mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-11-28 12:03:48 -06:00
2c97e90a79
(instead of using 'int'.) This triggered quite a few compiler warnings which are also dealt-with by this patch.
574 lines
18 KiB
C++
574 lines
18 KiB
C++
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
// vi: set et ts=4 sw=4 sts=4:
|
|
/*
|
|
Copyright (C) 2008-2013 by Andreas Lauser
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
/*!
|
|
* \file
|
|
*
|
|
* \copydoc Ewoms::LensProblem
|
|
*/
|
|
#ifndef EWOMS_LENS_PROBLEM_HH
|
|
#define EWOMS_LENS_PROBLEM_HH
|
|
|
|
#include "lensgridmanager.hh"
|
|
|
|
#include <ewoms/models/immiscible/immiscibleproperties.hh>
|
|
|
|
#include <opm/material/fluidmatrixinteractions/RegularizedVanGenuchten.hpp>
|
|
#include <opm/material/fluidmatrixinteractions/LinearMaterial.hpp>
|
|
#include <opm/material/fluidmatrixinteractions/EffToAbsLaw.hpp>
|
|
#include <opm/material/fluidmatrixinteractions/MaterialTraits.hpp>
|
|
#include <opm/material/fluidsystems/TwoPhaseImmiscibleFluidSystem.hpp>
|
|
#include <opm/material/fluidstates/ImmiscibleFluidState.hpp>
|
|
#include <opm/material/components/SimpleH2O.hpp>
|
|
#include <opm/material/components/Dnapl.hpp>
|
|
|
|
//#define LENS_USE_ALUGRID 1
|
|
#if LENS_USE_ALUGRID
|
|
#include <dune/alugrid/grid.hh>
|
|
#include <dune/alugrid/dgf.hh>
|
|
#endif
|
|
|
|
#include <dune/common/version.hh>
|
|
#include <dune/common/fvector.hh>
|
|
#include <dune/common/fmatrix.hh>
|
|
|
|
#include <sstream>
|
|
#include <string>
|
|
#include <iostream>
|
|
|
|
namespace Ewoms {
|
|
template <class TypeTag>
|
|
class LensProblem;
|
|
|
|
namespace Properties {
|
|
#if LENS_USE_ALUGRID
|
|
NEW_TYPE_TAG(LensBaseProblem);
|
|
#else
|
|
NEW_TYPE_TAG(LensBaseProblem, INHERITS_FROM(LensGridManager));
|
|
#endif
|
|
|
|
// declare the properties specific for the lens problem
|
|
NEW_PROP_TAG(LensLowerLeftX);
|
|
NEW_PROP_TAG(LensLowerLeftY);
|
|
NEW_PROP_TAG(LensLowerLeftZ);
|
|
NEW_PROP_TAG(LensUpperRightX);
|
|
NEW_PROP_TAG(LensUpperRightY);
|
|
NEW_PROP_TAG(LensUpperRightZ);
|
|
|
|
// Set the problem property
|
|
SET_TYPE_PROP(LensBaseProblem, Problem, Ewoms::LensProblem<TypeTag>);
|
|
|
|
// Set the wetting phase
|
|
SET_PROP(LensBaseProblem, WettingPhase)
|
|
{
|
|
private:
|
|
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
|
|
|
public:
|
|
typedef Opm::LiquidPhase<Scalar, Opm::SimpleH2O<Scalar> > type;
|
|
};
|
|
|
|
// Set the non-wetting phase
|
|
SET_PROP(LensBaseProblem, NonwettingPhase)
|
|
{
|
|
private:
|
|
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
|
|
|
public:
|
|
typedef Opm::LiquidPhase<Scalar, Opm::DNAPL<Scalar> > type;
|
|
};
|
|
|
|
#if LENS_USE_ALUGRID
|
|
SET_TYPE_PROP(LensBaseProblem, Grid, Dune::ALUGrid< 2, 2, Dune::cube, Dune::nonconforming > );
|
|
#endif
|
|
|
|
// Set the material Law
|
|
SET_PROP(LensBaseProblem, MaterialLaw)
|
|
{
|
|
private:
|
|
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
|
|
enum { wettingPhaseIdx = FluidSystem::wettingPhaseIdx };
|
|
enum { nonWettingPhaseIdx = FluidSystem::nonWettingPhaseIdx };
|
|
|
|
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
|
typedef Opm::TwoPhaseMaterialTraits<Scalar,
|
|
/*wettingPhaseIdx=*/FluidSystem::wettingPhaseIdx,
|
|
/*nonWettingPhaseIdx=*/FluidSystem::nonWettingPhaseIdx> Traits;
|
|
|
|
// define the material law which is parameterized by effective
|
|
// saturations
|
|
typedef Opm::RegularizedVanGenuchten<Traits> EffectiveLaw;
|
|
|
|
public:
|
|
// define the material law parameterized by absolute saturations
|
|
typedef Opm::EffToAbsLaw<EffectiveLaw> type;
|
|
};
|
|
|
|
// Write the solutions of individual newton iterations?
