opm-simulators/opm/models/io/vtkblackoilenergymodule.hh
2024-04-05 14:54:53 +02:00

245 lines
8.6 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
* \copydoc Opm::VtkBlackOilEnergyModule
*/
#ifndef EWOMS_VTK_BLACK_OIL_ENERGY_MODULE_HH
#define EWOMS_VTK_BLACK_OIL_ENERGY_MODULE_HH
#include <opm/material/densead/Math.hpp>
#include "vtkmultiwriter.hh"
#include "baseoutputmodule.hh"
#include <opm/models/utils/propertysystem.hh>
#include <opm/models/utils/parametersystem.hh>
#include <opm/models/blackoil/blackoilproperties.hh>
#include <dune/common/fvector.hh>
#include <cstdio>
namespace Opm::Properties {
namespace TTag {
// create new type tag for the VTK multi-phase output
struct VtkBlackOilEnergy {};
} // namespace TTag
// create the property tags needed for the energy module
template<class TypeTag, class MyTypeTag>
struct VtkWriteRockInternalEnergy { using type = UndefinedProperty; };
template<class TypeTag, class MyTypeTag>
struct VtkWriteTotalThermalConductivity { using type = UndefinedProperty; };
template<class TypeTag, class MyTypeTag>
struct VtkWriteFluidInternalEnergies { using type = UndefinedProperty; };
template<class TypeTag, class MyTypeTag>
struct VtkWriteFluidEnthalpies { using type = UndefinedProperty; };
// set default values for what quantities to output
template<class TypeTag>
struct VtkWriteRockInternalEnergy<TypeTag, TTag::VtkBlackOilEnergy> { static constexpr bool value = true; };
template<class TypeTag>
struct VtkWriteTotalThermalConductivity<TypeTag, TTag::VtkBlackOilEnergy> { static constexpr bool value = true; };
template<class TypeTag>
struct VtkWriteFluidInternalEnergies<TypeTag, TTag::VtkBlackOilEnergy> { static constexpr bool value = true; };
template<class TypeTag>
struct VtkWriteFluidEnthalpies<TypeTag, TTag::VtkBlackOilEnergy> { static constexpr bool value = true; };
} // namespace Opm::Properties
namespace Opm {
/*!
* \ingroup Vtk
*
* \brief VTK output module for the black oil model's energy related quantities.
*/
template <class TypeTag>
class VtkBlackOilEnergyModule : public BaseOutputModule<TypeTag>
{
using ParentType = BaseOutputModule<TypeTag>;
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
using GridView = GetPropType<TypeTag, Properties::GridView>;
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
static const int vtkFormat = getPropValue<TypeTag, Properties::VtkOutputFormat>();
using VtkMultiWriter = ::Opm::VtkMultiWriter<GridView, vtkFormat>;
enum { enableEnergy = getPropValue<TypeTag, Properties::EnableEnergy>() };
enum { numPhases = getPropValue<TypeTag, Properties::NumPhases>() };
using ScalarBuffer = typename ParentType::ScalarBuffer;
using PhaseBuffer = typename ParentType::PhaseBuffer;
public:
VtkBlackOilEnergyModule(const Simulator& simulator)
: ParentType(simulator)
{ }
/*!
* \brief Register all run-time parameters for the multi-phase VTK output
* module.
*/
static void registerParameters()
{
if (!enableEnergy)
return;
Parameters::registerParam<TypeTag, Properties::VtkWriteRockInternalEnergy>
("Include the volumetric internal energy of rock "
"in the VTK output files");
Parameters::registerParam<TypeTag, Properties::VtkWriteTotalThermalConductivity>
("Include the total thermal conductivity of the medium and the fluids "
"in the VTK output files");
Parameters::registerParam<TypeTag, Properties::VtkWriteFluidInternalEnergies>
("Include the internal energies of the fluids in the VTK output files");
Parameters::registerParam<TypeTag, Properties::VtkWriteFluidEnthalpies>
("Include the enthalpies of the fluids in the VTK output files");
}
/*!
