opm-simulators/opm/autodiff/BlackoilSolventModel_impl.hpp
Tor Harald Sandve a38964c641 Some cleaning
2016-02-12 10:42:26 +01:00

1026 lines
45 KiB
C++

/*
Copyright 2015 IRIS AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_BLACKOILSOLVENTMODEL_IMPL_HEADER_INCLUDED
#define OPM_BLACKOILSOLVENTMODEL_IMPL_HEADER_INCLUDED
#include <opm/autodiff/BlackoilSolventModel.hpp>
#include <opm/autodiff/AutoDiffBlock.hpp>
#include <opm/autodiff/AutoDiffHelpers.hpp>
#include <opm/autodiff/GridHelpers.hpp>
#include <opm/autodiff/BlackoilPropsAdInterface.hpp>
#include <opm/autodiff/GeoProps.hpp>
#include <opm/autodiff/WellDensitySegmented.hpp>
#include <opm/core/grid.h>
#include <opm/core/linalg/LinearSolverInterface.hpp>
#include <opm/core/linalg/ParallelIstlInformation.hpp>
#include <opm/core/props/rock/RockCompressibility.hpp>
#include <opm/common/ErrorMacros.hpp>
#include <opm/common/Exceptions.hpp>
#include <opm/core/utility/Units.hpp>
#include <opm/core/well_controls.h>
#include <opm/core/utility/parameters/ParameterGroup.hpp>
#include <cassert>
#include <cmath>
#include <iostream>
#include <iomanip>
#include <limits>
namespace Opm {
namespace detail {
template <class PU>
int solventPos(const PU& pu)
{
const int maxnp = Opm::BlackoilPhases::MaxNumPhases;
int pos = 0;
for (int phase = 0; phase < maxnp; ++phase) {
if (pu.phase_used[phase]) {
pos++;
}
}
return pos;
}
} // namespace detail
template <class Grid>
BlackoilSolventModel<Grid>::BlackoilSolventModel(const typename Base::ModelParameters& param,
const Grid& grid,
const BlackoilPropsAdInterface& fluid,
const DerivedGeology& geo,
const RockCompressibility* rock_comp_props,
const SolventPropsAdFromDeck& solvent_props,
const Wells* wells_arg,
const NewtonIterationBlackoilInterface& linsolver,
const EclipseStateConstPtr eclState,
const bool has_disgas,
const bool has_vapoil,
const bool terminal_output,
const bool has_solvent,
const bool is_miscible)
: Base(param, grid, fluid, geo, rock_comp_props, wells_arg, linsolver,
eclState, has_disgas, has_vapoil, terminal_output),
has_solvent_(has_solvent),
solvent_pos_(detail::solventPos(fluid.phaseUsage())),
solvent_props_(solvent_props),
is_miscible_(is_miscible)
{
if (has_solvent_) {
// If deck has solvent, residual_ should contain solvent equation.
rq_.resize(fluid_.numPhases() + 1);
residual_.material_balance_eq.resize(fluid_.numPhases() + 1, ADB::null());
Base::material_name_.push_back("Solvent");
assert(solvent_pos_ == fluid_.numPhases());
if (has_vapoil_) {
OPM_THROW(std::runtime_error, "Solvent option only works with dead gas\n");
}
residual_.matbalscale.resize(fluid_.numPhases() + 1, 0.0031); // use the same as gas
}
if (is_miscible_) {
mu_eff_.resize(fluid_.numPhases() + 1, ADB::null());
b_eff_.resize(fluid_.numPhases() + 1, ADB::null());
}
}
template <class Grid>
void
BlackoilSolventModel<Grid>::makeConstantState(SolutionState& state) const
{
Base::makeConstantState(state);
state.solvent_saturation = ADB::constant(state.solvent_saturation.value());
}
template <class Grid>
std::vector<V>
BlackoilSolventModel<Grid>::variableStateInitials(const ReservoirState& x,
const WellState& xw) const
{
std::vector<V> vars0 = Base::variableStateInitials(x, xw);
assert(int(vars0.size()) == fluid_.numPhases() + 2);
// Initial polymer concentration.
if (has_solvent_) {
assert (not x.solvent_saturation().empty());
const int nc = x.solvent_saturation().size();
const V ss = Eigen::Map<const V>(&x.solvent_saturation()[0], nc);
// Solvent belongs after other reservoir vars but before well vars.
auto solvent_pos = vars0.begin() + fluid_.numPhases();
assert(solvent_pos == vars0.end() - 2);
vars0.insert(solvent_pos, ss);
}
return vars0;
}
template <class Grid>
std::vector<int>
BlackoilSolventModel<Grid>::variableStateIndices() const
{
std::vector<int> ind = Base::variableStateIndices();
assert(ind.size() == 5);
if (has_solvent_) {
ind.resize(6);
// Solvent belongs after other reservoir vars but before well vars.
ind[Solvent] = fluid_.numPhases();
// Solvent is pushing back the well vars.