|
|
SET_BOOL_PROP(LensBaseProblem, NewtonWriteConvergence, false);
|
|
|
|
// Use forward differences instead of central differences
|
|
SET_INT_PROP(LensBaseProblem, NumericDifferenceMethod, +1);
|
|
|
|
// Enable gravity
|
|
SET_BOOL_PROP(LensBaseProblem, EnableGravity, true);
|
|
|
|
// define the properties specific for the lens problem
|
|
SET_SCALAR_PROP(LensBaseProblem, LensLowerLeftX, 1.0);
|
|
SET_SCALAR_PROP(LensBaseProblem, LensLowerLeftY, 2.0);
|
|
SET_SCALAR_PROP(LensBaseProblem, LensLowerLeftZ, 0.0);
|
|
SET_SCALAR_PROP(LensBaseProblem, LensUpperRightX, 4.0);
|
|
SET_SCALAR_PROP(LensBaseProblem, LensUpperRightY, 3.0);
|
|
SET_SCALAR_PROP(LensBaseProblem, LensUpperRightZ, 1.0);
|
|
|
|
SET_SCALAR_PROP(LensBaseProblem, DomainSizeX, 6.0);
|
|
SET_SCALAR_PROP(LensBaseProblem, DomainSizeY, 4.0);
|
|
SET_SCALAR_PROP(LensBaseProblem, DomainSizeZ, 1.0);
|
|
|
|
SET_INT_PROP(LensBaseProblem, CellsX, 48);
|
|
SET_INT_PROP(LensBaseProblem, CellsY, 32);
|
|
SET_INT_PROP(LensBaseProblem, CellsZ, 16);
|
|
|
|
// The default for the end time of the simulation
|
|
SET_SCALAR_PROP(LensBaseProblem, EndTime, 30e3);
|
|
|
|
// The default for the initial time step size of the simulation
|
|
SET_SCALAR_PROP(LensBaseProblem, InitialTimeStepSize, 250);
|
|
|
|
// By default, include the intrinsic permeability tensor to the VTK output files
|
|
SET_BOOL_PROP(LensBaseProblem, VtkWriteIntrinsicPermeabilities, true);
|
|
} // namespace Properties
|
|
|
|
/*!
|
|
* \ingroup TestProblems
|
|
*
|
|
* \brief Soil contamination problem where DNAPL infiltrates a fully
|
|
* water saturated medium.
|
|
*
|
|
* The domain is sized 6m times 4m and features a rectangular lens
|
|
* with low permeablility which spans from (1 m , 2 m) to (4 m, 3 m)
|
|
* and is surrounded by a medium with higher permability. Note that
|
|
* this problem is discretized using only two dimensions, so from the
|
|
* point of view of the model, the depth of the domain is implicitly
|
|
* assumed to be 1 m everywhere.
