opm-simulators/examples/problems/stokesnitestproblem.hh
Andreas Lauser 2c97e90a79 make most indices unsigned
(instead of using 'int'.) This triggered quite a few compiler warnings
which are also dealt-with by this patch.
2015-11-18 18:09:56 +01:00

341 lines
10 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
Copyright (C) 2011-2013 by Andreas Lauser
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
/*!
* \file
* \copydoc Ewoms::StokesNiTestProblem
*/
#ifndef EWOMS_STOKES_NI_TEST_PROBLEM_HH
#define EWOMS_STOKES_NI_TEST_PROBLEM_HH
#include <ewoms/models/stokes/stokesmodel.hh>
#include <ewoms/io/simplexgridmanager.hh>
#include <opm/material/fluidsystems/H2OAirFluidSystem.hpp>
#include <dune/grid/yaspgrid.hh>
#include <dune/grid/io/file/dgfparser/dgfyasp.hh>
#include <dune/common/version.hh>
#include <dune/common/fvector.hh>
namespace Ewoms {
template <class TypeTag>
class StokesNiTestProblem;
}
namespace Ewoms {
namespace Properties {
NEW_TYPE_TAG(StokesNiTestProblem, INHERITS_FROM(StokesModel));
// Set the grid type
SET_TYPE_PROP(StokesNiTestProblem, Grid, Dune::YaspGrid<2>);
// Set the problem property
SET_TYPE_PROP(StokesNiTestProblem, Problem, Ewoms::StokesNiTestProblem<TypeTag>);
//! Select the fluid system
SET_TYPE_PROP(StokesNiTestProblem, FluidSystem,
Opm::FluidSystems::H2OAir<typename GET_PROP_TYPE(TypeTag, Scalar)>);
//! Select the phase to be considered
SET_INT_PROP(StokesNiTestProblem, StokesPhaseIndex,
GET_PROP_TYPE(TypeTag, FluidSystem)::gasPhaseIdx);
// Enable gravity
SET_BOOL_PROP(StokesNiTestProblem, EnableGravity, true);
// Enable the energy equation
SET_BOOL_PROP(StokesNiTestProblem, EnableEnergy, true);
// Enable constraints
SET_BOOL_PROP(StokesNiTestProblem, EnableConstraints, true);
// Default simulation end time [s]
SET_SCALAR_PROP(StokesNiTestProblem, EndTime, 3.0);
// Default initial time step size [s]
SET_SCALAR_PROP(StokesNiTestProblem, InitialTimeStepSize, 0.1);
// Increase the default raw tolerance of the Newton-Raphson method to 10^-4
SET_SCALAR_PROP(StokesNiTestProblem, NewtonRawTolerance, 1e-4);
// Default grid file to load
SET_STRING_PROP(StokesNiTestProblem, GridFile, "data/test_stokes2cni.dgf");
} // namespace Properties
} // namespace Ewoms
namespace Ewoms {
/*!
* \ingroup StokesNiModel
* \ingroup TestProblems
* \brief Non-isothermal test problem for the Stokes model with a gas
* (N2) flowing from the left to the right.
*
* The domain of this problem is 1m times 1m. The upper and the lower
* boundaries are fixed to the initial condition by means of
* constraints, the left and the right boundaries are no-slip
* conditions.
*/
template <class TypeTag>
class StokesNiTestProblem : public GET_PROP_TYPE(TypeTag, BaseProblem)
{
typedef typename GET_PROP_TYPE(TypeTag, BaseProblem) ParentType;
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, Constraints) Constraints;
typedef typename GET_PROP_TYPE(TypeTag, EqVector) EqVector;
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
typedef typename GET_PROP_TYPE(TypeTag, BoundaryRateVector) BoundaryRateVector;
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
enum {
// Number of equations and grid dimension
dimWorld = GridView::dimensionworld,
// primary variable indices
pressureIdx = Indices::pressureIdx,
moleFrac1Idx = Indices::moleFrac1Idx,
velocity0Idx = Indices::velocity0Idx,
temperatureIdx = Indices::temperatureIdx,
// equation indices
conti0EqIdx = Indices::conti0EqIdx,
momentum0EqIdx = Indices::momentum0EqIdx,
energyEqIdx = Indices::energyEqIdx
};
enum { numComponents = FluidSystem::numComponents };
enum { H2OIdx = FluidSystem::H2OIdx };
enum { AirIdx = FluidSystem::AirIdx };
typedef typename GridView::ctype CoordScalar;
typedef Dune::FieldVector<CoordScalar, dimWorld> GlobalPosition;
typedef Dune::FieldVector<Scalar, dimWorld> DimVector;
public:
/*!
* \copydoc Doxygen::defaultProblemConstructor
*/
StokesNiTestProblem(Simulator &simulator)
: ParentType(simulator)
{ }
/*!
* \copydoc FvBaseProblem::finishInit
*/
void finishInit()
{
ParentType::finishInit();
eps_ = 1e-6;
// initialize the tables of the fluid system
FluidSystem::init(/*Tmin=*/280.0, /*Tmax=*/285, /*nT=*/10,
/*pmin=*/1e5, /*pmax=*/1e5 + 100, /*np=*/200);
}
/*!
* \name Problem parameters
*/
//! \{
/*!