++ind[Qs];
++ind[Bhp];
}
return ind;
}
template <class Grid>
typename BlackoilSolventModel<Grid>::SolutionState
BlackoilSolventModel<Grid>::variableStateExtractVars(const ReservoirState& x,
const std::vector<int>& indices,
std::vector<ADB>& vars) const
{
SolutionState state = Base::variableStateExtractVars(x, indices, vars);
if (has_solvent_) {
state.solvent_saturation = std::move(vars[indices[Solvent]]);
if (active_[ Oil ]) {
// Note that so is never a primary variable.
const Opm::PhaseUsage pu = fluid_.phaseUsage();
state.saturation[pu.phase_pos[ Oil ]] -= state.solvent_saturation;
}
}
return state;
}
template <class Grid>
void
BlackoilSolventModel<Grid>::computeAccum(const SolutionState& state,
const int aix )
{
Base::computeAccum(state, aix);
// Compute accumulation of the solvent
if (has_solvent_) {
const ADB& press = state.pressure;
const ADB& ss = state.solvent_saturation;
const ADB pv_mult = poroMult(press); // also computed in Base::computeAccum, could be optimized.
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
const ADB& pg = state.canonical_phase_pressures[pu.phase_pos[Gas]];
const std::vector<PhasePresence>& cond = phaseCondition();
rq_[solvent_pos_].b = fluidReciprocFVF(Solvent, pg, state.temperature, state.rs, state.rv,cond);
rq_[solvent_pos_].accum[aix] = pv_mult * rq_[solvent_pos_].b * ss;
}
}
template <class Grid>
void
BlackoilSolventModel<Grid>::
assembleMassBalanceEq(const SolutionState& state)
{
Base::assembleMassBalanceEq(state);
if (has_solvent_) {
residual_.material_balance_eq[ solvent_pos_ ] =
pvdt_ * (rq_[solvent_pos_].accum[1] - rq_[solvent_pos_].accum[0])
+ ops_.div*rq_[solvent_pos_].mflux;
}
}
template <class Grid>
void
BlackoilSolventModel<Grid>::updateEquationsScaling()
{
Base::updateEquationsScaling();
assert(MaxNumPhases + 1 == residual_.matbalscale.size());
if (has_solvent_) {
const ADB& temp_b = rq_[solvent_pos_].b;
ADB::V B = 1. / temp_b.value();
#if HAVE_MPI
if ( linsolver_.parallelInformation().type() == typeid(ParallelISTLInformation) )
{
const ParallelISTLInformation& real_info =
boost::any_cast<const ParallelISTLInformation&>(linsolver_.parallelInformation());
double B_global_sum = 0;
real_info.computeReduction(B, Reduction::makeGlobalSumFunctor<double>(), B_global_sum);
residual_.matbalscale[solvent_pos_] = B_global_sum / Base::global_nc_;
}
else
#endif
{
residual_.matbalscale[solvent_pos_] = B.mean();
}
}
}
template <class Grid>
void BlackoilSolventModel<Grid>::addWellContributionToMassBalanceEq(const std::vector<ADB>& cq_s,
const SolutionState& state,
WellState& xw)
{
// Add well contributions to solvent mass balance equation
Base::addWellContributionToMassBalanceEq(cq_s, state, xw);
if (has_solvent_) {
const int nperf = wells().well_connpos[wells().number_of_wells];
const int nc = Opm::AutoDiffGrid::numCells(grid_);
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
const ADB zero = ADB::constant(V::Zero(nc));
const ADB& ss = state.solvent_saturation;
const ADB& sg = (active_[ Gas ]
? state.saturation[ pu.phase_pos[ Gas ] ]
: zero);
const std::vector<int> well_cells(wells().well_cells, wells().well_cells + nperf);
Selector<double> zero_selector(ss.value() + sg.value(), Selector<double>::Zero);
ADB F_solvent = subset(zero_selector.select(ss, ss / (ss + sg)),well_cells);
const int nw = wells().number_of_wells;
V injectedSolventFraction = Eigen::Map<const V>(&xw.solventFraction()[0], nperf);
V isProducer = V::Zero(nperf);
V ones = V::Constant(nperf,1.0);
for (int w = 0; w < nw; ++w) {
if(wells().type[w] == PRODUCER) {
for (int perf = wells().well_connpos[w]; perf < wells().well_connpos[w+1]; ++perf) {
isProducer[perf] = 1;
}
}
}
const ADB& rs_perfcells = subset(state.rs, well_cells);
int gas_pos = fluid_.phaseUsage().phase_pos[Gas];
int oil_pos = fluid_.phaseUsage().phase_pos[Oil];
// remove contribution from the dissolved gas.
// TODO compensate for gas in the oil phase
assert(!has_vapoil_);
const ADB cq_s_solvent = (isProducer * F_solvent + (ones - isProducer) * injectedSolventFraction) * (cq_s[gas_pos] - rs_perfcells * cq_s[oil_pos]);
// Solvent contribution to the mass balance equation is given as a fraction
// of the gas contribution.
residual_.material_balance_eq[solvent_pos_] -= superset(cq_s_solvent, well_cells, nc);
// The gas contribution must be reduced accordingly for the total contribution to be
// the same.
residual_.material_balance_eq[gas_pos] += superset(cq_s_solvent, well_cells, nc);
}
}
template <class Grid>
void BlackoilSolventModel<Grid>::computeWellConnectionPressures(const SolutionState& state,
const WellState& xw)
{
if( ! Base::localWellsActive() ) return ;
using namespace Opm::AutoDiffGrid;
// 1. Compute properties required by computeConnectionPressureDelta().