|
|
*
|
|
* On the top and the bottom of the domain no-flow boundary conditions
|
|
* are used, while free-flow conditions apply on the left and right
|
|
* boundaries; DNAPL is injected at the top boundary from 3m to 4m at
|
|
* a rate of 0.04 kg/(s m^2).
|
|
*
|
|
* At the boundary on the left, a free-flow condition using the
|
|
* hydrostatic pressure scaled by a factor of 1.125 is imposed, while
|
|
* on the right, it is just the hydrostatic pressure. The DNAPL
|
|
* saturation on both sides is zero.
|
|
*/
|
|
template <class TypeTag>
|
|
class LensProblem : public GET_PROP_TYPE(TypeTag, BaseProblem)
|
|
{
|
|
typedef typename GET_PROP_TYPE(TypeTag, BaseProblem) ParentType;
|
|
|
|
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
|
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
|
|
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
|
|
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
|
|
typedef typename GET_PROP_TYPE(TypeTag, WettingPhase) WettingPhase;
|
|
typedef typename GET_PROP_TYPE(TypeTag, NonwettingPhase) NonwettingPhase;
|
|
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
|
|
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
|
|
typedef typename GET_PROP_TYPE(TypeTag, Model) Model;
|
|
|
|
enum {
|
|
// number of phases
|
|
numPhases = FluidSystem::numPhases,
|
|
|
|
// phase indices
|
|
wettingPhaseIdx = FluidSystem::wettingPhaseIdx,
|
|
nonWettingPhaseIdx = FluidSystem::nonWettingPhaseIdx,
|
|
|
|
// equation indices
|
|
contiNEqIdx = Indices::conti0EqIdx + nonWettingPhaseIdx,
|
|
|
|
// Grid and world dimension
|
|
dim = GridView::dimension,
|
|
dimWorld = GridView::dimensionworld
|
|
};
|
|
|
|
typedef typename GET_PROP_TYPE(TypeTag, EqVector) EqVector;
|
|
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
|
|
typedef typename GET_PROP_TYPE(TypeTag, BoundaryRateVector) BoundaryRateVector;
|
|
|
|
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
|
|
typedef typename GET_PROP_TYPE(TypeTag, MaterialLawParams) MaterialLawParams;
|
|
|
|
typedef typename GridView::ctype CoordScalar;
|
|
typedef Dune::FieldVector<CoordScalar, dimWorld> GlobalPosition;
|
|
|
|
typedef Dune::FieldMatrix<Scalar, dimWorld, dimWorld> DimMatrix;
|
|
|
|
public:
|
|
/*!
|
|
* \copydoc Doxygen::defaultProblemConstructor
|
|
*/
|
|
LensProblem(Simulator &simulator)
|
|
: ParentType(simulator)
|
|
{ }
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::finishInit
|
|
*/
|
|
void finishInit()
|
|
{
|
|
ParentType::finishInit();
|
|
|
|
eps_ = 3e-6;
|
|
FluidSystem::init();
|
|
|
|
temperature_ = 273.15 + 20; // -> 20°C
|
|
lensLowerLeft_[0] = EWOMS_GET_PARAM(TypeTag, Scalar, LensLowerLeftX);
|
|
lensLowerLeft_[1] = EWOMS_GET_PARAM(TypeTag, Scalar, LensLowerLeftY);
|
|
lensUpperRight_[0] = EWOMS_GET_PARAM(TypeTag, Scalar, LensUpperRightX);
|
|
lensUpperRight_[1] = EWOMS_GET_PARAM(TypeTag, Scalar, LensUpperRightY);
|
|
|
|
if (dimWorld == 3) {
|
