sw);
Scalar p = 1e5;
initialFluidState_.setPressure(wettingPhaseIdx, p);
initialFluidState_.setPressure(nonWettingPhaseIdx, p);
typename FluidSystem::template ParameterCache<Scalar> paramCache;
paramCache.updateAll(initialFluidState_);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
initialFluidState_.setDensity(phaseIdx,
FluidSystem::density(initialFluidState_, paramCache, phaseIdx));
initialFluidState_.setViscosity(phaseIdx,
FluidSystem::viscosity(initialFluidState_, paramCache, phaseIdx));
}
}
DimMatrix K_;
MaterialLawParams materialParams_;
Opm::ImmiscibleFluidState<Scalar, FluidSystem> initialFluidState_;
Scalar temperature_;
Scalar eps_;
};
} // namespace Opm
#endif