opm-simulators/opm/autodiff/SimulatorFullyImplicitBlackoilEbos.hpp
2018-11-08 10:40:28 +01:00

388 lines
16 KiB
C++

/*
Copyright 2013, 2015 SINTEF ICT, Applied Mathematics.
Copyright 2015 Andreas Lauser
Copyright 2017 IRIS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_SIMULATORFULLYIMPLICITBLACKOILEBOS_HEADER_INCLUDED
#define OPM_SIMULATORFULLYIMPLICITBLACKOILEBOS_HEADER_INCLUDED
#include <opm/autodiff/IterationReport.hpp>
#include <opm/autodiff/NonlinearSolverEbos.hpp>
#include <opm/autodiff/BlackoilModelEbos.hpp>
#include <opm/autodiff/BlackoilModelParametersEbos.hpp>
#include <opm/autodiff/WellStateFullyImplicitBlackoil.hpp>
#include <opm/autodiff/BlackoilWellModel.hpp>
#include <opm/autodiff/BlackoilAquiferModel.hpp>
#include <opm/autodiff/moduleVersion.hpp>
#include <opm/simulators/timestepping/AdaptiveTimeSteppingEbos.hpp>
#include <opm/grid/utility/StopWatch.hpp>
#include <opm/common/Exceptions.hpp>
#include <opm/common/ErrorMacros.hpp>
BEGIN_PROPERTIES
NEW_PROP_TAG(EnableTerminalOutput);
NEW_PROP_TAG(EnableAdaptiveTimeStepping);
NEW_PROP_TAG(EnableTuning);
SET_BOOL_PROP(EclFlowProblem, EnableTerminalOutput, true);
SET_BOOL_PROP(EclFlowProblem, EnableAdaptiveTimeStepping, true);
SET_BOOL_PROP(EclFlowProblem, EnableTuning, false);
END_PROPERTIES
namespace Opm {
/// a simulator for the blackoil model
template<class TypeTag>
class SimulatorFullyImplicitBlackoilEbos
{
public:
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, Grid) Grid;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, Indices) BlackoilIndices;
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
typedef typename GET_PROP_TYPE(TypeTag, SolutionVector) SolutionVector ;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLawParams) MaterialLawParams;
typedef AdaptiveTimeSteppingEbos<TypeTag> TimeStepper;
typedef Ewoms::BlackOilPolymerModule<TypeTag> PolymerModule;
typedef WellStateFullyImplicitBlackoil WellState;
typedef BlackoilState ReservoirState;
typedef BlackoilModelEbos<TypeTag> Model;
typedef NonlinearSolverEbos<TypeTag, Model> Solver;
typedef typename Model::ModelParameters ModelParameters;
typedef typename Solver::SolverParameters SolverParameters;
typedef BlackoilWellModel<TypeTag> WellModel;
typedef BlackoilAquiferModel<TypeTag> AquiferModel;
/// Initialise from parameters and objects to observe.
/// \param[in] param parameters, this class accepts the following:
/// parameter (default) effect
/// -----------------------------------------------------------
/// output (true) write output to files?
/// output_dir ("output") output directoty
/// output_interval (1) output every nth step
/// nl_pressure_residual_tolerance (0.0) pressure solver residual tolerance (in Pascal)
/// nl_pressure_change_tolerance (1.0) pressure solver change tolerance (in Pascal)
/// nl_pressure_maxiter (10) max nonlinear iterations in pressure
/// nl_maxiter (30) max nonlinear iterations in transport
/// nl_tolerance (1e-9) transport solver absolute residual tolerance
/// num_transport_substeps (1) number of transport steps per pressure step
/// use_segregation_split (false) solve for gravity segregation (if false,
/// segregation is ignored).
///
/// \param[in] props fluid and rock properties
/// \param[in] linsolver linear solver
/// \param[in] eclipse_state the object which represents an internalized ECL deck
/// \param[in] output_writer
/// \param[in] threshold_pressures_by_face if nonempty, threshold pressures that inhibit flow
SimulatorFullyImplicitBlackoilEbos(Simulator& ebosSimulator,
NewtonIterationBlackoilInterface& linearSolver)
: ebosSimulator_(ebosSimulator)
, linearSolver_(linearSolver)
{
phaseUsage_ = phaseUsageFromDeck(eclState());
// Only rank 0 does print to std::cout
const auto& comm = grid().comm();
terminalOutput_ = EWOMS_GET_PARAM(TypeTag, bool, EnableTerminalOutput);
terminalOutput_ = terminalOutput_ && (comm.rank() == 0);
}
static void registerParameters()
{
ModelParameters::registerParameters();
SolverParameters::registerParameters();
TimeStepper::registerParameters();
EWOMS_REGISTER_PARAM(TypeTag, bool, EnableTerminalOutput,
"Print high-level information about the simulation's progress to the terminal");
EWOMS_REGISTER_PARAM(TypeTag, bool, EnableAdaptiveTimeStepping,
"Use adaptive time stepping between report steps");
EWOMS_REGISTER_PARAM(TypeTag, bool, EnableTuning,
"Honor some aspects of the TUNING keyword.");
}
/// Run the simulation.
