opm-simulators/examples/problems/groundwaterproblem.hh
Andreas Lauser 2c97e90a79 make most indices unsigned
(instead of using 'int'.) This triggered quite a few compiler warnings
which are also dealt-with by this patch.
2015-11-18 18:09:56 +01:00

375 lines
12 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
Copyright (C) 2008-2013 by Andreas Lauser
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
/*!
* \file
*
* \copydoc Ewoms::GroundWaterProblem
*/
#ifndef EWOMS_GROUND_WATER_PROBLEM_HH
#define EWOMS_GROUND_WATER_PROBLEM_HH
#include <ewoms/linear/paralleliterativebackend.hh>
#include <ewoms/models/immiscible/immiscibleproperties.hh>
#include <opm/material/components/SimpleH2O.hpp>
#include <opm/material/fluidstates/ImmiscibleFluidState.hpp>
#include <opm/material/fluidsystems/LiquidPhase.hpp>
#include <dune/grid/yaspgrid.hh>
#include <dune/grid/io/file/dgfparser/dgfyasp.hh>
#include <dune/common/version.hh>
#include <dune/common/fmatrix.hh>
#include <dune/common/fvector.hh>
#include <sstream>
#include <string>
namespace Ewoms {
template <class TypeTag>
class GroundWaterProblem;
}
namespace Ewoms {
namespace Properties {
NEW_TYPE_TAG(GroundWaterBaseProblem);
NEW_PROP_TAG(LensLowerLeftX);
NEW_PROP_TAG(LensLowerLeftY);
NEW_PROP_TAG(LensLowerLeftZ);
NEW_PROP_TAG(LensUpperRightX);
NEW_PROP_TAG(LensUpperRightY);
NEW_PROP_TAG(LensUpperRightZ);
NEW_PROP_TAG(Permeability);
NEW_PROP_TAG(PermeabilityLens);
SET_PROP(GroundWaterBaseProblem, Fluid)
{
private:
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
public:
typedef Opm::LiquidPhase<Scalar, Opm::SimpleH2O<Scalar> > type;
};
// Set the grid type
SET_TYPE_PROP(GroundWaterBaseProblem, Grid, Dune::YaspGrid<2>);
// SET_TYPE_PROP(GroundWaterBaseProblem, Grid, Dune::SGrid<2, 2>);
SET_TYPE_PROP(GroundWaterBaseProblem, Problem,
Ewoms::GroundWaterProblem<TypeTag>);
SET_SCALAR_PROP(GroundWaterBaseProblem, LensLowerLeftX, 0.25);
SET_SCALAR_PROP(GroundWaterBaseProblem, LensLowerLeftY, 0.25);
SET_SCALAR_PROP(GroundWaterBaseProblem, LensLowerLeftZ, 0.25);
SET_SCALAR_PROP(GroundWaterBaseProblem, LensUpperRightX, 0.75);
SET_SCALAR_PROP(GroundWaterBaseProblem, LensUpperRightY, 0.75);
SET_SCALAR_PROP(GroundWaterBaseProblem, LensUpperRightZ, 0.75);
SET_SCALAR_PROP(GroundWaterBaseProblem, Permeability, 1e-10);
SET_SCALAR_PROP(GroundWaterBaseProblem, PermeabilityLens, 1e-12);
// Linear solver settings
SET_TYPE_PROP(GroundWaterBaseProblem, LinearSolverWrapper,
Ewoms::Linear::SolverWrapperConjugatedGradients<TypeTag>);
SET_TYPE_PROP(GroundWaterBaseProblem, PreconditionerWrapper,
Ewoms::Linear::PreconditionerWrapperILU0<TypeTag>);
SET_INT_PROP(GroundWaterBaseProblem, LinearSolverVerbosity, 0);
// Enable gravity
SET_BOOL_PROP(GroundWaterBaseProblem, EnableGravity, true);
// The default for the end time of the simulation
SET_SCALAR_PROP(GroundWaterBaseProblem, EndTime, 1);
// The default for the initial time step size of the simulation
SET_SCALAR_PROP(GroundWaterBaseProblem, InitialTimeStepSize, 1);
// The default DGF file to load
SET_STRING_PROP(GroundWaterBaseProblem, GridFile, "./data/groundwater_2d.dgf");
} // namespace Properties
} // namespace Ewoms
namespace Ewoms {
/*!