// Note that some of the complexity of this part is due to the function
// taking std::vector<double> arguments, and not Eigen objects.
const int nperf = wells().well_connpos[wells().number_of_wells];
const int nw = wells().number_of_wells;
const std::vector<int> well_cells(wells().well_cells, wells().well_cells + nperf);
// Compute the average pressure in each well block
const V perf_press = Eigen::Map<const V>(xw.perfPress().data(), nperf);
V avg_press = perf_press*0;
for (int w = 0; w < nw; ++w) {
for (int perf = wells().well_connpos[w]; perf < wells().well_connpos[w+1]; ++perf) {
const double p_above = perf == wells().well_connpos[w] ? state.bhp.value()[w] : perf_press[perf - 1];
const double p_avg = (perf_press[perf] + p_above)/2;
avg_press[perf] = p_avg;
}
}
// Use cell values for the temperature as the wells don't knows its temperature yet.
const ADB perf_temp = subset(state.temperature, well_cells);
// Compute b, rsmax, rvmax values for perforations.
// Evaluate the properties using average well block pressures
// and cell values for rs, rv, phase condition and temperature.
const ADB avg_press_ad = ADB::constant(avg_press);
std::vector<PhasePresence> perf_cond(nperf);
const std::vector<PhasePresence>& pc = phaseCondition();
for (int perf = 0; perf < nperf; ++perf) {
perf_cond[perf] = pc[well_cells[perf]];
}
const PhaseUsage& pu = fluid_.phaseUsage();
DataBlock b(nperf, pu.num_phases);
std::vector<double> rsmax_perf(nperf, 0.0);
std::vector<double> rvmax_perf(nperf, 0.0);
const V bw = fluid_.bWat(avg_press_ad, perf_temp, well_cells).value();
if (pu.phase_used[BlackoilPhases::Aqua]) {
b.col(pu.phase_pos[BlackoilPhases::Aqua]) = bw;
}
assert(active_[Oil]);
assert(active_[Gas]);
const ADB perf_rv = subset(state.rv, well_cells);
const ADB perf_rs = subset(state.rs, well_cells);
V bg = fluid_.bGas(avg_press_ad, perf_temp, perf_rv, perf_cond, well_cells).value();
V bo = fluid_.bOil(avg_press_ad, perf_temp, perf_rs, perf_cond, well_cells).value();
V bs = has_solvent_? subset(rq_[solvent_pos_].b,well_cells).value(): V::Zero(nperf);
const int np = fluid_.numPhases();
if (is_miscible_) {
// Densities
std::vector<ADB> density(np + 1, ADB::null());
density[pu.phase_pos[Oil]] = ADB::constant(bo * fluid_.surfaceDensity(pu.phase_pos[ Oil ], well_cells) );
density[pu.phase_pos[Gas]] = ADB::constant( bg * fluid_.surfaceDensity(pu.phase_pos[ Gas ], well_cells) );
density[pu.phase_pos[Water]] = ADB::constant(bw * fluid_.surfaceDensity(pu.phase_pos[ Water ], well_cells) );
density[solvent_pos_] = ADB::constant(bs * solvent_props_.solventSurfaceDensity(well_cells));
// Saturations
const ADB& ss = subset(state.solvent_saturation, well_cells);
const ADB& so = subset(state.saturation[ pu.phase_pos[ Oil ] ], well_cells);
const ADB& sg = (active_[ Gas ]
? subset(state.saturation[ pu.phase_pos[ Gas ]],well_cells)
: ADB::constant(V::Zero(nperf)));
const ADB& sw = (active_[ Water ]
? subset(state.saturation[ pu.phase_pos[ Water ] ],well_cells)
: ADB::constant(V::Zero(nperf)));
const ADB sorwmis = solvent_props_.miscibleResidualOilSaturationFunction(sw, well_cells);
const ADB sgcwmis = solvent_props_.miscibleCriticalGasSaturationFunction(sw, well_cells);
std::vector<ADB> effective_saturations (np + 1, ADB::null());
effective_saturations[pu.phase_pos[Oil]] = so - sorwmis;
effective_saturations[pu.phase_pos[Gas]] = sg - sgcwmis;
effective_saturations[pu.phase_pos[Water]] = sw;
effective_saturations[solvent_pos_] = ss - sgcwmis;
// Viscosities
std::vector<ADB> viscosity(np + 1, ADB::null());
viscosity[pu.phase_pos[Oil]] = fluid_.muOil(avg_press_ad, perf_temp, perf_rs, perf_cond, well_cells);
viscosity[pu.phase_pos[Gas]] = fluid_.muGas(avg_press_ad, perf_temp, perf_rv, perf_cond, well_cells);
viscosity[pu.phase_pos[Water]] = fluid_.muWat(avg_press_ad, perf_temp, well_cells);
viscosity[solvent_pos_] = solvent_props_.muSolvent(avg_press_ad,well_cells);
// Compute effective viscosities and densities
ToddLongstaffModel(viscosity, density, effective_saturations, pu);
// Update volume factors
bo = density[pu.phase_pos[ Oil ]].value() / fluid_.surfaceDensity(pu.phase_pos[ Oil ], well_cells);
bg = density[pu.phase_pos[ Gas ]].value() / fluid_.surfaceDensity(pu.phase_pos[ Gas ], well_cells);
bs = density[solvent_pos_].value() / solvent_props_.solventSurfaceDensity(well_cells);
}
const V perf_so = subset(state.saturation[pu.phase_pos[Oil]].value(), well_cells);
if (pu.phase_used[BlackoilPhases::Liquid]) {
//const V bo = fluid_.bOil(avg_press_ad, perf_temp, perf_rs, perf_cond, well_cells).value();
//const V bo = subset(rq_[pu.phase_pos[Oil] ].b , well_cells).value();
b.col(pu.phase_pos[BlackoilPhases::Liquid]) = bo;
const V rssat = fluidRsSat(avg_press, perf_so, well_cells);
rsmax_perf.assign(rssat.data(), rssat.data() + nperf);
}
V surf_dens_copy = superset(fluid_.surfaceDensity(0, well_cells), Span(nperf, pu.num_phases, 0), nperf*pu.num_phases);
for (int phase = 1; phase < pu.num_phases; ++phase) {
if ( phase == pu.phase_pos[BlackoilPhases::Vapour]) {
continue; // the gas surface density is added after the solvent is accounted for.
