opm-simulators/opm/autodiff/WellInterface_impl.hpp
2018-11-14 12:45:41 +01:00

1124 lines
41 KiB
C++

/*
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2017 Statoil ASA.
Copyright 2018 IRIS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
namespace Opm
{
template<typename TypeTag>
WellInterface<TypeTag>::
WellInterface(const Well* well, const int time_step, const Wells* wells,
const ModelParameters& param,
const RateConverterType& rate_converter,
const int pvtRegionIdx,
const int num_components)
: well_ecl_(well)
, current_step_(time_step)
, param_(param)
, rateConverter_(rate_converter)
, pvtRegionIdx_(pvtRegionIdx)
, num_components_(num_components)
{
if (!well) {
OPM_THROW(std::invalid_argument, "Null pointer of Well is used to construct WellInterface");
}
if (time_step < 0) {
OPM_THROW(std::invalid_argument, "Negtive time step is used to construct WellInterface");
}
if (!wells) {
OPM_THROW(std::invalid_argument, "Null pointer of Wells is used to construct WellInterface");
}
const std::string& well_name = well->name();
// looking for the location of the well in the wells struct
int index_well;
for (index_well = 0; index_well < wells->number_of_wells; ++index_well) {
if (well_name == std::string(wells->name[index_well])) {
break;
}
}
// should not enter the constructor if the well does not exist in the wells struct
// here, just another assertion.
assert(index_well != wells->number_of_wells);
index_of_well_ = index_well;
well_type_ = wells->type[index_well];
number_of_phases_ = wells->number_of_phases;
// copying the comp_frac
{
comp_frac_.resize(number_of_phases_);
const int index_begin = index_well * number_of_phases_;
std::copy(wells->comp_frac + index_begin,
wells->comp_frac + index_begin + number_of_phases_, comp_frac_.begin() );
}
well_controls_ = wells->ctrls[index_well];
ref_depth_ = wells->depth_ref[index_well];
// perforations related
{
const int perf_index_begin = wells->well_connpos[index_well];
const int perf_index_end = wells->well_connpos[index_well + 1];
number_of_perforations_ = perf_index_end - perf_index_begin;
first_perf_ = perf_index_begin;
well_cells_.resize(number_of_perforations_);
std::copy(wells->well_cells + perf_index_begin,
wells->well_cells + perf_index_end,
well_cells_.begin() );
well_index_.resize(number_of_perforations_);
std::copy(wells->WI + perf_index_begin,
wells->WI + perf_index_end,
well_index_.begin() );
saturation_table_number_.resize(number_of_perforations_);
std::copy(wells->sat_table_id + perf_index_begin,
wells->sat_table_id + perf_index_end,
saturation_table_number_.begin() );
}
well_efficiency_factor_ = 1.0;
}
template<typename TypeTag>
void
WellInterface<TypeTag>::
init(const PhaseUsage* phase_usage_arg,
const std::vector<double>& /* depth_arg */,
const double gravity_arg,
const int /* num_cells */)
{
phase_usage_ = phase_usage_arg;
gravity_ = gravity_arg;
}
template<typename TypeTag>
void
WellInterface<TypeTag>::
setVFPProperties(const VFPProperties<VFPInjProperties,VFPProdProperties>* vfp_properties_arg)
{
vfp_properties_ = vfp_properties_arg;
}
template<typename TypeTag>
const std::string&
WellInterface<TypeTag>::
name() const
{
return well_ecl_->name();
}
template<typename TypeTag>
WellType
WellInterface<TypeTag>::
wellType() const
{
return well_type_;
}
template<typename TypeTag>
WellControls*
WellInterface<TypeTag>::
wellControls() const
{
return well_controls_;
}
template<typename TypeTag>
const int
WellInterface<TypeTag>::
indexOfWell() const
{
return index_of_well_;
}
template<typename TypeTag>
bool
WellInterface<TypeTag>::
getAllowCrossFlow() const
{
return well_ecl_->getAllowCrossFlow();
}
template<typename TypeTag>
void
WellInterface<TypeTag>::
setWellEfficiencyFactor(const double efficiency_factor)
{
well_efficiency_factor_ = efficiency_factor;
}
template<typename TypeTag>
const Well*
WellInterface<TypeTag>::
wellEcl() const
{
return well_ecl_;
}
template<typename TypeTag>
const PhaseUsage&
WellInterface<TypeTag>::
phaseUsage() const
{
assert(phase_usage_);
