opm-simulators/examples/problems/lensproblem.hh
Andreas Lauser 2c97e90a79 make most indices unsigned
(instead of using 'int'.) This triggered quite a few compiler warnings
which are also dealt-with by this patch.
2015-11-18 18:09:56 +01:00

574 lines
18 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
Copyright (C) 2008-2013 by Andreas Lauser
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
/*!
* \file
*
* \copydoc Ewoms::LensProblem
*/
#ifndef EWOMS_LENS_PROBLEM_HH
#define EWOMS_LENS_PROBLEM_HH
#include "lensgridmanager.hh"
#include <ewoms/models/immiscible/immiscibleproperties.hh>
#include <opm/material/fluidmatrixinteractions/RegularizedVanGenuchten.hpp>
#include <opm/material/fluidmatrixinteractions/LinearMaterial.hpp>
#include <opm/material/fluidmatrixinteractions/EffToAbsLaw.hpp>
#include <opm/material/fluidmatrixinteractions/MaterialTraits.hpp>
#include <opm/material/fluidsystems/TwoPhaseImmiscibleFluidSystem.hpp>
#include <opm/material/fluidstates/ImmiscibleFluidState.hpp>
#include <opm/material/components/SimpleH2O.hpp>
#include <opm/material/components/Dnapl.hpp>
//#define LENS_USE_ALUGRID 1
#if LENS_USE_ALUGRID
#include <dune/alugrid/grid.hh>
#include <dune/alugrid/dgf.hh>
#endif
#include <dune/common/version.hh>
#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>
#include <sstream>
#include <string>
#include <iostream>
namespace Ewoms {
template <class TypeTag>
class LensProblem;
namespace Properties {
#if LENS_USE_ALUGRID
NEW_TYPE_TAG(LensBaseProblem);
#else
NEW_TYPE_TAG(LensBaseProblem, INHERITS_FROM(LensGridManager));
#endif
// declare the properties specific for the lens problem
NEW_PROP_TAG(LensLowerLeftX);
NEW_PROP_TAG(LensLowerLeftY);
NEW_PROP_TAG(LensLowerLeftZ);
NEW_PROP_TAG(LensUpperRightX);
NEW_PROP_TAG(LensUpperRightY);
NEW_PROP_TAG(LensUpperRightZ);
// Set the problem property
SET_TYPE_PROP(LensBaseProblem, Problem, Ewoms::LensProblem<TypeTag>);
// Set the wetting phase
SET_PROP(LensBaseProblem, WettingPhase)
{
private:
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
public:
typedef Opm::LiquidPhase<Scalar, Opm::SimpleH2O<Scalar> > type;
};
// Set the non-wetting phase
SET_PROP(LensBaseProblem, NonwettingPhase)
{
private:
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
public:
typedef Opm::LiquidPhase<Scalar, Opm::DNAPL<Scalar> > type;
};
#if LENS_USE_ALUGRID
SET_TYPE_PROP(LensBaseProblem, Grid, Dune::ALUGrid< 2, 2, Dune::cube, Dune::nonconforming > );
#endif
// Set the material Law
SET_PROP(LensBaseProblem, MaterialLaw)
{
private:
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
enum { wettingPhaseIdx = FluidSystem::wettingPhaseIdx };
enum { nonWettingPhaseIdx = FluidSystem::nonWettingPhaseIdx };
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef Opm::TwoPhaseMaterialTraits<Scalar,
/*wettingPhaseIdx=*/FluidSystem::wettingPhaseIdx,
/*nonWettingPhaseIdx=*/FluidSystem::nonWettingPhaseIdx> Traits;
// define the material law which is parameterized by effective
// saturations
typedef Opm::RegularizedVanGenuchten<Traits> EffectiveLaw;
public:
// define the material law parameterized by absolute saturations
typedef Opm::EffToAbsLaw<EffectiveLaw> type;
};
// Write the solutions of individual newton iterations?