}
surf_dens_copy += superset(fluid_.surfaceDensity(phase, well_cells), Span(nperf, pu.num_phases, phase), nperf*pu.num_phases);
}
if (pu.phase_used[BlackoilPhases::Vapour]) {
//V bg = subset(rq_[pu.phase_pos[Gas]].b,well_cells).value();
//V bg = fluid_.bGas(avg_press_ad, perf_temp, perf_rv, perf_cond, well_cells).value();
V rhog = fluid_.surfaceDensity(pu.phase_pos[BlackoilPhases::Vapour], well_cells);
if (has_solvent_) {
//const V bs = solvent_props_.bSolvent(avg_press_ad,well_cells).value();
//const V bs = subset(rq_[solvent_pos_].b,well_cells).value();
// A weighted sum of the b-factors of gas and solvent are used.
const int nc = Opm::AutoDiffGrid::numCells(grid_);
const ADB zero = ADB::constant(V::Zero(nc));
const ADB& ss = state.solvent_saturation;
const ADB& sg = (active_[ Gas ]
? state.saturation[ pu.phase_pos[ Gas ] ]
: zero);
Selector<double> zero_selector(ss.value() + sg.value(), Selector<double>::Zero);
V F_solvent = subset(zero_selector.select(ss, ss / (ss + sg)),well_cells).value();
V injectedSolventFraction = Eigen::Map<const V>(&xw.solventFraction()[0], nperf);
V isProducer = V::Zero(nperf);
V ones = V::Constant(nperf,1.0);
for (int w = 0; w < nw; ++w) {
if(wells().type[w] == PRODUCER) {
for (int perf = wells().well_connpos[w]; perf < wells().well_connpos[w+1]; ++perf) {
isProducer[perf] = 1;
}
}
}
F_solvent = isProducer * F_solvent + (ones - isProducer) * injectedSolventFraction;
bg = bg * (ones - F_solvent);
bg = bg + F_solvent * bs;
const V& rhos = solvent_props_.solventSurfaceDensity(well_cells);
rhog = ( (ones - F_solvent) * rhog ) + (F_solvent * rhos);
}
b.col(pu.phase_pos[BlackoilPhases::Vapour]) = bg;
surf_dens_copy += superset(rhog, Span(nperf, pu.num_phases, pu.phase_pos[BlackoilPhases::Vapour]), nperf*pu.num_phases);
const V rvsat = fluidRvSat(avg_press, perf_so, well_cells);
rvmax_perf.assign(rvsat.data(), rvsat.data() + nperf);
}
// b and surf_dens_perf is row major, so can just copy data.
std::vector<double> b_perf(b.data(), b.data() + nperf * pu.num_phases);
std::vector<double> surf_dens_perf(surf_dens_copy.data(), surf_dens_copy.data() + nperf * pu.num_phases);
// Extract well connection depths.
const V depth = cellCentroidsZToEigen(grid_);
const V pdepth = subset(depth, well_cells);
std::vector<double> perf_depth(pdepth.data(), pdepth.data() + nperf);
// Gravity
double grav = detail::getGravity(geo_.gravity(), dimensions(grid_));
// 2. Compute densities
std::vector<double> cd =
WellDensitySegmented::computeConnectionDensities(
wells(), xw, fluid_.phaseUsage(),
b_perf, rsmax_perf, rvmax_perf, surf_dens_perf);
// 3. Compute pressure deltas
std::vector<double> cdp =
WellDensitySegmented::computeConnectionPressureDelta(
wells(), perf_depth, cd, grav);
// 4. Store the results
Base::well_perforation_densities_ = Eigen::Map<const V>(cd.data(), nperf);
Base::well_perforation_pressure_diffs_ = Eigen::Map<const V>(cdp.data(), nperf);
}
template <class Grid>
void BlackoilSolventModel<Grid>::updateState(const V& dx,
ReservoirState& reservoir_state,
WellState& well_state)
{
if (has_solvent_) {
// Extract solvent change.
const int np = fluid_.numPhases();
const int nc = Opm::AutoDiffGrid::numCells(grid_);
const V zero = V::Zero(nc);
const int solvent_start = nc * np;
const V dss = subset(dx, Span(nc, 1, solvent_start));
// Create new dx with the dss part deleted.
V modified_dx = V::Zero(dx.size() - nc);
modified_dx.head(solvent_start) = dx.head(solvent_start);
const int tail_len = dx.size() - solvent_start - nc;
modified_dx.tail(tail_len) = dx.tail(tail_len);
// Call base version.