return *phase_usage_;
}
template<typename TypeTag>
int
WellInterface<TypeTag>::
flowPhaseToEbosCompIdx( const int phaseIdx ) const
{
const auto& pu = phaseUsage();
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) && pu.phase_pos[Water] == phaseIdx)
return Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx);
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && pu.phase_pos[Oil] == phaseIdx)
return Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) && pu.phase_pos[Gas] == phaseIdx)
return Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
// for other phases return the index
return phaseIdx;
}
template<typename TypeTag>
int
WellInterface<TypeTag>::
ebosCompIdxToFlowCompIdx( const unsigned compIdx ) const
{
const auto& pu = phaseUsage();
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) && Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx) == compIdx)
return pu.phase_pos[Water];
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx) == compIdx)
return pu.phase_pos[Oil];
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) && Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx) == compIdx)
return pu.phase_pos[Gas];
// for other phases return the index
return compIdx;
}
template<typename TypeTag>
double
WellInterface<TypeTag>::
wsolvent() const
{
if (!has_solvent) {
return 0.0;
}
WellInjectionProperties injection = well_ecl_->getInjectionProperties(current_step_);
if (injection.injectorType == WellInjector::GAS) {
double solvent_fraction = well_ecl_->getSolventFraction(current_step_);
return solvent_fraction;
} else {
// Not a gas injection well => no solvent.
return 0.0;
}
}
template<typename TypeTag>
double
WellInterface<TypeTag>::
wpolymer() const
{
if (!has_polymer) {
return 0.0;
}
WellInjectionProperties injection = well_ecl_->getInjectionProperties(current_step_);
WellPolymerProperties polymer = well_ecl_->getPolymerProperties(current_step_);
if (injection.injectorType == WellInjector::WATER) {
const double polymer_injection_concentration = polymer.m_polymerConcentration;
return polymer_injection_concentration;
} else {
// Not a water injection well => no polymer.
return 0.0;
}
}
template<typename TypeTag>
double
WellInterface<TypeTag>::
mostStrictBhpFromBhpLimits() const
{
double bhp;
// initial bhp value, making the value not usable
switch( well_type_ ) {
case INJECTOR:
bhp = std::numeric_limits<double>::max();
break;
case PRODUCER:
bhp = -std::numeric_limits<double>::max();
break;
default:
OPM_THROW(std::logic_error, "Expected PRODUCER or INJECTOR type for well " << name());
}
// The number of the well controls/constraints
const int nwc = well_controls_get_num(well_controls_);
for (int ctrl_index = 0; ctrl_index < nwc; ++ctrl_index) {
// finding a BHP constraint
if (well_controls_iget_type(well_controls_, ctrl_index) == BHP) {
// get the bhp constraint value, it should always be postive assummingly
const double bhp_target = well_controls_iget_target(well_controls_, ctrl_index);
switch(well_type_) {
case INJECTOR: // using the lower bhp contraint from Injectors
if (bhp_target < bhp) {
bhp = bhp_target;
}
break;
case PRODUCER:
if (bhp_target > bhp) {
bhp = bhp_target;
}
break;
default:
OPM_THROW(std::logic_error, "Expected PRODUCER or INJECTOR type for well " << name());
} // end of switch
}
}
return bhp;
}
template<typename TypeTag>
bool
WellInterface<TypeTag>::
wellHasTHPConstraints() const
{
const int nwc = well_controls_get_num(well_controls_);
for (int ctrl_index = 0; ctrl_index < nwc; ++ctrl_index) {
if (well_controls_iget_type(well_controls_, ctrl_index) == THP) {
return true;
}
}
return false;
}
template<typename TypeTag>
void
WellInterface<TypeTag>::
updateWellControl(WellState& well_state,
wellhelpers::WellSwitchingLogger& logger) const
{
const int np = number_of_phases_;
const int w = index_of_well_;
const int old_control_index = well_state.currentControls()[w];
// Find, for each well, if any constraints are broken. If so,
// switch control to first broken constraint.