SET_BOOL_PROP(LensBaseProblem, NewtonWriteConvergence, false);
// Use forward differences instead of central differences
SET_INT_PROP(LensBaseProblem, NumericDifferenceMethod, +1);
// Enable gravity
SET_BOOL_PROP(LensBaseProblem, EnableGravity, true);
// define the properties specific for the lens problem
SET_SCALAR_PROP(LensBaseProblem, LensLowerLeftX, 1.0);
SET_SCALAR_PROP(LensBaseProblem, LensLowerLeftY, 2.0);
SET_SCALAR_PROP(LensBaseProblem, LensLowerLeftZ, 0.0);
SET_SCALAR_PROP(LensBaseProblem, LensUpperRightX, 4.0);
SET_SCALAR_PROP(LensBaseProblem, LensUpperRightY, 3.0);
SET_SCALAR_PROP(LensBaseProblem, LensUpperRightZ, 1.0);
SET_SCALAR_PROP(LensBaseProblem, DomainSizeX, 6.0);
SET_SCALAR_PROP(LensBaseProblem, DomainSizeY, 4.0);
SET_SCALAR_PROP(LensBaseProblem, DomainSizeZ, 1.0);
SET_INT_PROP(LensBaseProblem, CellsX, 48);
SET_INT_PROP(LensBaseProblem, CellsY, 32);
SET_INT_PROP(LensBaseProblem, CellsZ, 16);
// The default for the end time of the simulation
SET_SCALAR_PROP(LensBaseProblem, EndTime, 30e3);
// The default for the initial time step size of the simulation
SET_SCALAR_PROP(LensBaseProblem, InitialTimeStepSize, 250);
// By default, include the intrinsic permeability tensor to the VTK output files
SET_BOOL_PROP(LensBaseProblem, VtkWriteIntrinsicPermeabilities, true);
} // namespace Properties
/*!
* \ingroup TestProblems
*
* \brief Soil contamination problem where DNAPL infiltrates a fully
* water saturated medium.
*
* The domain is sized 6m times 4m and features a rectangular lens
* with low permeablility which spans from (1 m , 2 m) to (4 m, 3 m)
* and is surrounded by a medium with higher permability. Note that
* this problem is discretized using only two dimensions, so from the
* point of view of the model, the depth of the domain is implicitly
* assumed to be 1 m everywhere.
*
* On the top and the bottom of the domain no-flow boundary conditions
* are used, while free-flow conditions apply on the left and right
* boundaries; DNAPL is injected at the top boundary from 3m to 4m at
* a rate of 0.04 kg/(s m^2).
*
* At the boundary on the left, a free-flow condition using the
* hydrostatic pressure scaled by a factor of 1.125 is imposed, while
* on the right, it is just the hydrostatic pressure. The DNAPL
* saturation on both sides is zero.
*/
template <class TypeTag>
class LensProblem : public GET_PROP_TYPE(TypeTag, BaseProblem)
{
typedef typename GET_PROP_TYPE(TypeTag, BaseProblem) ParentType;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, WettingPhase) WettingPhase;
typedef typename GET_PROP_TYPE(TypeTag, NonwettingPhase) NonwettingPhase;
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, Model) Model;
enum {
// number of phases
numPhases = FluidSystem::numPhases,
// phase indices
wettingPhaseIdx = FluidSystem::wettingPhaseIdx,
nonWettingPhaseIdx = FluidSystem::nonWettingPhaseIdx,
// equation indices
contiNEqIdx = Indices::conti0EqIdx + nonWettingPhaseIdx,
// Grid and world dimension
dim = GridView::dimension,
dimWorld = GridView::dimensionworld
};
typedef typename GET_PROP_TYPE(TypeTag, EqVector) EqVector;
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
typedef typename GET_PROP_TYPE(TypeTag, BoundaryRateVector) BoundaryRateVector;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLawParams) MaterialLawParams;
typedef typename GridView::ctype CoordScalar;
typedef Dune::FieldVector<CoordScalar, dimWorld> GlobalPosition;
typedef Dune::FieldMatrix<Scalar, dimWorld, dimWorld> DimMatrix;
public:
/*!
* \copydoc Doxygen::defaultProblemConstructor
*/
LensProblem(Simulator &simulator)
: ParentType(simulator)
{ }
/*!
* \copydoc FvBaseProblem::finishInit
*/
void finishInit()
{
ParentType::finishInit();
eps_ = 3e-6;
FluidSystem::init();
temperature_ = 273.15 + 20; // -> 20°C
lensLowerLeft_[0] = EWOMS_GET_PARAM(TypeTag, Scalar, LensLowerLeftX);
lensLowerLeft_[1] = EWOMS_GET_PARAM(TypeTag, Scalar, LensLowerLeftY);
lensUpperRight_[0] = EWOMS_GET_PARAM(TypeTag, Scalar, LensUpperRightX);
lensUpperRight_[1] = EWOMS_GET_PARAM(TypeTag, Scalar, LensUpperRightY);
if (dimWorld == 3) {
lensLowerLeft_[2] = EWOMS_GET_PARAM(TypeTag, Scalar, LensLowerLeftZ);
lensUpperRight_[2] = EWOMS_GET_PARAM(TypeTag, Scalar, LensUpperRightZ);
}
// parameters for the Van Genuchten law
// alpha and n
lensMaterialParams_.setVgAlpha(0.00045);
lensMaterialParams_.setVgN(7.3);
outerMaterialParams_.setVgAlpha(0.0037);
outerMaterialParams_.setVgN(4.7);
lensMaterialParams_.finalize();
outerMaterialParams_.finalize();
lensK_ = this->toDimMatrix_(9.05e-12);
outerK_ = this->toDimMatrix_(4.6e-10);
if (dimWorld == 3) {
this->gravity_ = 0;
this->gravity_[1] = -9.81;
}
}
/*!
