opm-simulators/opm/simulators/linalg/PreconditionerFactory_impl.hpp
Tobias Meyer Andersen d14fed904a fix typo
2024-08-23 14:42:37 +02:00

854 lines
46 KiB
C++

/*
Copyright 2009, 2010 SINTEF ICT, Applied Mathematics.
Copyright 2019 SINTEF Digital, Mathematics and Cybernetics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <opm/common/ErrorMacros.hpp>
#include <opm/common/TimingMacros.hpp>
#include <opm/simulators/linalg/PreconditionerFactory.hpp>
#include <opm/simulators/linalg/DILU.hpp>
#include <opm/simulators/linalg/ExtraSmoothers.hpp>
#include <opm/simulators/linalg/FlexibleSolver.hpp>
#include <opm/simulators/linalg/OwningBlockPreconditioner.hpp>
#include <opm/simulators/linalg/OwningTwoLevelPreconditioner.hpp>
#include <opm/simulators/linalg/ParallelOverlappingILU0.hpp>
#include <opm/simulators/linalg/PressureBhpTransferPolicy.hpp>
#include <opm/simulators/linalg/PressureTransferPolicy.hpp>
#include <opm/simulators/linalg/PropertyTree.hpp>
#include <opm/simulators/linalg/WellOperators.hpp>
#include <opm/simulators/linalg/amgcpr.hh>
#include <opm/simulators/linalg/ilufirstelement.hh>
#include <opm/simulators/linalg/matrixblock.hh>
#include <dune/common/unused.hh>
#include <dune/istl/owneroverlapcopy.hh>
#include <dune/istl/paamg/amg.hh>
#include <dune/istl/paamg/fastamg.hh>
#include <dune/istl/paamg/kamg.hh>
#include <dune/istl/preconditioners.hh>
#include <config.h>
// Include all cuistl/GPU preconditioners inside of this headerfile
#include <opm/simulators/linalg/PreconditionerFactoryGPUIncludeWrapper.hpp>
namespace Opm {
template <class Smoother>
struct AMGSmootherArgsHelper
{
static auto args(const PropertyTree& prm)
{
using SmootherArgs = typename Dune::Amg::SmootherTraits<Smoother>::Arguments;
SmootherArgs smootherArgs;
smootherArgs.iterations = prm.get<int>("iterations", 1);
// smootherArgs.overlap=SmootherArgs::vertex;
// smootherArgs.overlap=SmootherArgs::none;
// smootherArgs.overlap=SmootherArgs::aggregate;
smootherArgs.relaxationFactor = prm.get<double>("relaxation", 1.0);
return smootherArgs;
}
};
template <class M, class V, class C>
struct AMGSmootherArgsHelper<ParallelOverlappingILU0<M, V, V, C>>
{
static auto args(const PropertyTree& prm)
{
using Smoother = ParallelOverlappingILU0<M, V, V, C>;
using SmootherArgs = typename Dune::Amg::SmootherTraits<Smoother>::Arguments;
SmootherArgs smootherArgs;
smootherArgs.iterations = prm.get<int>("iterations", 1);
const int iluwitdh = prm.get<int>("iluwidth", 0);
smootherArgs.setN(iluwitdh);
const MILU_VARIANT milu = convertString2Milu(prm.get<std::string>("milutype", std::string("ilu")));
smootherArgs.setMilu(milu);
// smootherArgs.overlap=SmootherArgs::vertex;
// smootherArgs.overlap=SmootherArgs::none;
// smootherArgs.overlap=SmootherArgs::aggregate;
smootherArgs.relaxationFactor = prm.get<double>("relaxation", 1.0);
return smootherArgs;
}
};
// trailing return type with decltype used for detecting existence of setUseFixedOrder member function by overloading the setUseFixedOrder function
template <typename C>
auto setUseFixedOrder(C criterion, bool booleanValue) -> decltype(criterion.setUseFixedOrder(booleanValue))
{
return criterion.setUseFixedOrder(booleanValue); // Set flag to ensure that the matrices in the AMG hierarchy are constructed with deterministic indices.
}
template <typename C>
void setUseFixedOrder(C, ...)