/// This will run succesive timesteps until timer.done() is true. It will
/// modify the reservoir and well states.
/// \param[in,out] timer governs the requested reporting timesteps
/// \param[in,out] state state of reservoir: pressure, fluxes
/// \return simulation report, with timing data
SimulatorReport run(SimulatorTimer& timer)
{
failureReport_ = SimulatorReport();
// handle restarts
std::unique_ptr<RestartValue> restartValues;
if (isRestart()) {
std::vector<RestartKey> extraKeys = {
{"OPMEXTRA" , Opm::UnitSystem::measure::identity, false}
};
std::vector<RestartKey> solutionKeys = {};
restartValues.reset(new RestartValue(ebosSimulator_.problem().eclIO().loadRestart(solutionKeys, extraKeys)));
}
// Create timers and file for writing timing info.
Opm::time::StopWatch solverTimer;
Opm::time::StopWatch totalTimer;
totalTimer.start();
// adaptive time stepping
const auto& events = schedule().getEvents();
std::unique_ptr<TimeStepper > adaptiveTimeStepping;
bool enableAdaptive = EWOMS_GET_PARAM(TypeTag, bool, EnableAdaptiveTimeStepping);
bool enableTUNING = EWOMS_GET_PARAM(TypeTag, bool, EnableTuning);
if (enableAdaptive) {
if (enableTUNING) {
adaptiveTimeStepping.reset(new TimeStepper(schedule().getTuning(), timer.currentStepNum(), terminalOutput_));
}
else {
adaptiveTimeStepping.reset(new TimeStepper(terminalOutput_));
}
double suggestedStepSize = -1.0;
if (isRestart()) {
// This is a restart, determine the time step size from the restart data
if (restartValues->hasExtra("OPMEXTRA")) {
std::vector<double> opmextra = restartValues->getExtra("OPMEXTRA");
assert(opmextra.size() == 1);
suggestedStepSize = opmextra[0];
}
else {
OpmLog::warning("Restart data is missing OPMEXTRA field, restart run may deviate from original run.");
suggestedStepSize = -1.0;
}
if (suggestedStepSize > 0.0) {
adaptiveTimeStepping->setSuggestedNextStep(suggestedStepSize);
}
}
}
SimulatorReport report;
SimulatorReport stepReport;
if (isRestart()) {
wellModel_().initFromRestartFile(*restartValues);
}
// beginReportStep(...) wants to know when we are at the
// beginning of a restart
bool firstRestartStep = isRestart();
// Main simulation loop.
while (!timer.done()) {
// Report timestep.
if (terminalOutput_) {
std::ostringstream ss;
timer.report(ss);
OpmLog::debug(ss.str());
}
// write the inital state at the report stage
if (timer.initialStep()) {
Dune::Timer perfTimer;
perfTimer.start();
wellModel_().beginReportStep(timer.currentStepNum());
ebosSimulator_.problem().writeOutput(false);
report.output_write_time += perfTimer.stop();
}
// Run a multiple steps of the solver depending on the time step control.