WellControls* wc = well_controls_;
// Loop over all controls except the current one, and also
// skip any RESERVOIR_RATE controls, since we cannot
// handle those.
const int nwc = well_controls_get_num(wc);
// the current control index
int current = well_state.currentControls()[w];
int ctrl_index = 0;
for (; ctrl_index < nwc; ++ctrl_index) {
if (ctrl_index == current) {
// This is the currently used control, so it is
// used as an equation. So this is not used as an
// inequality constraint, and therefore skipped.
continue;
}
if (wellhelpers::constraintBroken(
well_state.bhp(), well_state.thp(), well_state.wellRates(),
w, np, well_type_, wc, ctrl_index)) {
// ctrl_index will be the index of the broken constraint after the loop.
break;
}
}
if (ctrl_index != nwc) {
// Constraint number ctrl_index was broken, switch to it.
well_state.currentControls()[w] = ctrl_index;
current = well_state.currentControls()[w];
well_controls_set_current( wc, current);
}
// the new well control indices after all the related updates,
const int updated_control_index = well_state.currentControls()[w];
// checking whether control changed
if (updated_control_index != old_control_index) {
logger.wellSwitched(name(),
well_controls_iget_type(wc, old_control_index),
well_controls_iget_type(wc, updated_control_index));
}
if (updated_control_index != old_control_index) { // || well_collection_->groupControlActive()) {
updateWellStateWithTarget(well_state);
updatePrimaryVariables(well_state);
}
}
template<typename TypeTag>
bool
WellInterface<TypeTag>::
checkRateEconLimits(const WellEconProductionLimits& econ_production_limits,
const WellState& well_state) const
{
const Opm::PhaseUsage& pu = phaseUsage();
const int np = number_of_phases_;
if (econ_production_limits.onMinOilRate()) {
assert(FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx));
const double oil_rate = well_state.wellRates()[index_of_well_ * np + pu.phase_pos[ Oil ] ];
const double min_oil_rate = econ_production_limits.minOilRate();
if (std::abs(oil_rate) < min_oil_rate) {
return true;
}
}
if (econ_production_limits.onMinGasRate() ) {
assert(FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx));
const double gas_rate = well_state.wellRates()[index_of_well_ * np + pu.phase_pos[ Gas ] ];
const double min_gas_rate = econ_production_limits.minGasRate();
if (std::abs(gas_rate) < min_gas_rate) {
return true;
}
}
if (econ_production_limits.onMinLiquidRate() ) {
assert(FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx));
assert(FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx));
const double oil_rate = well_state.wellRates()[index_of_well_ * np + pu.phase_pos[ Oil ] ];
const double water_rate = well_state.wellRates()[index_of_well_ * np + pu.phase_pos[ Water ] ];
const double liquid_rate = oil_rate + water_rate;
const double min_liquid_rate = econ_production_limits.minLiquidRate();
if (std::abs(liquid_rate) < min_liquid_rate) {
return true;
}
}
if (econ_production_limits.onMinReservoirFluidRate()) {
OpmLog::warning("NOT_SUPPORTING_MIN_RESERVOIR_FLUID_RATE", "Minimum reservoir fluid production rate limit is not supported yet");
}
return false;
}
template<typename TypeTag>
typename WellInterface<TypeTag>::RatioCheckTuple
WellInterface<TypeTag>::
checkMaxWaterCutLimit(const WellEconProductionLimits& econ_production_limits,
const WellState& well_state) const
{
bool water_cut_limit_violated = false;
int worst_offending_completion = INVALIDCOMPLETION;
double violation_extent = -1.0;
const int np = number_of_phases_;
const Opm::PhaseUsage& pu = phaseUsage();
const int well_number = index_of_well_;
assert(FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx));
assert(FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx));
const double oil_rate = well_state.wellRates()[well_number * np + pu.phase_pos[ Oil ] ];
const double water_rate = well_state.wellRates()[well_number * np + pu.phase_pos[ Water ] ];
const double liquid_rate = oil_rate + water_rate;
double water_cut;
if (std::abs(liquid_rate) != 0.) {
water_cut = water_rate / liquid_rate;
} else {
water_cut = 0.0;
}
const double max_water_cut_limit = econ_production_limits.maxWaterCut();