Base::updateState(modified_dx, reservoir_state, well_state);
// Update solvent.
const V ss_old = Eigen::Map<const V>(&reservoir_state.solvent_saturation()[0], nc, 1);
const V ss = (ss_old - dss).max(zero);
std::copy(&ss[0], &ss[0] + nc, reservoir_state.solvent_saturation().begin());
// adjust oil saturation
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
const int oilpos = pu.phase_pos[ Oil ];
for (int c = 0; c < nc; ++c) {
reservoir_state.saturation()[c*np + oilpos] = 1 - ss[c];
if (pu.phase_used[ Gas ]) {
const int gaspos = pu.phase_pos[ Gas ];
reservoir_state.saturation()[c*np + oilpos] -= reservoir_state.saturation()[c*np + gaspos];
}
if (pu.phase_used[ Water ]) {
const int waterpos = pu.phase_pos[ Water ];
reservoir_state.saturation()[c*np + oilpos] -= reservoir_state.saturation()[c*np + waterpos];
}
}
} else {
// Just forward call to base version.
Base::updateState(dx, reservoir_state, well_state);
}
}
template <class Grid>
void
BlackoilSolventModel<Grid>::computeMassFlux(const int actph ,
const V& transi,
const ADB& kr ,
const ADB& mu ,
const ADB& rho ,
const ADB& phasePressure,
const SolutionState& state)
{
// make a copy to make it possible to modify it
ADB kr_mod = kr;
if (has_solvent_) {
const int nc = Opm::UgGridHelpers::numCells(grid_);
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
const ADB zero = ADB::constant(V::Zero(nc));
const V ones = V::Constant(nc, 1.0);
const int canonicalPhaseIdx = canph_[ actph ];
const ADB& ss = state.solvent_saturation;
const ADB& sg = (active_[ Gas ]
? state.saturation[ pu.phase_pos[ Gas ] ]
: zero);
Selector<double> zero_selector(ss.value() + sg.value(), Selector<double>::Zero);
const ADB F_solvent = zero_selector.select(zero, ss / (ss + sg));
const std::vector<PhasePresence>& cond = phaseCondition();
ADB mu_s = fluidViscosity(Solvent, phasePressure,state.temperature, state.rs, state.rv, cond);
ADB rho_s = fluidDensity(Solvent,rq_[solvent_pos_].b, state.rs, state.rv);
if (canonicalPhaseIdx == Gas) {
// compute solvent mobility and flux
//const ADB tr_mult = transMult(state.pressure);
ADB krs = solvent_props_.solventRelPermMultiplier(F_solvent, cells_) * kr_mod;
Base::computeMassFlux(solvent_pos_, transi, krs, mu_s, rho_s, phasePressure, state);
//rq_[solvent_pos_].mob = krs * tr_mult / mu_s;
//const ADB rhoavg_solvent = ops_.caver * rho_s;
//rq_[ solvent_pos_ ].dh = ops_.ngrad * phasePressure - geo_.gravity()[2] * (rhoavg_solvent * (ops_.ngrad * geo_.z().matrix()));
//UpwindSelector<double> upwind_solvent(grid_, ops_, rq_[solvent_pos_].dh.value());
//rq_[solvent_pos_].mflux = upwind_solvent.select(rq_[solvent_pos_].b * rq_[solvent_pos_].mob) * (transi * rq_[solvent_pos_].dh);
// modify gas relperm
kr_mod = solvent_props_.gasRelPermMultiplier( (ones - F_solvent) , cells_) * kr_mod;
}
}
// compute mobility and flux
Base::computeMassFlux(actph, transi, kr_mod, mu, rho, phasePressure, state);
}
template <class Grid>
ADB
BlackoilSolventModel<Grid>::fluidViscosity(const int phase,
const ADB& p ,
const ADB& temp ,
const ADB& rs ,
const ADB& rv ,
const std::vector<PhasePresence>& cond) const
{
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
if (phase == Solvent) {
if (!is_miscible_) {
return solvent_props_.muSolvent(p, cells_);
} else {
return mu_eff_[solvent_pos_];
}
} else {
if (!is_miscible_) {
return Base::fluidViscosity(phase, p, temp, rs, rv, cond);
} else {
return mu_eff_[pu.phase_pos[ phase ]];
}
}
}
template <class Grid>
ADB
BlackoilSolventModel<Grid>::fluidReciprocFVF(const int phase,
const ADB& p ,
const ADB& temp ,
const ADB& rs ,
const ADB& rv ,
const std::vector<PhasePresence>& cond) const
{
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
if (phase == Solvent) {
if (!is_miscible_) {
return solvent_props_.bSolvent(p, cells_);
} else {
return b_eff_[solvent_pos_];
}
} else {
if (!is_miscible_) {
return Base::fluidReciprocFVF(phase, p, temp, rs, rv, cond);
} else {
return b_eff_[pu.phase_pos[ phase ]];
}
}
}
template <class Grid>
ADB
BlackoilSolventModel<Grid>::fluidDensity(const int phase,
const ADB& b,
const ADB& rs,
const ADB& rv) const
{
if (phase == Solvent && has_solvent_) {
return solvent_props_.solventSurfaceDensity(cells_) * b;
} else {
return Base::fluidDensity(phase, b, rs, rv);
}
}
template <class Grid>
std::vector<ADB>
BlackoilSolventModel<Grid>::computeRelPerm(const SolutionState& state) const
{
using namespace Opm::AutoDiffGrid;
const int nc = numCells(grid_);