* \brief Allocate memory for the scalar fields we would like to
* write to the VTK file.
*/
void allocBuffers()
{
if (!Parameters::get<TypeTag, Properties::EnableVtkOutput>())
return;
if (!enableEnergy)
return;
if (rockInternalEnergyOutput_())
this->resizeScalarBuffer_(rockInternalEnergy_);
if (totalThermalConductivityOutput_())
this->resizeScalarBuffer_(totalThermalConductivity_);
if (fluidInternalEnergiesOutput_())
this->resizePhaseBuffer_(fluidInternalEnergies_);
if (fluidEnthalpiesOutput_())
this->resizePhaseBuffer_(fluidEnthalpies_);
}
/*!
* \brief Modify the internal buffers according to the intensive quantities relevant for
* an element
*/
void processElement(const ElementContext& elemCtx)
{
if (!Parameters::get<TypeTag, Properties::EnableVtkOutput>())
return;
if (!enableEnergy)
return;
for (unsigned dofIdx = 0; dofIdx < elemCtx.numPrimaryDof(/*timeIdx=*/0); ++dofIdx) {
const auto& intQuants = elemCtx.intensiveQuantities(dofIdx, /*timeIdx=*/0);
unsigned globalDofIdx = elemCtx.globalSpaceIndex(dofIdx, /*timeIdx=*/0);
if (rockInternalEnergyOutput_())
rockInternalEnergy_[globalDofIdx] =
scalarValue(intQuants.rockInternalEnergy());
if (totalThermalConductivityOutput_())
totalThermalConductivity_[globalDofIdx] =
scalarValue(intQuants.totalThermalConductivity());
for (int phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
if (FluidSystem::phaseIsActive(phaseIdx)) {
if (fluidInternalEnergiesOutput_())
fluidInternalEnergies_[phaseIdx][globalDofIdx] =
scalarValue(intQuants.fluidState().internalEnergy(phaseIdx));
if (fluidEnthalpiesOutput_())
fluidEnthalpies_[phaseIdx][globalDofIdx] =
scalarValue(intQuants.fluidState().enthalpy(phaseIdx));
}
}
}
}
/*!
* \brief Add all buffers to the VTK output writer.
*/
void commitBuffers(BaseOutputWriter& baseWriter)
{
VtkMultiWriter *vtkWriter = dynamic_cast<VtkMultiWriter*>(&baseWriter);
if (!vtkWriter)
return;
if (!enableEnergy)
return;
if (rockInternalEnergyOutput_())
this->commitScalarBuffer_(baseWriter, "volumetric internal energy rock", rockInternalEnergy_);
if (totalThermalConductivityOutput_())
this->commitScalarBuffer_(baseWriter, "total thermal conductivity", totalThermalConductivity_);
if (fluidInternalEnergiesOutput_())
this->commitPhaseBuffer_(baseWriter, "internal energy_%s", fluidInternalEnergies_);
if (fluidEnthalpiesOutput_())
this->commitPhaseBuffer_(baseWriter, "enthalpy_%s", fluidEnthalpies_);
}
private:
static bool rockInternalEnergyOutput_()
{
static bool val = Parameters::get<TypeTag, Properties::VtkWriteRockInternalEnergy>();
return val;
}
static bool totalThermalConductivityOutput_()
{
static bool val = Parameters::get<TypeTag, Properties::VtkWriteTotalThermalConductivity>();
return val;
}
static bool fluidInternalEnergiesOutput_()
{
static bool val = Parameters::get<TypeTag, Properties::VtkWriteFluidInternalEnergies>();
return val;
}
static bool fluidEnthalpiesOutput_()
{
static bool val = Parameters::get<TypeTag, Properties::VtkWriteFluidEnthalpies>();
return val;
}
ScalarBuffer rockInternalEnergy_;
ScalarBuffer totalThermalConductivity_;
PhaseBuffer fluidInternalEnergies_;
PhaseBuffer fluidEnthalpies_;
};
} // namespace Opm
#endif