if (water_cut > max_water_cut_limit) {
water_cut_limit_violated = true;
}
if (water_cut_limit_violated) {
// need to handle the worst_offending_connection
const int perf_start = first_perf_;
const int perf_number = number_of_perforations_;
std::vector<double> water_cut_perf(perf_number);
for (int perf = 0; perf < perf_number; ++perf) {
const int i_perf = perf_start + perf;
const double oil_perf_rate = well_state.perfPhaseRates()[i_perf * np + pu.phase_pos[ Oil ] ];
const double water_perf_rate = well_state.perfPhaseRates()[i_perf * np + pu.phase_pos[ Water ] ];
const double liquid_perf_rate = oil_perf_rate + water_perf_rate;
if (std::abs(liquid_perf_rate) != 0.) {
water_cut_perf[perf] = water_perf_rate / liquid_perf_rate;
} else {
water_cut_perf[perf] = 0.;
}
}
const auto& completions = well_ecl_->getCompletions(current_step_);
const auto& connections = well_ecl_->getConnections(current_step_);
int complnumIdx = 0;
std::vector<double> water_cut_in_completions(completions.size(), 0.0);
for (const auto& completion : completions) {
int complnum = completion.first;
for (int perf = 0; perf < perf_number; ++perf) {
if (complnum == connections.get ( perf ).complnum()) {
water_cut_in_completions[complnumIdx] += water_cut_perf[perf];
}
}
complnumIdx++;
}
double max_water_cut_perf = 0.;
complnumIdx = 0;
for (const auto& completion : completions) {
if (water_cut_in_completions[complnumIdx] > max_water_cut_perf) {
worst_offending_completion = completion.first;
max_water_cut_perf = water_cut_in_completions[complnumIdx];
}
complnumIdx++;
}
assert(max_water_cut_limit != 0.);
assert(worst_offending_completion != INVALIDCOMPLETION);
violation_extent = max_water_cut_perf / max_water_cut_limit;
}
return std::make_tuple(water_cut_limit_violated, worst_offending_completion, violation_extent);
}
template<typename TypeTag>
typename WellInterface<TypeTag>::RatioCheckTuple
WellInterface<TypeTag>::
checkRatioEconLimits(const WellEconProductionLimits& econ_production_limits,
const WellState& well_state) const
{
// TODO: not sure how to define the worst-offending completion when more than one
// ratio related limit is violated.
// The defintion used here is that we define the violation extent based on the
// ratio between the value and the corresponding limit.
// For each violated limit, we decide the worst-offending completion separately.
// Among the worst-offending completions, we use the one has the biggest violation
// extent.
bool any_limit_violated = false;
int worst_offending_completion = INVALIDCOMPLETION;
double violation_extent = -1.0;
if (econ_production_limits.onMaxWaterCut()) {
const RatioCheckTuple water_cut_return = checkMaxWaterCutLimit(econ_production_limits, well_state);
bool water_cut_violated = std::get<0>(water_cut_return);
if (water_cut_violated) {
any_limit_violated = true;
const double violation_extent_water_cut = std::get<2>(water_cut_return);
if (violation_extent_water_cut > violation_extent) {
violation_extent = violation_extent_water_cut;
worst_offending_completion = std::get<1>(water_cut_return);
}
}
}
if (econ_production_limits.onMaxGasOilRatio()) {
OpmLog::warning("NOT_SUPPORTING_MAX_GOR", "the support for max Gas-Oil ratio is not implemented yet!");
}
if (econ_production_limits.onMaxWaterGasRatio()) {
OpmLog::warning("NOT_SUPPORTING_MAX_WGR", "the support for max Water-Gas ratio is not implemented yet!");
}
if (econ_production_limits.onMaxGasLiquidRatio()) {
OpmLog::warning("NOT_SUPPORTING_MAX_GLR", "the support for max Gas-Liquid ratio is not implemented yet!");
}
if (any_limit_violated) {
assert(worst_offending_completion != INVALIDCOMPLETION);
assert(violation_extent > 1.);
}
return std::make_tuple(any_limit_violated, worst_offending_completion, violation_extent);
}
template<typename TypeTag>
void
WellInterface<TypeTag>::
updateWellTestState(const WellState& well_state,
const double& simulationTime,
const bool& writeMessageToOPMLog,
WellTestState& wellTestState) const
{
// currently, we only updateWellTestState for producers
if (wellType() != PRODUCER) {
return;
}
// updating well test state based on Economic limits.