* \copydoc FvBaseProblem::name
*/
std::string name() const
{ return "stokestest_ni"; }
/*!
* \copydoc FvBaseProblem::endTimeStep
*/
void endTimeStep()
{
#ifndef NDEBUG
// checkConservativeness() does not include the effect of constraints, so we
// disable it for this problem...
//this->model().checkConservativeness();
// Calculate storage terms
EqVector storage;
this->model().globalStorage(storage);
// Write mass balance information for rank 0
if (this->gridView().comm().rank() == 0) {
std::cout << "Storage: " << storage << std::endl << std::flush;
}
#endif // NDEBUG
}
//! \}
/*!
* \name Boundary conditions
*/
//! \{
/*!
* \copydoc FvBaseProblem::boundary
*/
template <class Context>
void boundary(BoundaryRateVector &values, const Context &context,
unsigned spaceIdx, unsigned timeIdx) const
{
const GlobalPosition &pos = context.pos(spaceIdx, timeIdx);
if (onUpperBoundary_(pos))
values.setOutFlow(context, spaceIdx, timeIdx);
else if (onLowerBoundary_(pos)) {
// lower boundary is constraint!
values = 0.0;
}
else {
// left and right
values.setNoFlow(context, spaceIdx, timeIdx);
}
}
//! \}
/*!
* \name Volumetric terms
*/
// \{
/*!
* \copydoc FvBaseProblem::initial
*/
template <class Context>
void initial(PrimaryVariables &values, const Context &context, unsigned spaceIdx,
unsigned timeIdx) const
{
const GlobalPosition &pos = context.pos(spaceIdx, timeIdx);
Scalar moleFrac[numComponents];
moleFrac[H2OIdx] = 1e-4;
Scalar temperature = 283.15;
if (inLens_(pos)) {
moleFrac[H2OIdx] = 0.9e-4;
temperature = 284.15;
}
moleFrac[AirIdx] = 1 - moleFrac[H2OIdx];
// parabolic velocity profile
Scalar y = this->boundingBoxMax()[1] - pos[1];
Scalar x = pos[0] - this->boundingBoxMin()[0];
Scalar width = this->boundingBoxMax()[0] - this->boundingBoxMin()[0];
// parabolic velocity profile
const Scalar maxVelocity = 1.0;
Scalar a = -4 * maxVelocity / (width * width);
Scalar b = -a * width;
Scalar c = 0;
DimVector velocity(0.0);
velocity[1] = a * x * x + b * x + c;
// hydrostatic pressure
Scalar rho = 1.189;
Scalar pressure = 1e5 - rho * this->gravity()[1] * y;
for (unsigned axisIdx = 0; axisIdx < dimWorld; ++axisIdx)
values[velocity0Idx + axisIdx] = velocity[axisIdx];
values[pressureIdx] = pressure;
values[moleFrac1Idx] = moleFrac[1];
values[temperatureIdx] = temperature;
}
/*!
* \copydoc FvBaseProblem::source
*
* For this problem, the source term of all conserved quantities
* is 0 everywhere.
*/
template <class Context>
void source(RateVector &rate, const Context &context, unsigned spaceIdx,
unsigned timeIdx) const
{ rate = Scalar(0.0); }
/*!
* \copydoc FvBaseProblem::constraints
*
* This problem sets temperature constraints for the finite volumes
* adjacent to the inlet.
*/
template <class Context>
void constraints(Constraints &constraints, const Context &context,
unsigned spaceIdx, unsigned timeIdx) const
{
const auto &pos = context.pos(spaceIdx, timeIdx);
if (onLowerBoundary_(pos) || onUpperBoundary_(pos)) {
PrimaryVariables initCond;
initial(initCond, context, spaceIdx, timeIdx);
constraints.setConstraint(temperatureIdx, energyEqIdx,
initCond[temperatureIdx]);
;
constraints.setConstraint(pressureIdx, conti0EqIdx,
initCond[pressureIdx]);
constraints.setConstraint(moleFrac1Idx, conti0EqIdx + 1,
initCond[moleFrac1Idx]);
;
for (unsigned axisIdx = 0; axisIdx < dimWorld; ++axisIdx)
constraints.setConstraint(velocity0Idx + axisIdx,
momentum0EqIdx + axisIdx,
initCond[momentum0EqIdx + axisIdx]);
}
}
//! \}
private:
bool onLeftBoundary_(const GlobalPosition &pos) const
{ return pos[0] < this->boundingBoxMin()[0] + eps_; }
bool onRightBoundary_(const GlobalPosition &pos) const
{ return pos[0] > this->boundingBoxMax()[0] - eps_; }
bool onLowerBoundary_(const GlobalPosition &pos) const
{ return pos[1] < this->boundingBoxMin()[1] + eps_; }
bool onUpperBoundary_(const GlobalPosition &pos) const
{ return pos[1] > this->boundingBoxMax()[1] - eps_; }
bool onBoundary_(const GlobalPosition &pos) const
{
return onLeftBoundary_(pos) || onRightBoundary_(pos)
|| onLowerBoundary_(pos) || onUpperBoundary_(pos);
}
bool inLens_(const GlobalPosition &pos) const
{ return pos[0] < 0.75 && pos[0] > 0.25 && pos[1] < 0.75 && pos[1] > 0.25; }
Scalar eps_;
};
} // namespace Ewoms
#endif