|
lensLowerLeft_[2] = EWOMS_GET_PARAM(TypeTag, Scalar, LensLowerLeftZ);
|
|
lensUpperRight_[2] = EWOMS_GET_PARAM(TypeTag, Scalar, LensUpperRightZ);
|
|
}
|
|
|
|
// parameters for the Van Genuchten law
|
|
// alpha and n
|
|
lensMaterialParams_.setVgAlpha(0.00045);
|
|
lensMaterialParams_.setVgN(7.3);
|
|
outerMaterialParams_.setVgAlpha(0.0037);
|
|
outerMaterialParams_.setVgN(4.7);
|
|
|
|
lensMaterialParams_.finalize();
|
|
outerMaterialParams_.finalize();
|
|
|
|
lensK_ = this->toDimMatrix_(9.05e-12);
|
|
outerK_ = this->toDimMatrix_(4.6e-10);
|
|
|
|
if (dimWorld == 3) {
|
|
this->gravity_ = 0;
|
|
this->gravity_[1] = -9.81;
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::registerParameters
|
|
*/
|
|
static void registerParameters()
|
|
{
|
|
ParentType::registerParameters();
|
|
|
|
EWOMS_REGISTER_PARAM(TypeTag, Scalar, LensLowerLeftX,
|
|
"The x-coordinate of the lens' lower-left corner "
|
|
"[m].");
|
|
EWOMS_REGISTER_PARAM(TypeTag, Scalar, LensLowerLeftY,
|
|
"The y-coordinate of the lens' lower-left corner "
|
|
"[m].");
|
|
EWOMS_REGISTER_PARAM(TypeTag, Scalar, LensUpperRightX,
|
|
"The x-coordinate of the lens' upper-right corner "
|
|
"[m].");
|
|
EWOMS_REGISTER_PARAM(TypeTag, Scalar, LensUpperRightY,
|
|
"The y-coordinate of the lens' upper-right corner "
|
|
"[m].");
|
|
|
|
if (dimWorld == 3) {
|
|
EWOMS_REGISTER_PARAM(TypeTag, Scalar, LensLowerLeftZ,
|
|
"The z-coordinate of the lens' lower-left "
|
|
"corner [m].");
|
|
EWOMS_REGISTER_PARAM(TypeTag, Scalar, LensUpperRightZ,
|
|
"The z-coordinate of the lens' upper-right "
|
|
"corner [m].");
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* \name Soil parameters
|
|
*/
|
|
//! \{
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::intrinsicPermeability
|
|
*/
|
|
template <class Context>
|
|
const DimMatrix &intrinsicPermeability(const Context &context, unsigned spaceIdx,
|
|
unsigned timeIdx) const
|
|
{
|
|
const GlobalPosition &globalPos = context.pos(spaceIdx, timeIdx);
|
|
|
|
if (isInLens_(globalPos))
|
|
return lensK_;
|
|
return outerK_;
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::porosity
|
|
*/
|
|
template <class Context>
|
|
Scalar porosity(const Context &context, unsigned spaceIdx, unsigned timeIdx) const
|
|
{ return 0.4; }
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::materialLawParams
|
|
*/
|
|
template <class Context>
|
|
const MaterialLawParams &materialLawParams(const Context &context,
|
|
unsigned spaceIdx, unsigned timeIdx) const
|
|
{
|
|
const GlobalPosition &globalPos = context.pos(spaceIdx, timeIdx);
|
|
|
|
if (isInLens_(globalPos))
|
|
return lensMaterialParams_;
|
|
return outerMaterialParams_;
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::temperature
|
|
*/
|
|
template <class Context>
|
|
Scalar temperature(const Context &context, unsigned spaceIdx, unsigned timeIdx) const
|
|
{ return temperature_; }
|
|
|
|
//! \}
|
|
|
|
/*!