updateWellTestStateEconomic(well_state, simulationTime, writeMessageToOPMLog, wellTestState);
// TODO: well can be shut/closed due to other reasons
}
template<typename TypeTag>
void
WellInterface<TypeTag>::
updateWellTestStateEconomic(const WellState& well_state,
const double simulation_time,
const bool write_message_to_opmlog,
WellTestState& well_test_state) const
{
const WellEconProductionLimits& econ_production_limits = well_ecl_->getEconProductionLimits(current_step_);
// if no limit is effective here, then continue to the next well
if ( !econ_production_limits.onAnyEffectiveLimit() ) {
return;
}
// flag to check if the mim oil/gas rate limit is violated
bool rate_limit_violated = false;
// for the moment, we only handle rate limits, not handling potential limits
// the potential limits should not be difficult to add
const WellEcon::QuantityLimitEnum& quantity_limit = econ_production_limits.quantityLimit();
if (quantity_limit == WellEcon::POTN) {
const std::string msg = std::string("POTN limit for well ") + name() + std::string(" is not supported for the moment. \n")
+ std::string("All the limits will be evaluated based on RATE. ");
OpmLog::warning("NOT_SUPPORTING_POTN", msg);
}
if (econ_production_limits.onAnyRateLimit()) {
rate_limit_violated = checkRateEconLimits(econ_production_limits, well_state);
}
if (rate_limit_violated) {
if (econ_production_limits.endRun()) {
const std::string warning_message = std::string("ending run after well closed due to economic limits")
+ std::string("is not supported yet \n")
+ std::string("the program will keep running after ") + name()
+ std::string(" is closed");
OpmLog::warning("NOT_SUPPORTING_ENDRUN", warning_message);
}
if (econ_production_limits.validFollowonWell()) {
OpmLog::warning("NOT_SUPPORTING_FOLLOWONWELL", "opening following on well after well closed is not supported yet");
}
well_test_state.addClosedWell(name(), WellTestConfig::Reason::ECONOMIC, simulation_time);
if (write_message_to_opmlog) {
if (well_ecl_->getAutomaticShutIn()) {
const std::string msg = std::string("well ") + name() + std::string(" will be shut due to rate economic limit");
OpmLog::info(msg);
} else {
const std::string msg = std::string("well ") + name() + std::string(" will be stopped due to rate economic limit");
OpmLog::info(msg);
}
}
// the well is closed, not need to check other limits
return;
}
// checking for ratio related limits, mostly all kinds of ratio.