{
// do nothing, since the function setUseFixedOrder does not exist yet
}
template <class Operator, class Comm, class Matrix, class Vector>
typename AMGHelper<Operator, Comm, Matrix, Vector>::Criterion
AMGHelper<Operator, Comm, Matrix, Vector>::criterion(const PropertyTree& prm)
{
Criterion criterion(15, prm.get<int>("coarsenTarget", 1200));
criterion.setDefaultValuesIsotropic(2);
criterion.setAlpha(prm.get<double>("alpha", 0.33));
criterion.setBeta(prm.get<double>("beta", 1e-5));
criterion.setMaxLevel(prm.get<int>("maxlevel", 15));
criterion.setSkipIsolated(prm.get<bool>("skip_isolated", false));
criterion.setNoPreSmoothSteps(prm.get<int>("pre_smooth", 1));
criterion.setNoPostSmoothSteps(prm.get<int>("post_smooth", 1));
criterion.setDebugLevel(prm.get<int>("verbosity", 0));
// As the default we request to accumulate data to 1 process always as our matrix
// graph might be unsymmetric and hence not supported by the PTScotch/ParMetis
// calls in DUNE. Accumulating to 1 skips PTScotch/ParMetis
criterion.setAccumulate(static_cast<Dune::Amg::AccumulationMode>(prm.get<int>("accumulate", 1)));
criterion.setProlongationDampingFactor(prm.get<double>("prolongationdamping", 1.6));
criterion.setMaxDistance(prm.get<int>("maxdistance", 2));
criterion.setMaxConnectivity(prm.get<int>("maxconnectivity", 15));
criterion.setMaxAggregateSize(prm.get<int>("maxaggsize", 6));
criterion.setMinAggregateSize(prm.get<int>("minaggsize", 4));
setUseFixedOrder(criterion, true); // If possible, set flag to ensure that the matrices in the AMG hierarchy are constructed with deterministic indices.
return criterion;
}
template <class Operator, class Comm, class Matrix, class Vector>
template <class Smoother>
typename AMGHelper<Operator, Comm, Matrix, Vector>::PrecPtr
AMGHelper<Operator, Comm, Matrix, Vector>::makeAmgPreconditioner(const Operator& op,
const PropertyTree& prm,
bool useKamg)
{
auto crit = criterion(prm);
auto sargs = AMGSmootherArgsHelper<Smoother>::args(prm);
if (useKamg) {
using Type = Dune::DummyUpdatePreconditioner<Dune::Amg::KAMG<Operator, Vector, Smoother>>;
return std::make_shared<Type>(
op, crit, sargs, prm.get<std::size_t>("max_krylov", 1), prm.get<double>("min_reduction", 1e-1));
} else {
using Type = Dune::Amg::AMGCPR<Operator, Vector, Smoother>;
return std::make_shared<Type>(op, crit, sargs);
}
}
template <class Operator, class Comm>
struct StandardPreconditioners {
static void add()
{
using namespace Dune;
using O = Operator;
using C = Comm;
using F = PreconditionerFactory<O, C>;
using M = typename F::Matrix;
using V = typename F::Vector;
using P = PropertyTree;
F::addCreator("ILU0", [](const O& op, const P& prm, const std::function<V()>&, std::size_t, const C& comm) {
return createParILU(op, prm, comm, 0);
});
F::addCreator("ParOverILU0",
[](const O& op, const P& prm, const std::function<V()>&, std::size_t, const C& comm) {
return createParILU(op, prm, comm, prm.get<int>("ilulevel", 0));
});
F::addCreator("ILUn", [](const O& op, const P& prm, const std::function<V()>&, std::size_t, const C& comm) {
return createParILU(op, prm, comm, prm.get<int>("ilulevel", 0));
});
F::addCreator("DuneILU", [](const O& op, const P& prm, const std::function<V()>&, std::size_t, const C& comm) {
const int n = prm.get<int>("ilulevel", 0);
const double w = prm.get<double>("relaxation", 1.0);
const bool resort = prm.get<bool>("resort", false);
return wrapBlockPreconditioner<RebuildOnUpdatePreconditioner<Dune::SeqILU<M, V, V>>>(
comm, op.getmat(), n, w, resort);
});
F::addCreator("DILU", [](const O& op, const P& prm, const std::function<V()>&, std::size_t, const C& comm) {
DUNE_UNUSED_PARAMETER(prm);
return wrapBlockPreconditioner<MultithreadDILU<M, V, V>>(comm, op.getmat());
});
F::addCreator("Jac", [](const O& op, const P& prm, const std::function<V()>&, std::size_t, const C& comm) {
const int n = prm.get<int>("repeats", 1);
const double w = prm.get<double>("relaxation", 1.0);
return wrapBlockPreconditioner<DummyUpdatePreconditioner<SeqJac<M, V, V>>>(comm, op.getmat(), n, w);
});
F::addCreator("GS", [](const O& op, const P& prm, const std::function<V()>&, std::size_t, const C& comm) {
const int n = prm.get<int>("repeats", 1);
const double w = prm.get<double>("relaxation", 1.0);
return wrapBlockPreconditioner<DummyUpdatePreconditioner<SeqGS<M, V, V>>>(comm, op.getmat(), n, w);
});
F::addCreator("SOR", [](const O& op, const P& prm, const std::function<V()>&, std::size_t, const C& comm) {
const int n = prm.get<int>("repeats", 1);
const double w = prm.get<double>("relaxation", 1.0);
return wrapBlockPreconditioner<DummyUpdatePreconditioner<SeqSOR<M, V, V>>>(comm, op.getmat(), n, w);
});
F::addCreator("SSOR", [](const O& op, const P& prm, const std::function<V()>&, std::size_t, const C& comm) {
const int n = prm.get<int>("repeats", 1);
const double w = prm.get<double>("relaxation", 1.0);
return wrapBlockPreconditioner<DummyUpdatePreconditioner<SeqSSOR<M, V, V>>>(comm, op.getmat(), n, w);
});
// Only add AMG preconditioners to the factory if the operator
// is the overlapping schwarz operator. This could be extended
// later, but at this point no other operators are compatible
// with the AMG hierarchy construction.