|
|
* \name Auxiliary methods
|
|
*/
|
|
//! \{
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::name
|
|
*/
|
|
std::string name() const
|
|
{
|
|
std::ostringstream oss;
|
|
oss << "lens_" << Model::name()
|
|
<< "_" << Model::discretizationName();
|
|
return oss.str();
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::beginTimeStep
|
|
*/
|
|
void beginTimeStep()
|
|
{ }
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::beginIteration
|
|
*/
|
|
void beginIteration()
|
|
{ }
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::endTimeStep
|
|
*/
|
|
void endTimeStep()
|
|
{
|
|
#ifndef NDEBUG
|
|
this->model().checkConservativeness();
|
|
|
|
// Calculate storage terms
|
|
EqVector storage;
|
|
this->model().globalStorage(storage);
|
|
|
|
// Write mass balance information for rank 0
|
|
if (this->gridView().comm().rank() == 0) {
|
|
std::cout << "Storage: " << storage << std::endl << std::flush;
|
|
}
|
|
#endif // NDEBUG
|
|
}
|
|
|
|
//! \}
|
|
|
|
/*!
|
|
* \name Boundary conditions
|
|
*/
|
|
//! \{
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::boundary
|
|
*/
|
|
template <class Context>
|
|
void boundary(BoundaryRateVector &values,
|
|
const Context &context, unsigned spaceIdx, unsigned timeIdx) const
|
|
{
|
|
const GlobalPosition &pos = context.pos(spaceIdx, timeIdx);
|
|
|
|
if (onLeftBoundary_(pos) || onRightBoundary_(pos)) {
|
|
// free flow boundary
|
|
Scalar densityW = WettingPhase::density(temperature_, /*pressure=*/1e5);
|
|
|
|
Scalar T = temperature(context, spaceIdx, timeIdx);
|
|
Scalar pw, Sw;
|
|
|
|
// set wetting phase pressure and saturation
|
|
if (onLeftBoundary_(pos)) {
|
|
Scalar height = this->boundingBoxMax()[1] - this->boundingBoxMin()[1];
|
|
Scalar depth = this->boundingBoxMax()[1] - pos[1];
|
|
Scalar alpha = (1 + 1.5 / height);
|
|
|
|
// hydrostatic pressure scaled by alpha
|
|
pw = 1e5 - alpha * densityW * this->gravity()[1] * depth;
|
|
Sw = 1.0;
|
|
}
|
|
else {
|
|
Scalar depth = this->boundingBoxMax()[1] - pos[1];
|
|
|
|
// hydrostatic pressure
|
|
pw = 1e5 - densityW * this->gravity()[1] * depth;
|
|
Sw = 1.0;
|
|
}
|
|
|
|
// specify a full fluid state using pw and Sw
|
|
const MaterialLawParams &matParams = this->materialLawParams(context, spaceIdx, timeIdx);
|
|
|
|
Opm::ImmiscibleFluidState<Scalar, FluidSystem,
|
|
/*storeEnthalpy=*/false> fs;
|
|
fs.setSaturation(wettingPhaseIdx, Sw);
|
|
fs.setSaturation(nonWettingPhaseIdx, 1 - Sw);
|
|
fs.setTemperature(T);
|
|
|
|
Scalar pC[numPhases];
|
|
MaterialLaw::capillaryPressures(pC, matParams, fs);
|
|
fs.setPressure(wettingPhaseIdx, pw);
|
|
fs.setPressure(nonWettingPhaseIdx, pw + pC[nonWettingPhaseIdx] - pC[wettingPhaseIdx]);
|
|
|
|
// impose an freeflow boundary condition
|
|
values.setFreeFlow(context, spaceIdx, timeIdx, fs);
|
|
}
|
|
else if (onInlet_(pos)) {
|
|
RateVector massRate(0.0);
|
|
massRate = 0.0;
|
|
massRate[contiNEqIdx] = -0.04; // kg / (m^2 * s)
|
|
|
|
// impose a forced flow boundary
|
|
values.setMassRate(massRate);
|
|
}
|
|
else {
|
|
// no flow boundary
|
|
values.setNoFlow();
|
|
}
|
|
}
|
|
|
|
//! \}
|
|
|
|
/*!