solverTimer.start();
auto solver = createSolver(wellModel_());
solver->model().beginReportStep(firstRestartStep);
firstRestartStep = false;
if (terminalOutput_) {
std::ostringstream stepMsg;
boost::posix_time::time_facet* facet = new boost::posix_time::time_facet("%d-%b-%Y");
stepMsg.imbue(std::locale(std::locale::classic(), facet));
stepMsg << "\nReport step " << std::setw(2) <<timer.currentStepNum()
<< "/" << timer.numSteps()
<< " at day " << (double)unit::convert::to(timer.simulationTimeElapsed(), unit::day)
<< "/" << (double)unit::convert::to(timer.totalTime(), unit::day)
<< ", date = " << timer.currentDateTime();
OpmLog::info(stepMsg.str());
}
// If sub stepping is enabled allow the solver to sub cycle
// in case the report steps are too large for the solver to converge
//
// \Note: The report steps are met in any case
// \Note: The sub stepping will require a copy of the state variables
if (adaptiveTimeStepping) {
if (enableTUNING) {
if (events.hasEvent(ScheduleEvents::TUNING_CHANGE,timer.currentStepNum())) {
adaptiveTimeStepping->updateTUNING(schedule().getTuning(), timer.currentStepNum());
}
}
bool event = events.hasEvent(ScheduleEvents::NEW_WELL, timer.currentStepNum()) ||
events.hasEvent(ScheduleEvents::PRODUCTION_UPDATE, timer.currentStepNum()) ||
events.hasEvent(ScheduleEvents::INJECTION_UPDATE, timer.currentStepNum()) ||
events.hasEvent(ScheduleEvents::WELL_STATUS_CHANGE, timer.currentStepNum());
stepReport = adaptiveTimeStepping->step(timer, *solver, event, nullptr);
report += stepReport;
failureReport_ += adaptiveTimeStepping->failureReport();
}
else {
// solve for complete report step
stepReport = solver->step(timer);
report += stepReport;
failureReport_ += solver->failureReport();
if (terminalOutput_) {
std::ostringstream ss;
stepReport.reportStep(ss);
OpmLog::info(ss.str());
}
}
solver->model().endReportStep();
// take time that was used to solve system for this reportStep
solverTimer.stop();
// update timing.
report.solver_time += solverTimer.secsSinceStart();
// Increment timer, remember well state.
++timer;
if (terminalOutput_) {
if (!timer.initialStep()) {
const std::string version = moduleVersionName();
outputTimestampFIP(timer, version);
}
}
// write simulation state at the report stage
Dune::Timer perfTimer;
perfTimer.start();
const double nextstep = adaptiveTimeStepping ? adaptiveTimeStepping->suggestedNextStep() : -1.0;
ebosSimulator_.problem().setNextTimeStepSize(nextstep);
ebosSimulator_.problem().writeOutput(false);
report.output_write_time += perfTimer.stop();
if (terminalOutput_) {
std::string msg =
"Time step took " + std::to_string(solverTimer.secsSinceStart()) + " seconds; "
"total solver time " + std::to_string(report.solver_time) + " seconds.";
OpmLog::debug(msg);
}
}
// Stop timer and create timing report
totalTimer.stop();
report.total_time = totalTimer.secsSinceStart();
report.converged = true;
return report;
}
/** \brief Returns the simulator report for the failed substeps of the simulation.
*/
const SimulatorReport& failureReport() const
{ return failureReport_; };
const Grid& grid() const
{ return ebosSimulator_.vanguard().grid(); }
protected:
std::unique_ptr<Solver> createSolver(WellModel& wellModel)
{
auto model = std::unique_ptr<Model>(new Model(ebosSimulator_,
modelParam_,
wellModel,
linearSolver_,
terminalOutput_));
return std::unique_ptr<Solver>(new Solver(solverParam_, std::move(model)));
}
void outputTimestampFIP(const SimulatorTimer& timer, const std::string version)
{
std::ostringstream ss;
boost::posix_time::time_facet* facet = new boost::posix_time::time_facet("%d %b %Y");
ss.imbue(std::locale(std::locale::classic(), facet));
ss << "\n **************************************************************************\n"
<< " Balance at" << std::setw(10) << (double)unit::convert::to(timer.simulationTimeElapsed(), unit::day) << " Days"
<< " *" << std::setw(30) << eclState().getTitle() << " *\n"
<< " Report " << std::setw(4) << timer.reportStepNum() << " " << timer.currentDateTime()
<< " * Flow version " << std::setw(11) << version << " *\n"
<< " **************************************************************************\n";
OpmLog::note(ss.str());
}
const EclipseState& eclState() const
{ return ebosSimulator_.vanguard().eclState(); }
const Schedule& schedule() const
{ return ebosSimulator_.vanguard().schedule(); }
bool isRestart() const
{
const auto& initconfig = eclState().getInitConfig();
return initconfig.restartRequested();
}
WellModel& wellModel_()
{ return ebosSimulator_.problem().wellModel(); }
const WellModel& wellModel_() const
{ return ebosSimulator_.problem().wellModel(); }
// Data.
Simulator& ebosSimulator_;
std::unique_ptr<WellConnectionAuxiliaryModule<TypeTag>> wellAuxMod_;
SimulatorReport failureReport_;
ModelParameters modelParam_;
SolverParameters solverParam_;
// Observed objects.
NewtonIterationBlackoilInterface& linearSolver_;
PhaseUsage phaseUsage_;
// Misc. data
bool terminalOutput_;
};
} // namespace Opm
#endif // OPM_SIMULATOR_FULLY_IMPLICIT_BLACKOIL_EBOS_HPP