const ADB zero = ADB::constant(V::Zero(nc));
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
const ADB& sw = (active_[ Water ]
? state.saturation[ pu.phase_pos[ Water ] ]
: zero);
const ADB& so = (active_[ Oil ]
? state.saturation[ pu.phase_pos[ Oil ] ]
: zero);
const ADB& sg = (active_[ Gas ]
? state.saturation[ pu.phase_pos[ Gas ] ]
: zero);
if (has_solvent_) {
const ADB& ss = state.solvent_saturation;
if (is_miscible_) {
std::vector<ADB> relperm = fluid_.relperm(sw, so, sg+ss, cells_);
Selector<double> zero_selector(ss.value() + sg.value(), Selector<double>::Zero);
ADB F_solvent = zero_selector.select(ss, ss / (ss + sg));
const ADB misc = solvent_props_.miscibilityFunction(F_solvent, cells_);
assert(active_[ Oil ]);
assert(active_[ Gas ]);
const ADB sn = ss + so + sg;
// adjust endpoints
const V sgcr = fluid_.scaledCriticalGasSaturations(cells_);
const V sogcr = fluid_.scaledCriticalOilinGasSaturations(cells_);
const ADB sorwmis = solvent_props_.miscibleResidualOilSaturationFunction(sw, cells_);
const ADB sgcwmis = solvent_props_.miscibleCriticalGasSaturationFunction(sw, cells_);
const V ones = V::Constant(nc, 1.0);
ADB sor = misc * sorwmis + (ones - misc) * sogcr;
ADB sgc = misc * sgcwmis + (ones - misc) * sgcr;
const ADB ssg = ss + sg - sgc;
const ADB sn_eff = sn - sor - sgc;
Selector<double> zeroSn_selector(sn_eff.value(), Selector<double>::Zero);
const ADB F_totalGas = zeroSn_selector.select( zero, ssg / sn_eff);
const ADB mkrgt = solvent_props_.miscibleSolventGasRelPermMultiplier(F_totalGas, cells_) * solvent_props_.misicibleHydrocarbonWaterRelPerm(sn, cells_);
const ADB mkro = solvent_props_.miscibleOilRelPermMultiplier(ones - F_totalGas, cells_) * solvent_props_.misicibleHydrocarbonWaterRelPerm(sn, cells_);
relperm[Gas] = (ones - misc) * relperm[Gas] + misc * mkrgt;
relperm[Oil] = (ones - misc) * relperm[Oil] + misc * mkro;
return relperm;
} else {
return fluid_.relperm(sw, so, sg+ss, cells_);
}
} else {
return fluid_.relperm(sw, so, sg, cells_);
}
}
template <class Grid>
void
BlackoilSolventModel<Grid>::calculateEffectiveProperties(const SolutionState& state)
{
// Viscosity
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
const int np = fluid_.numPhases();
const int nc = Opm::UgGridHelpers::numCells(grid_);
const ADB zero = ADB::constant(V::Zero(nc));
const ADB& pw = state.canonical_phase_pressures[pu.phase_pos[Water]];
const ADB& po = state.canonical_phase_pressures[pu.phase_pos[Oil]];
const ADB& pg = state.canonical_phase_pressures[pu.phase_pos[Gas]];
const std::vector<PhasePresence>& cond = phaseCondition();
const ADB mu_w = fluid_.muWat(pw, state.temperature, cells_);
const ADB mu_o = fluid_.muOil(po, state.temperature, state.rs, cond, cells_);
const ADB mu_g = fluid_.muGas(pg, state.temperature, state.rv, cond, cells_);
const ADB mu_s = solvent_props_.muSolvent(pg,cells_);
std::vector<ADB> viscosity(np + 1, ADB::null());
viscosity[pu.phase_pos[Oil]] = mu_o;
viscosity[pu.phase_pos[Gas]] = mu_g;
viscosity[pu.phase_pos[Water]] = mu_w;
viscosity[solvent_pos_] = mu_s;
// Density
const ADB bw = fluid_.bWat(pw, state.temperature, cells_);
const ADB bo = fluid_.bOil(po, state.temperature, state.rs, cond, cells_);
const ADB bg = fluid_.bGas(pg, state.temperature, state.rv, cond, cells_);
const ADB bs = solvent_props_.bSolvent(pg, cells_);
const ADB rho_s = bs * solvent_props_.solventSurfaceDensity(cells_);
const ADB rho_o = bo * fluid_.surfaceDensity(pu.phase_pos[ Oil ], cells_);
const ADB rho_g = bg * fluid_.surfaceDensity(pu.phase_pos[ Gas ], cells_);
const ADB rho_w = bw * fluid_.surfaceDensity(pu.phase_pos[ Water ], cells_);
std::vector<ADB> density(np + 1, ADB::null());
density[pu.phase_pos[Oil]] = rho_o;
density[pu.phase_pos[Gas]] = rho_g;
density[pu.phase_pos[Water]] = rho_w;
density[solvent_pos_] = rho_s;
// Effective saturations
const ADB& ss = state.solvent_saturation;
const ADB& so = state.saturation[ pu.phase_pos[ Oil ] ];
const ADB& sg = (active_[ Gas ]
? state.saturation[ pu.phase_pos[ Gas ] ]
: zero);
const ADB& sw = (active_[ Water ]
? state.saturation[ pu.phase_pos[ Water ] ]
: zero);
const ADB sorwmis = solvent_props_.miscibleResidualOilSaturationFunction(sw, cells_);
const ADB sgcwmis = solvent_props_.miscibleCriticalGasSaturationFunction(sw, cells_);
std::vector<ADB> effective_saturations (np + 1, ADB::null());
effective_saturations[pu.phase_pos[Oil]] = so - sorwmis;