bool ratio_limits_violated = false;
RatioCheckTuple ratio_check_return;
if (econ_production_limits.onAnyRatioLimit()) {
ratio_check_return = checkRatioEconLimits(econ_production_limits, well_state);
ratio_limits_violated = std::get<0>(ratio_check_return);
}
if (ratio_limits_violated) {
const WellEcon::WorkoverEnum workover = econ_production_limits.workover();
switch (workover) {
case WellEcon::CON:
{
const int worst_offending_completion = std::get<1>(ratio_check_return);
well_test_state.addClosedCompletion(name(), worst_offending_completion, simulation_time);
if (write_message_to_opmlog) {
if (worst_offending_completion < 0) {
const std::string msg = std::string("Connection ") + std::to_string(- worst_offending_completion)
+ std::string(" for well ") + name() + std::string(" will be closed due to economic limit");
OpmLog::info(msg);
} else {
const std::string msg = std::string("Completion ") + std::to_string(worst_offending_completion)
+ std::string(" for well ") + name() + std::string(" will be closed due to economic limit");
OpmLog::info(msg);
}
}
bool allCompletionsClosed = true;
const auto& connections = well_ecl_->getConnections(current_step_);
for (const auto& connection : connections) {
if (!well_test_state.hasCompletion(name(), connection.complnum())) {
allCompletionsClosed = false;
}
}
if (allCompletionsClosed) {
well_test_state.addClosedWell(name(), WellTestConfig::Reason::ECONOMIC, simulation_time);
if (write_message_to_opmlog) {
if (well_ecl_->getAutomaticShutIn()) {
const std::string msg = name() + std::string(" will be shut due to last completion closed");
OpmLog::info(msg);
} else {
const std::string msg = name() + std::string(" will be stopped due to last completion closed");
OpmLog::info(msg);
}
}
}
break;
}
case WellEcon::WELL:
{
well_test_state.addClosedWell(name(), WellTestConfig::Reason::ECONOMIC, 0);
if (write_message_to_opmlog) {
if (well_ecl_->getAutomaticShutIn()) {
// tell the controll that the well is closed
const std::string msg = name() + std::string(" will be shut due to ratio economic limit");
OpmLog::info(msg);
} else {
const std::string msg = name() + std::string(" will be stopped due to ratio economic limit");
OpmLog::info(msg);
}
}
break;
}
case WellEcon::NONE:
break;
default:
{
OpmLog::warning("NOT_SUPPORTED_WORKOVER_TYPE",
"not supporting workover type " + WellEcon::WorkoverEnumToString(workover) );
}
}
}
}
template<typename TypeTag>
void
WellInterface<TypeTag>::
wellTesting(Simulator& simulator, const std::vector<double>& B_avg,
const double simulation_time, const int report_step, const bool terminal_output,
const WellTestConfig::Reason testing_reason, const WellState& well_state,
WellTestState& well_test_state)
{
if (testing_reason == WellTestConfig::Reason::ECONOMIC) {
wellTestingEconomic(simulator, B_avg, simulation_time, report_step,
terminal_output, well_state, well_test_state);
}
}
template<typename TypeTag>
void
WellInterface<TypeTag>::
wellTestingEconomic(Simulator& simulator, const std::vector<double>& B_avg,
const double simulation_time, const int report_step, const bool terminal_output,
const WellState& well_state, WellTestState& welltest_state)
{
WellState well_state_copy = well_state;
updatePrimaryVariables(well_state_copy);
initPrimaryVariablesEvaluation();
// create a well
WellTestState welltest_state_temp;
bool testWell = true;
// if a well is closed because all completions are closed, we need to check each completion
// individually. We first open all completions, then we close one by one by calling updateWellTestState
// untill the number of closed completions do not increase anymore.
while (testWell) {
const size_t original_number_closed_completions = welltest_state_temp.sizeCompletions();
solveWellForTesting(simulator, well_state_copy, B_avg, terminal_output);
updateWellTestState(well_state_copy, simulation_time, /*writeMessageToOPMLog=*/ false, welltest_state_temp);
closeCompletions(welltest_state_temp);
// Stop testing if the well is closed or shut due to all completions shut
// Also check if number of completions has increased. If the number of closed completions do not increased
// we stop the testing.
