opm-simulators/opm/core/linalg/LinearSolverIstl.hpp
Markus Blatt cec51280e7 Explicitly construct the ScalarProduct, and SequentialInformation.
This patch refactors the calls to the dune-istl solvers.
The SeqScalarProduct, and SequentialInformation is now explicitly
constructed and later used to construct the smoothers
generically. Aditionally the linear operator (MatrixAdapter) is
constructed before calling the various solver dependent solve
routines.

While this does not change the behaviour of the code it is a
preparatory step to support parallel solvers. These parallel
solvers only differ in the type of the scalarproduct and
linear operator used from the sequential ones.
2014-03-20 12:09:24 +01:00

122 lines
5.1 KiB
C++

/*
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_LINEARSOLVERISTL_HEADER_INCLUDED
#define OPM_LINEARSOLVERISTL_HEADER_INCLUDED
#include <opm/core/linalg/LinearSolverInterface.hpp>
#include <opm/core/utility/parameters/ParameterGroup.hpp>
#include <string>
namespace Opm
{
/// Concrete class encapsulating some dune-istl linear solvers.
class LinearSolverIstl : public LinearSolverInterface
{
public:
/// Default constructor.
/// All parameters controlling the solver are defaulted:
/// linsolver_residual_tolerance 1e-8
/// linsolver_verbosity 0
/// linsolver_type 1 ( = CG_AMG), alternatives are:
/// CG_ILU0 = 0, CG_AMG = 1, BiCGStab_ILU0 = 2
/// FastAMG=3, KAMG=4 };
/// linsolver_save_system false
/// linsolver_save_filename <empty string>
/// linsolver_max_iterations 0 (unlimited=5000)
/// linsolver_residual_tolerance 1e-8
/// linsolver_smooth_steps 2
/// linsolver_prolongate_factor 1.6
/// linsolver_verbosity 0
LinearSolverIstl();
/// Construct from parameters
/// Accepted parameters are, with defaults, listed in the
/// default constructor.
LinearSolverIstl(const parameter::ParameterGroup& param);
/// Destructor.
virtual ~LinearSolverIstl();
using LinearSolverInterface::solve;
/// Solve a linear system, with a matrix given in compressed sparse row format.
/// \param[in] size # of rows in matrix
/// \param[in] nonzeros # of nonzeros elements in matrix
/// \param[in] ia array of length (size + 1) containing start and end indices for each row
/// \param[in] ja array of length nonzeros containing column numbers for the nonzero elements
/// \param[in] sa array of length nonzeros containing the values of the nonzero elements
/// \param[in] rhs array of length size containing the right hand side
/// \param[inout] solution array of length size to which the solution will be written, may also be used
/// as initial guess by iterative solvers.
virtual LinearSolverReport solve(const int size,
const int nonzeros,
const int* ia,
const int* ja,
const double* sa,
const double* rhs,
double* solution) const;
/// Set tolerance for the residual in dune istl linear solver.
/// \param[in] tol tolerance value
virtual void setTolerance(const double tol);
/// Get tolerance ofthe linear solver.
/// \param[out] tolerance value
virtual double getTolerance() const;
private:
/// \brief Solve the linear system using ISTL
/// \param[in] opA The linear operator of the system to solve.
/// \param[in,out] x The vector with the initial guess that will store
/// the computed solution
/// \param[out] solution C array for storing the solution vector.
/// \param[in] b The vector containing the right hand side of the system.
/// \param[in] sp The scalar product to use.
/// \param[in] comm The information about the parallel domain decomposition.
/// \param[in] maxit The maximum number of iterations allowed.
template<class O, class V, class S, class C>
LinearSolverReport solveSystem(O& opA, V& x, double* solution,
V& b, S& sp, const C& comm, int maxit) const;
double linsolver_residual_tolerance_;
int linsolver_verbosity_;
enum LinsolverType { CG_ILU0 = 0, CG_AMG = 1, BiCGStab_ILU0 = 2, FastAMG=3, KAMG=4 };
LinsolverType linsolver_type_;
bool linsolver_save_system_;
std::string linsolver_save_filename_;
int linsolver_max_iterations_;
/** \brief The number smoothing steps to apply in AMG. */
int linsolver_smooth_steps_;
/** \brief The factor to scale the coarse grid correction with. */
double linsolver_prolongate_factor_;
};
} // namespace Opm
#endif // OPM_LINEARSOLVERISTL_HEADER_INCLUDED