effective_saturations[pu.phase_pos[Gas]] = sg - sgcwmis;
effective_saturations[pu.phase_pos[Water]] = sw;
effective_saturations[solvent_pos_] = ss - sgcwmis;
// Compute effective properties using the Todd-Longstaff model
ToddLongstaffModel(viscosity, density, effective_saturations, pu);
// Store the computed volume factors and viscosities
b_eff_[pu.phase_pos[ Water ]] = bw;
b_eff_[pu.phase_pos[ Oil ]] = density[pu.phase_pos[ Oil ]] / fluid_.surfaceDensity(pu.phase_pos[ Oil ], cells_);
b_eff_[pu.phase_pos[ Gas ]] = density[pu.phase_pos[ Gas ]] / fluid_.surfaceDensity(pu.phase_pos[ Gas ], cells_);
b_eff_[solvent_pos_] = density[solvent_pos_] / solvent_props_.solventSurfaceDensity(cells_);
mu_eff_[pu.phase_pos[ Water ]] = mu_w;
mu_eff_[pu.phase_pos[ Oil ]] = viscosity[pu.phase_pos[ Oil ]];
mu_eff_[pu.phase_pos[ Gas ]] = viscosity[pu.phase_pos[ Gas ]];
mu_eff_[solvent_pos_] = viscosity[solvent_pos_];
}
template <class Grid>
void
BlackoilSolventModel<Grid>::ToddLongstaffModel(std::vector<ADB> viscosity, std::vector<ADB> density, std::vector<ADB> saturations, const Opm::PhaseUsage pu)
{
const int nc = Opm::UgGridHelpers::numCells(grid_);
const V ones = V::Constant(nc, 1.0);
const ADB& so_eff = saturations[pu.phase_pos[ Oil ]];
const ADB& sg_eff = saturations[pu.phase_pos[ Gas ]];
const ADB& ss_eff = saturations[solvent_pos_];
// Viscosity
ADB& mu_o = viscosity[pu.phase_pos[ Oil ]];
ADB& mu_g = viscosity[pu.phase_pos[ Gas ]];
ADB& mu_s = viscosity[solvent_pos_];
const ADB sn_eff = so_eff + sg_eff + ss_eff;
const ADB sos_eff = so_eff + ss_eff;
const ADB ssg_eff = ss_eff + sg_eff;
// Avoid division by zero
Selector<double> zero_selectorSos(sos_eff.value(), Selector<double>::Zero);
Selector<double> zero_selectorSsg(ssg_eff.value(), Selector<double>::Zero);
Selector<double> zero_selectorSn(sn_eff.value(), Selector<double>::Zero);
const ADB mu_s_pow = pow(mu_s,0.25);
const ADB mu_o_pow = pow(mu_o,0.25);
const ADB mu_g_pow = pow(mu_g,0.25);
const ADB mu_mos = zero_selectorSos.select(mu_o , mu_o * mu_s / pow( ( (so_eff / sos_eff) * mu_s_pow) + ( (ss_eff / sos_eff) * mu_o_pow) , 4.0));
const ADB mu_msg = zero_selectorSsg.select(mu_g , mu_g * mu_s / pow( ( (sg_eff / ssg_eff) * mu_s_pow) + ( (ss_eff / ssg_eff) * mu_g_pow) , 4.0));
const ADB mu_m = zero_selectorSn.select(mu_s, mu_o * mu_s * mu_g / pow( ( (so_eff / sn_eff) * mu_s_pow * mu_g_pow)
+ ( (ss_eff / sn_eff) * mu_o_pow * mu_g_pow) + ( (sg_eff / sn_eff) * mu_s_pow * mu_o_pow), 4.0));
const double mix_param_mu = solvent_props_.mixingParamterViscosity();
// Update viscosities
mu_o = pow(mu_o,1.0 - mix_param_mu) * pow(mu_mos,mix_param_mu);
mu_g = pow(mu_g,1.0 - mix_param_mu) * pow(mu_msg,mix_param_mu);
mu_s = pow(mu_s,1.0 - mix_param_mu) * pow(mu_m,mix_param_mu);
// Density
ADB& rho_o = density[pu.phase_pos[ Oil ]];
ADB& rho_g = density[pu.phase_pos[ Gas ]];
ADB& rho_s = density[solvent_pos_];
const double mix_param_rho = solvent_props_.mixingParamterDensity();
// compute effective viscosities for density calculations. These have to
// be recomputed as a different mixing parameter may be used.
const ADB mu_o_eff = pow(mu_o,1.0 - mix_param_rho) * pow(mu_mos,mix_param_rho);
const ADB mu_g_eff = pow(mu_g,1.0 - mix_param_rho) * pow(mu_msg,mix_param_rho);
const ADB mu_s_eff = pow(mu_s,1.0 - mix_param_rho) * pow(mu_m,mix_param_rho);
const ADB sog_eff = so_eff + sg_eff;
const ADB sof = so_eff / sog_eff;
const ADB sgf = sg_eff / sog_eff;
// Effective densities
const ADB mu_sog_pow = mu_s_pow * ( (sgf * mu_o_pow) + (sof * mu_g_pow) );
const ADB mu_o_eff_pow = pow(mu_o_eff,0.25);
const ADB mu_g_eff_pow = pow(mu_g_eff,0.25);
const ADB mu_s_eff_pow = pow(mu_s_eff,0.25);
const ADB sfraction_oe = (mu_o_pow * (mu_o_eff_pow - mu_s_pow)) / (mu_o_eff_pow * (mu_o_pow - mu_s_pow));
const ADB sfraction_ge = (mu_s_pow * (mu_g_pow - mu_g_eff_pow)) / (mu_g_eff_pow * (mu_s_pow - mu_g_pow));
const ADB sfraction_se = (mu_sog_pow - ( mu_o_pow * mu_g_pow * mu_s_pow / mu_s_eff_pow) ) / ( mu_sog_pow - (mu_o_pow * mu_g_pow));
const ADB rho_o_eff = (rho_o * sfraction_oe) + (rho_s * (ones - sfraction_oe));
const ADB rho_g_eff = (rho_g * sfraction_ge) + (rho_s * (ones - sfraction_ge));
const ADB rho_s_eff = (rho_s * sfraction_se) + (rho_g * sgf * (ones - sfraction_se)) + (rho_o * sof * (ones - sfraction_se));
// Avoid division by zero for equal mobilities. For equal mobilities the effecitive density is calculated
// based on the saturation fraction directly.