// TODO: it can be tricky here, if the well is shut/closed due to other reasons
if ( welltest_state_temp.sizeWells() > 0 ||
(original_number_closed_completions == welltest_state_temp.sizeCompletions()) ) {
testWell = false; // this terminates the while loop
}
}
// update wellTestState if the well test succeeds
if (!welltest_state_temp.hasWell(name(), WellTestConfig::Reason::ECONOMIC)) {
welltest_state.openWell(name());
const std::string msg = std::string("well ") + name() + std::string(" is re-opened");
OpmLog::info(msg);
// also reopen completions
for (auto& completion : well_ecl_->getCompletions(report_step)) {
if (!welltest_state_temp.hasCompletion(name(), completion.first)) {
welltest_state.dropCompletion(name(), completion.first);
}
}
}
}
template<typename TypeTag>
void
WellInterface<TypeTag>::
computeRepRadiusPerfLength(const Grid& grid,
const std::vector<int>& cartesian_to_compressed)
{
const int* cart_dims = Opm::UgGridHelpers::cartDims(grid);
auto cell_to_faces = Opm::UgGridHelpers::cell2Faces(grid);
auto begin_face_centroids = Opm::UgGridHelpers::beginFaceCentroids(grid);
const int nperf = number_of_perforations_;
perf_rep_radius_.clear();
perf_length_.clear();
bore_diameters_.clear();
perf_rep_radius_.reserve(nperf);
perf_length_.reserve(nperf);
bore_diameters_.reserve(nperf);
// COMPDAT handling
const auto& connectionSet = well_ecl_->getConnections(current_step_);
for (size_t c=0; c<connectionSet.size(); c++) {
const auto& connection = connectionSet.get(c);
if (connection.state() == WellCompletion::OPEN) {
const int i = connection.getI();
const int j = connection.getJ();
const int k = connection.getK();
const int* cpgdim = cart_dims;
const int cart_grid_indx = i + cpgdim[0]*(j + cpgdim[1]*k);
const int cell = cartesian_to_compressed[cart_grid_indx];
if (cell < 0) {
OPM_THROW(std::runtime_error, "Cell with i,j,k indices " << i << ' ' << j << ' '
<< k << " not found in grid (well = " << name() << ')');
}
{
double radius = connection.rw();
const std::array<double, 3> cubical =
WellsManagerDetail::getCubeDim<3>(cell_to_faces, begin_face_centroids, cell);
double re; // area equivalent radius of the grid block
double perf_length; // the length of the well perforation
switch (connection.dir()) {
case Opm::WellCompletion::DirectionEnum::X:
re = std::sqrt(cubical[1] * cubical[2] / M_PI);
perf_length = cubical[0];
break;
case Opm::WellCompletion::DirectionEnum::Y:
re = std::sqrt(cubical[0] * cubical[2] / M_PI);
perf_length = cubical[1];
break;
case Opm::WellCompletion::DirectionEnum::Z:
re = std::sqrt(cubical[0] * cubical[1] / M_PI);
perf_length = cubical[2];
break;
default:
OPM_THROW(std::runtime_error, " Dirtecion of well is not supported ");
}
const double repR = std::sqrt(re * radius);
perf_rep_radius_.push_back(repR);
perf_length_.push_back(perf_length);
bore_diameters_.push_back(2. * radius);
}
}
}
}
template<typename TypeTag>
double
WellInterface<TypeTag>::scalingFactor(const int phaseIdx) const
{
const WellControls* wc = well_controls_;
const double* distr = well_controls_get_current_distr(wc);
if (well_controls_get_current_type(wc) == RESERVOIR_RATE) {
if (has_solvent && phaseIdx == contiSolventEqIdx ) {
typedef Ewoms::BlackOilSolventModule<TypeTag> SolventModule;
double coeff = 0;
rateConverter_.template calcCoeffSolvent<SolventModule>(0, pvtRegionIdx_, coeff);
return coeff;
}
// TODO: use the rateConverter here as well.
return distr[phaseIdx];
}
const auto& pu = phaseUsage();
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) && pu.phase_pos[Water] == phaseIdx)
return 1.0;
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && pu.phase_pos[Oil] == phaseIdx)
return 1.0;
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) && pu.phase_pos[Gas] == phaseIdx)
return 0.01;
if (has_solvent && phaseIdx == contiSolventEqIdx )
return 0.01;
// we should not come this far
assert(false);
return 1.0;
}
template<typename TypeTag>
bool
WellInterface<TypeTag>::isVFPActive() const
{
// since the well_controls only handles the VFP number when THP constraint/target is there.
// we need to get the table number through the parser, in case THP constraint/target is not there.