* \copydoc FvBaseMultiPhaseProblem::registerParameters
*/
static void registerParameters()
{
ParentType::registerParameters();
EWOMS_REGISTER_PARAM(TypeTag, Scalar, LensLowerLeftX,
"The x-coordinate of the lens' lower-left corner "
"[m].");
EWOMS_REGISTER_PARAM(TypeTag, Scalar, LensLowerLeftY,
"The y-coordinate of the lens' lower-left corner "
"[m].");
EWOMS_REGISTER_PARAM(TypeTag, Scalar, LensUpperRightX,
"The x-coordinate of the lens' upper-right corner "
"[m].");
EWOMS_REGISTER_PARAM(TypeTag, Scalar, LensUpperRightY,
"The y-coordinate of the lens' upper-right corner "
"[m].");
if (dimWorld == 3) {
EWOMS_REGISTER_PARAM(TypeTag, Scalar, LensLowerLeftZ,
"The z-coordinate of the lens' lower-left "
"corner [m].");
EWOMS_REGISTER_PARAM(TypeTag, Scalar, LensUpperRightZ,
"The z-coordinate of the lens' upper-right "
"corner [m].");
}
}
/*!
* \name Soil parameters
*/
//! \{
/*!
* \copydoc FvBaseMultiPhaseProblem::intrinsicPermeability
*/
template <class Context>
const DimMatrix &intrinsicPermeability(const Context &context, unsigned spaceIdx,
unsigned timeIdx) const
{
const GlobalPosition &globalPos = context.pos(spaceIdx, timeIdx);
if (isInLens_(globalPos))
return lensK_;
return outerK_;
}
/*!
* \copydoc FvBaseMultiPhaseProblem::porosity
*/
template <class Context>
Scalar porosity(const Context &context, unsigned spaceIdx, unsigned timeIdx) const
{ return 0.4; }
/*!
* \copydoc FvBaseMultiPhaseProblem::materialLawParams
*/
template <class Context>
const MaterialLawParams &materialLawParams(const Context &context,
unsigned spaceIdx, unsigned timeIdx) const
{
const GlobalPosition &globalPos = context.pos(spaceIdx, timeIdx);
if (isInLens_(globalPos))
return lensMaterialParams_;
return outerMaterialParams_;
}
/*!
* \copydoc FvBaseMultiPhaseProblem::temperature
*/
template <class Context>
Scalar temperature(const Context &context, unsigned spaceIdx, unsigned timeIdx) const
{ return temperature_; }
//! \}
/*!
* \name Auxiliary methods
*/
//! \{
/*!
* \copydoc FvBaseProblem::name
*/
std::string name() const
{
std::ostringstream oss;
oss << "lens_" << Model::name()
<< "_" << Model::discretizationName();
return oss.str();
}
/*!
* \copydoc FvBaseProblem::beginTimeStep
*/
void beginTimeStep()
{ }
/*!
* \copydoc FvBaseProblem::beginIteration
*/
void beginIteration()
{ }
/*!
* \copydoc FvBaseProblem::endTimeStep
*/
void endTimeStep()
{
#ifndef NDEBUG
this->model().checkConservativeness();
// Calculate storage terms
EqVector storage;
this->model().globalStorage(storage);
// Write mass balance information for rank 0
if (this->gridView().comm().rank() == 0) {
std::cout << "Storage: " << storage << std::endl << std::flush;
}
#endif // NDEBUG
}
//! \}
/*!
* \name Boundary conditions
*/
//! \{
/*!