Selector<double> unitGasSolventMobilityRatio_selector(mu_s.value() - mu_g.value(), Selector<double>::Zero);
Selector<double> unitOilSolventMobilityRatio_selector(mu_s.value() - mu_o.value(), Selector<double>::Zero);
// Effective densities when the mobilities are equal
const ADB rho_m = (rho_o * so_eff / sn_eff) + (rho_g * sg_eff / sn_eff) + (rho_s * ss_eff / sn_eff);
const ADB rho_o_eff_simple = ((ones - mix_param_rho) * rho_o) + (mix_param_rho * rho_m);
const ADB rho_g_eff_simple = ((ones - mix_param_rho) * rho_g) + (mix_param_rho * rho_m);
const ADB rho_s_eff_simple = ((ones - mix_param_rho) * rho_s) + (mix_param_rho * rho_m);
// Update densities
rho_o = unitOilSolventMobilityRatio_selector.select(rho_o_eff_simple, rho_o_eff);
rho_g = unitGasSolventMobilityRatio_selector.select(rho_g_eff_simple, rho_g_eff);
rho_s = unitGasSolventMobilityRatio_selector.select(rho_s_eff_simple , unitOilSolventMobilityRatio_selector.select(rho_s_eff_simple, rho_s_eff ));
}
template <class Grid>
void
BlackoilSolventModel<Grid>::assemble(const ReservoirState& reservoir_state,
WellState& well_state,
const bool initial_assembly)
{
using namespace Opm::AutoDiffGrid;
// Possibly switch well controls and updating well state to
// get reasonable initial conditions for the wells
updateWellControls(well_state);
// Create the primary variables.
SolutionState state = variableState(reservoir_state, well_state);
if (initial_assembly) {
// Create the (constant, derivativeless) initial state.
SolutionState state0 = state;
makeConstantState(state0);
// Compute initial accumulation contributions
// and well connection pressures.
if (is_miscible_) {
calculateEffectiveProperties(state0);
}
computeAccum(state0, 0);
computeWellConnectionPressures(state0, well_state);
}
if (is_miscible_) {
calculateEffectiveProperties(state);
}
// -------- Mass balance equations --------
assembleMassBalanceEq(state);
// -------- Well equations ----------
if ( ! wellsActive() ) {
return;
}
V aliveWells;
const int np = wells().number_of_phases;
std::vector<ADB> cq_s(np, ADB::null());
const int nw = wells().number_of_wells;
const int nperf = wells().well_connpos[nw];
const std::vector<int> well_cells(wells().well_cells, wells().well_cells + nperf);
std::vector<ADB> mob_perfcells(np, ADB::null());
std::vector<ADB> b_perfcells(np, ADB::null());
for (int phase = 0; phase < np; ++phase) {
mob_perfcells[phase] = subset(rq_[phase].mob, well_cells);
b_perfcells[phase] = subset(rq_[phase].b, well_cells);
}
if (has_solvent_) {
int gas_pos = fluid_.phaseUsage().phase_pos[Gas];
// Gas and solvent is combinded and solved together
// The input in the well equation is then the
// total gas phase = hydro carbon gas + solvent gas
// The total mobility is the sum of the solvent and gas mobiliy
mob_perfcells[gas_pos] += subset(rq_[solvent_pos_].mob, well_cells);
// A weighted sum of the b-factors of gas and solvent are used.
const int nc = Opm::AutoDiffGrid::numCells(grid_);
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
const ADB zero = ADB::constant(V::Zero(nc));
const ADB& ss = state.solvent_saturation;
const ADB& sg = (active_[ Gas ]
? state.saturation[ pu.phase_pos[ Gas ] ]
: zero);
Selector<double> zero_selector(ss.value() + sg.value(), Selector<double>::Zero);
ADB F_solvent = subset(zero_selector.select(ss, ss / (ss + sg)),well_cells);
V ones = V::Constant(nperf,1.0);
b_perfcells[gas_pos] = (ones - F_solvent) * b_perfcells[gas_pos];
b_perfcells[gas_pos] += (F_solvent * subset(rq_[solvent_pos_].b, well_cells));
}
if (param_.solve_welleq_initially_ && initial_assembly) {
// solve the well equations as a pre-processing step
Base::solveWellEq(mob_perfcells, b_perfcells, state, well_state);
}
Base::computeWellFlux(state, mob_perfcells, b_perfcells, aliveWells, cq_s);
Base::updatePerfPhaseRatesAndPressures(cq_s, state, well_state);
Base::addWellFluxEq(cq_s, state);
addWellContributionToMassBalanceEq(cq_s, state, well_state);
Base::addWellControlEq(state, well_state, aliveWells);
}
}
#endif // OPM_BLACKOILSOLVENT_IMPL_HEADER_INCLUDED