* \ingroup TestProblems
*
* \brief Test for the immisicible VCVF discretization with only a single phase
*
* This problem is inspired by groundwater flow. Don't expect it to be
* realistic, though: For two dimensions, the domain size is 1m times
* 1m. On the left and right of the domain, no-flow boundaries are
* used, while at the top and bottom free flow boundaries with a
* pressure of 2 bar and 1 bar are used. The center of the domain is
* occupied by a rectangular lens of lower permeability.
*/
template <class TypeTag>
class GroundWaterProblem : public GET_PROP_TYPE(TypeTag, BaseProblem)
{
typedef typename GET_PROP_TYPE(TypeTag, BaseProblem) ParentType;
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
// copy some indices for convenience
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
enum {
// Grid and world dimension
dim = GridView::dimension,
dimWorld = GridView::dimensionworld,
// indices of the primary variables
pressure0Idx = Indices::pressure0Idx
};
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, EqVector) EqVector;
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
typedef typename GET_PROP_TYPE(TypeTag, BoundaryRateVector) BoundaryRateVector;
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
typedef typename GET_PROP_TYPE(TypeTag, Model) Model;
typedef typename GridView::ctype CoordScalar;
typedef Dune::FieldVector<CoordScalar, dimWorld> GlobalPosition;
typedef Dune::FieldMatrix<Scalar, dimWorld, dimWorld> DimMatrix;
public:
/*!
* \copydoc Doxygen::defaultProblemConstructor
*/
GroundWaterProblem(Simulator &simulator)
: ParentType(simulator)
{ }
/*!
* \copydoc FvBaseProblem::finishInit
*/
void finishInit()
{
ParentType::finishInit();
eps_ = 1.0e-3;
lensLowerLeft_[0] = EWOMS_GET_PARAM(TypeTag, Scalar, LensLowerLeftX);
if (dim > 1)
lensLowerLeft_[1] = EWOMS_GET_PARAM(TypeTag, Scalar, LensLowerLeftY);
if (dim > 2)
lensLowerLeft_[2] = EWOMS_GET_PARAM(TypeTag, Scalar, LensLowerLeftY);
lensUpperRight_[0] = EWOMS_GET_PARAM(TypeTag, Scalar, LensUpperRightX);
if (dim > 1)
lensUpperRight_[1] = EWOMS_GET_PARAM(TypeTag, Scalar, LensUpperRightY);
if (dim > 2)
lensUpperRight_[2] = EWOMS_GET_PARAM(TypeTag, Scalar, LensUpperRightY);
intrinsicPerm_ = this->toDimMatrix_(EWOMS_GET_PARAM(TypeTag, Scalar, Permeability));
intrinsicPermLens_ = this->toDimMatrix_(EWOMS_GET_PARAM(TypeTag, Scalar, PermeabilityLens));
}
/*!
* \copydoc FvBaseMultiPhaseProblem::registerParameters
*/
static void registerParameters()
{
ParentType::registerParameters();
EWOMS_REGISTER_PARAM(TypeTag, Scalar, LensLowerLeftX,
"The x-coordinate of the lens' lower-left corner "
"[m].");
EWOMS_REGISTER_PARAM(TypeTag, Scalar, LensUpperRightX,
"The x-coordinate of the lens' upper-right corner "
"[m].");
if (dimWorld > 1) {
EWOMS_REGISTER_PARAM(TypeTag, Scalar, LensLowerLeftY,
"The y-coordinate of the lens' lower-left "
"corner [m].");
EWOMS_REGISTER_PARAM(TypeTag, Scalar, LensUpperRightY,
"The y-coordinate of the lens' upper-right "
"corner [m].");
}
if (dimWorld > 2) {
EWOMS_REGISTER_PARAM(TypeTag, Scalar, LensLowerLeftZ,
"The z-coordinate of the lens' lower-left "
"corner [m].");
EWOMS_REGISTER_PARAM(TypeTag, Scalar, LensUpperRightZ,
"The z-coordinate of the lens' upper-right "
"corner [m].");
}
EWOMS_REGISTER_PARAM(TypeTag, Scalar, Permeability,
"The intrinsic permeability [m^2] of the ambient "
"material.");
EWOMS_REGISTER_PARAM(TypeTag, Scalar, PermeabilityLens,
"The intrinsic permeability [m^2] of the lens.");
}
/*!