|
|
* \name Volumetric terms
|
|
*/
|
|
//! \{
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::initial
|
|
*/
|
|
template <class Context>
|
|
void initial(PrimaryVariables &values, const Context &context, unsigned spaceIdx, unsigned timeIdx) const
|
|
{
|
|
const GlobalPosition &pos = context.pos(spaceIdx, timeIdx);
|
|
Scalar depth = this->boundingBoxMax()[1] - pos[1];
|
|
|
|
Opm::ImmiscibleFluidState<Scalar, FluidSystem> fs;
|
|
fs.setPressure(wettingPhaseIdx, /*pressure=*/1e5);
|
|
|
|
Scalar Sw = 1.0;
|
|
fs.setSaturation(wettingPhaseIdx, Sw);
|
|
fs.setSaturation(nonWettingPhaseIdx, 1 - Sw);
|
|
|
|
fs.setTemperature(temperature_);
|
|
|
|
typename FluidSystem::ParameterCache paramCache;
|
|
paramCache.updatePhase(fs, wettingPhaseIdx);
|
|
Scalar densityW = FluidSystem::density(fs, paramCache, wettingPhaseIdx);
|
|
|
|
// hydrostatic pressure (assuming incompressibility)
|
|
Scalar pw = 1e5 - densityW * this->gravity()[1] * depth;
|
|
|
|
// calculate the capillary pressure
|
|
const MaterialLawParams &matParams = this->materialLawParams(context, spaceIdx, timeIdx);
|
|
Scalar pC[numPhases];
|
|
MaterialLaw::capillaryPressures(pC, matParams, fs);
|
|
|
|
// make a full fluid state
|
|
fs.setPressure(wettingPhaseIdx, pw);
|
|
fs.setPressure(nonWettingPhaseIdx, pw + (pC[wettingPhaseIdx] - pC[nonWettingPhaseIdx]));
|
|
|
|
// assign the primary variables
|
|
values.assignNaive(fs);
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::source
|
|
*
|
|
* For this problem, the source term of all components is 0
|
|
* everywhere.
|
|
*/
|
|
template <class Context>
|
|
void source(RateVector &rate, const Context &context, unsigned spaceIdx,
|
|
unsigned timeIdx) const
|
|
{ rate = Scalar(0.0); }
|
|
|
|
//! \}
|
|
|
|
private:
|
|
bool isInLens_(const GlobalPosition &pos) const
|
|
{
|
|
for (unsigned i = 0; i < dim; ++i) {
|
|
if (pos[i] < lensLowerLeft_[i] - eps_ || pos[i] > lensUpperRight_[i]
|
|
+ eps_)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool onLeftBoundary_(const GlobalPosition &pos) const
|
|
{ return pos[0] < this->boundingBoxMin()[0] + eps_; }
|
|
|
|
bool onRightBoundary_(const GlobalPosition &pos) const
|
|
{ return pos[0] > this->boundingBoxMax()[0] - eps_; }
|
|
|
|
bool onLowerBoundary_(const GlobalPosition &pos) const
|
|
{ return pos[1] < this->boundingBoxMin()[1] + eps_; }
|
|
|
|
bool onUpperBoundary_(const GlobalPosition &pos) const
|
|
{ return pos[1] > this->boundingBoxMax()[1] - eps_; }
|
|
|
|
bool onInlet_(const GlobalPosition &pos) const
|
|
{
|
|
Scalar width = this->boundingBoxMax()[0] - this->boundingBoxMin()[0];
|
|
Scalar lambda = (this->boundingBoxMax()[0] - pos[0]) / width;
|
|
return onUpperBoundary_(pos) && 0.5 < lambda && lambda < 2.0 / 3.0;
|
|
}
|
|
|
|
GlobalPosition lensLowerLeft_;
|
|
GlobalPosition lensUpperRight_;
|
|
|
|
DimMatrix lensK_;
|
|
DimMatrix outerK_;
|
|
MaterialLawParams lensMaterialParams_;
|
|
MaterialLawParams outerMaterialParams_;
|
|
|
|
Scalar temperature_;
|
|
Scalar eps_;
|
|
};
|
|
|
|
} // namespace Ewoms
|
|
|
|
#endif
|