// When THP control/limit is not active, if available VFP table is provided, we will still need to
// update THP value. However, it will only used for output purpose.
if (well_type_ == PRODUCER) { // producer
const int table_id = well_ecl_->getProductionProperties(current_step_).VFPTableNumber;
if (table_id <= 0) {
return false;
} else {
if (vfp_properties_->getProd()->getTable(table_id)) {
return true;
}
}
} else { // injector
const int table_id = well_ecl_->getInjectionProperties(current_step_).VFPTableNumber;
if (table_id <= 0) {
return false;
} else {
if (vfp_properties_->getInj()->getTable(table_id)) {
return true;
}
}
}
}
template<typename TypeTag>
void
WellInterface<TypeTag>::calculateReservoirRates(WellState& well_state) const
{
const int fipreg = 0; // not considering the region for now
const int np = number_of_phases_;
std::vector<double> surface_rates(np, 0.0);
const int well_rate_index = np * index_of_well_;
for (int p = 0; p < np; ++p) {
surface_rates[p] = well_state.wellRates()[well_rate_index + p];
}
std::vector<double> voidage_rates(np, 0.0);
rateConverter_.calcReservoirVoidageRates(fipreg, pvtRegionIdx_, surface_rates, voidage_rates);
for (int p = 0; p < np; ++p) {
well_state.wellReservoirRates()[well_rate_index + p] = voidage_rates[p];
}
}
template<typename TypeTag>
void
WellInterface<TypeTag>::closeCompletions(WellTestState& wellTestState)
{
const auto& connections = well_ecl_->getConnections(current_step_);
int perfIdx = 0;
for (const auto& connection : connections) {
if (wellTestState.hasCompletion(name(), connection.complnum())) {
well_index_[perfIdx] = 0.0;
}
perfIdx++;
}
}
template<typename TypeTag>
void
WellInterface<TypeTag>::solveWellForTesting(Simulator& ebosSimulator, WellState& well_state, const std::vector<double>& B_avg, bool terminal_output)
{
const int max_iter = param_.max_welleq_iter_;
int it = 0;
const double dt = 1.0; //not used for the well tests
bool converged;
WellState well_state0 = well_state;
do {
assembleWellEq(ebosSimulator, dt, well_state);
auto report = getWellConvergence(B_avg);
converged = report.converged();
if (converged) {
break;
}
++it;
solveEqAndUpdateWellState(well_state);
wellhelpers::WellSwitchingLogger logger;
updateWellControl(well_state, logger);
initPrimaryVariablesEvaluation();
} while (it < max_iter);
if (converged) {
if ( terminal_output ) {
OpmLog::debug("WellTest: Well equation for well " + name() + " solution gets converged with " + std::to_string(it) + " iterations");
}
} else {
if ( terminal_output ) {
OpmLog::debug("WellTest: Well equation for well" +name() + " solution failed in getting converged with " + std::to_string(it) + " iterations");
}
well_state = well_state0;
}
}
template<typename TypeTag>
void
WellInterface<TypeTag>::scaleProductivityIndex(const int perfIdx, double& productivity_index) const
{
const auto& connection = well_ecl_->getConnections(current_step_)[perfIdx];
if (well_ecl_->getDrainageRadius(current_step_) < 0) {
OpmLog::warning("PRODUCTIVITY_INDEX_WARNING", "Negative drainage radius not supported. The productivity index is set to zero");
productivity_index = 0.0;
return;
}
if (connection.r0() > well_ecl_->getDrainageRadius(current_step_)) {
OpmLog::info("PRODUCTIVITY_INDEX_INFO", "The effective radius is larger then the well drainage radius for well " + name() +
" They are set to equal in the well productivity index calculations");
return;
}
// For zero drainage radius the productivity index is just the transmissibility times the mobility
if (well_ecl_->getDrainageRadius(current_step_) == 0) {
return;
}
// Scale the productivity index to account for the drainage radius.
// Assumes steady radial flow only valied for horizontal wells
productivity_index *=
(std::log(connection.r0() / connection.rw()) + connection.skinFactor()) /
(std::log(well_ecl_->getDrainageRadius(current_step_) / connection.rw()) + connection.skinFactor());
}
}