* \name Problem parameters
*/
// \{
/*!
* \copydoc FvBaseProblem::name
*/
std::string name() const
{
std::ostringstream oss;
oss << "groundwater_" << Model::name();
return oss.str();
}
/*!
* \copydoc FvBaseProblem::endTimeStep
*/
void endTimeStep()
{
#ifndef NDEBUG
this->model().checkConservativeness();
// Calculate storage terms
EqVector storage;
this->model().globalStorage(storage);
// Write mass balance information for rank 0
if (this->gridView().comm().rank() == 0) {
std::cout << "Storage: " << storage << std::endl << std::flush;
}
#endif // NDEBUG
}
/*!
* \copydoc FvBaseMultiPhaseProblem::temperature
*/
template <class Context>
Scalar temperature(const Context &context, unsigned spaceIdx, unsigned timeIdx) const
{ return 273.15 + 10; } // 10C
/*!
* \copydoc FvBaseMultiPhaseProblem::porosity
*/
template <class Context>
Scalar porosity(const Context &context, unsigned spaceIdx, unsigned timeIdx) const
{ return 0.4; }
/*!
* \copydoc FvBaseMultiPhaseProblem::intrinsicPermeability
*/
template <class Context>
const DimMatrix &intrinsicPermeability(const Context &context, unsigned spaceIdx,
unsigned timeIdx) const
{
return isInLens_(context.pos(spaceIdx, timeIdx)) ? intrinsicPermLens_
: intrinsicPerm_;
}
//! \}
/*!
* \name Boundary conditions
*/
//! \{
/*!
* \copydoc FvBaseProblem::boundary
*/
template <class Context>
void boundary(BoundaryRateVector &values, const Context &context,
unsigned spaceIdx, unsigned timeIdx) const
{
const GlobalPosition &globalPos = context.pos(spaceIdx, timeIdx);
if (onLowerBoundary_(globalPos) || onUpperBoundary_(globalPos)) {
Scalar pressure;
Scalar T = temperature(context, spaceIdx, timeIdx);
if (onLowerBoundary_(globalPos))
pressure = 2e5;
else // on upper boundary
pressure = 1e5;
Opm::ImmiscibleFluidState<Scalar, FluidSystem,
/*storeEnthalpy=*/false> fs;
fs.setSaturation(/*phaseIdx=*/0, 1.0);
fs.setPressure(/*phaseIdx=*/0, pressure);
fs.setTemperature(T);
// impose an freeflow boundary condition
values.setFreeFlow(context, spaceIdx, timeIdx, fs);
}
else {
// no flow boundary
values.setNoFlow();
}
}
//! \}
/*!
* \name Volumetric terms
*/
//! \{
/*!
* \copydoc FvBaseProblem::initial
*/
template <class Context>
void initial(PrimaryVariables &values, const Context &context, unsigned spaceIdx,
unsigned timeIdx) const
{
// const GlobalPosition &globalPos = context.pos(spaceIdx, timeIdx);
values[pressure0Idx] = 1.0e+5; // + 9.81*1.23*(20-globalPos[dim-1]);
}
/*!
* \copydoc FvBaseProblem::source
*/
template <class Context>
void source(RateVector &rate, const Context &context, unsigned spaceIdx,
unsigned timeIdx) const
{ rate = Scalar(0.0); }
//! \}
private:
bool onLowerBoundary_(const GlobalPosition &pos) const
{ return pos[dim - 1] < eps_; }
bool onUpperBoundary_(const GlobalPosition &pos) const
{ return pos[dim - 1] > this->boundingBoxMax()[dim - 1] - eps_; }
bool isInLens_(const GlobalPosition &pos) const
{
return lensLowerLeft_[0] <= pos[0] && pos[0] <= lensUpperRight_[0]
&& lensLowerLeft_[1] <= pos[1] && pos[1] <= lensUpperRight_[1];
}
GlobalPosition lensLowerLeft_;
GlobalPosition lensUpperRight_;
DimMatrix intrinsicPerm_;
DimMatrix intrinsicPermLens_;
Scalar eps_;
};
} // namespace Ewoms
#endif