* \copydoc FvBaseProblem::boundary
*/
template <class Context>
void boundary(BoundaryRateVector &values,
const Context &context, unsigned spaceIdx, unsigned timeIdx) const
{
const GlobalPosition &pos = context.pos(spaceIdx, timeIdx);
if (onLeftBoundary_(pos) || onRightBoundary_(pos)) {
// free flow boundary
Scalar densityW = WettingPhase::density(temperature_, /*pressure=*/1e5);
Scalar T = temperature(context, spaceIdx, timeIdx);
Scalar pw, Sw;
// set wetting phase pressure and saturation
if (onLeftBoundary_(pos)) {
Scalar height = this->boundingBoxMax()[1] - this->boundingBoxMin()[1];
Scalar depth = this->boundingBoxMax()[1] - pos[1];
Scalar alpha = (1 + 1.5 / height);
// hydrostatic pressure scaled by alpha
pw = 1e5 - alpha * densityW * this->gravity()[1] * depth;
Sw = 1.0;
}
else {
Scalar depth = this->boundingBoxMax()[1] - pos[1];
// hydrostatic pressure
pw = 1e5 - densityW * this->gravity()[1] * depth;
Sw = 1.0;
}
// specify a full fluid state using pw and Sw
const MaterialLawParams &matParams = this->materialLawParams(context, spaceIdx, timeIdx);
Opm::ImmiscibleFluidState<Scalar, FluidSystem,
/*storeEnthalpy=*/false> fs;
fs.setSaturation(wettingPhaseIdx, Sw);
fs.setSaturation(nonWettingPhaseIdx, 1 - Sw);
fs.setTemperature(T);
Scalar pC[numPhases];
MaterialLaw::capillaryPressures(pC, matParams, fs);
fs.setPressure(wettingPhaseIdx, pw);
fs.setPressure(nonWettingPhaseIdx, pw + pC[nonWettingPhaseIdx] - pC[wettingPhaseIdx]);
// impose an freeflow boundary condition
values.setFreeFlow(context, spaceIdx, timeIdx, fs);
}
else if (onInlet_(pos)) {
RateVector massRate(0.0);
massRate = 0.0;
massRate[contiNEqIdx] = -0.04; // kg / (m^2 * s)
// impose a forced flow boundary
values.setMassRate(massRate);
}
else {
// no flow boundary
values.setNoFlow();
}
}
//! \}
/*!
* \name Volumetric terms
*/
//! \{
/*!
* \copydoc FvBaseProblem::initial
*/
template <class Context>
void initial(PrimaryVariables &values, const Context &context, unsigned spaceIdx, unsigned timeIdx) const
{
const GlobalPosition &pos = context.pos(spaceIdx, timeIdx);
Scalar depth = this->boundingBoxMax()[1] - pos[1];
Opm::ImmiscibleFluidState<Scalar, FluidSystem> fs;
fs.setPressure(wettingPhaseIdx, /*pressure=*/1e5);
Scalar Sw = 1.0;
fs.setSaturation(wettingPhaseIdx, Sw);
fs.setSaturation(nonWettingPhaseIdx, 1 - Sw);
fs.setTemperature(temperature_);
typename FluidSystem::ParameterCache paramCache;
paramCache.updatePhase(fs, wettingPhaseIdx);
Scalar densityW = FluidSystem::density(fs, paramCache, wettingPhaseIdx);
// hydrostatic pressure (assuming incompressibility)
Scalar pw = 1e5 - densityW * this->gravity()[1] * depth;
// calculate the capillary pressure
const MaterialLawParams &matParams = this->materialLawParams(context, spaceIdx, timeIdx);
Scalar pC[numPhases];
MaterialLaw::capillaryPressures(pC, matParams, fs);
// make a full fluid state
fs.setPressure(wettingPhaseIdx, pw);
fs.setPressure(nonWettingPhaseIdx, pw + (pC[wettingPhaseIdx] - pC[nonWettingPhaseIdx]));
// assign the primary variables
values.assignNaive(fs);
}
/*!
* \copydoc FvBaseProblem::source
*
* For this problem, the source term of all components is 0
* everywhere.
*/
template <class Context>
void source(RateVector &rate, const Context &context, unsigned spaceIdx,
unsigned timeIdx) const
{ rate = Scalar(0.0); }
//! \}
private:
bool isInLens_(const GlobalPosition &pos) const
{
for (unsigned i = 0; i < dim; ++i) {
if (pos[i] < lensLowerLeft_[i] - eps_ || pos[i] > lensUpperRight_[i]
+ eps_)
return false;
}
return true;
}
bool onLeftBoundary_(const GlobalPosition &pos) const
{ return pos[0] < this->boundingBoxMin()[0] + eps_; }
bool onRightBoundary_(const GlobalPosition &pos) const
{ return pos[0] > this->boundingBoxMax()[0] - eps_; }
bool onLowerBoundary_(const GlobalPosition &pos) const
{ return pos[1] < this->boundingBoxMin()[1] + eps_; }
bool onUpperBoundary_(const GlobalPosition &pos) const
{ return pos[1] > this->boundingBoxMax()[1] - eps_; }
bool onInlet_(const GlobalPosition &pos) const
{
Scalar width = this->boundingBoxMax()[0] - this->boundingBoxMin()[0];
Scalar lambda = (this->boundingBoxMax()[0] - pos[0]) / width;
return onUpperBoundary_(pos) && 0.5 < lambda && lambda < 2.0 / 3.0;
}
GlobalPosition lensLowerLeft_;
GlobalPosition lensUpperRight_;
DimMatrix lensK_;
DimMatrix outerK_;
MaterialLawParams lensMaterialParams_;
MaterialLawParams outerMaterialParams_;
Scalar temperature_;
Scalar eps_;
};
} // namespace Ewoms
#endif