if constexpr (std::is_same_v<O, Dune::OverlappingSchwarzOperator<M, V, V, C>> ||
std::is_same_v<O, Opm::GhostLastMatrixAdapter<M, V, V, C>>) {
F::addCreator("amg", [](const O& op, const P& prm, const std::function<V()>&, std::size_t, const C& comm) {
using PrecPtr = std::shared_ptr<Dune::PreconditionerWithUpdate<V, V>>;
const std::string smoother = prm.get<std::string>("smoother", "ParOverILU0");
// TODO: merge this with ILUn, and possibly simplify the factory to only work with ILU?
if (smoother == "ILU0" || smoother == "ParOverILU0") {
using Smoother = ParallelOverlappingILU0<M, V, V, C>;
auto crit = AMGHelper<O, C, M, V>::criterion(prm);
auto sargs = AMGSmootherArgsHelper<Smoother>::args(prm);
PrecPtr prec = std::make_shared<Dune::Amg::AMGCPR<O, V, Smoother, C>>(op, crit, sargs, comm);
return prec;
} else if (smoother == "DILU") {
using SeqSmoother = Dune::MultithreadDILU<M, V, V>;
using Smoother = Dune::BlockPreconditioner<V, V, C, SeqSmoother>;
using SmootherArgs = typename Dune::Amg::SmootherTraits<Smoother>::Arguments;
SmootherArgs sargs;
auto crit = AMGHelper<O, C, M, V>::criterion(prm);
PrecPtr prec = std::make_shared<Dune::Amg::AMGCPR<O, V, Smoother, C>>(op, crit, sargs, comm);
return prec;
} else if (smoother == "Jac") {
using SeqSmoother = SeqJac<M, V, V>;
using Smoother = Dune::BlockPreconditioner<V, V, C, SeqSmoother>;
using SmootherArgs = typename Dune::Amg::SmootherTraits<Smoother>::Arguments;
SmootherArgs sargs;
auto crit = AMGHelper<O, C, M, V>::criterion(prm);
PrecPtr prec = std::make_shared<Dune::Amg::AMGCPR<O, V, Smoother, C>>(op, crit, sargs, comm);
return prec;
} else if (smoother == "GS") {
using SeqSmoother = SeqGS<M, V, V>;
using Smoother = Dune::BlockPreconditioner<V, V, C, SeqSmoother>;
using SmootherArgs = typename Dune::Amg::SmootherTraits<Smoother>::Arguments;
SmootherArgs sargs;
auto crit = AMGHelper<O, C, M, V>::criterion(prm);
PrecPtr prec = std::make_shared<Dune::Amg::AMGCPR<O, V, Smoother, C>>(op, crit, sargs, comm);
return prec;
} else if (smoother == "SOR") {
using SeqSmoother = SeqSOR<M, V, V>;
using Smoother = Dune::BlockPreconditioner<V, V, C, SeqSmoother>;
using SmootherArgs = typename Dune::Amg::SmootherTraits<Smoother>::Arguments;
SmootherArgs sargs;
auto crit = AMGHelper<O, C, M, V>::criterion(prm);
PrecPtr prec = std::make_shared<Dune::Amg::AMGCPR<O, V, Smoother, C>>(op, crit, sargs, comm);
return prec;
} else if (smoother == "SSOR") {
using SeqSmoother = SeqSSOR<M, V, V>;
using Smoother = Dune::BlockPreconditioner<V, V, C, SeqSmoother>;
using SmootherArgs = typename Dune::Amg::SmootherTraits<Smoother>::Arguments;
SmootherArgs sargs;
auto crit = AMGHelper<O, C, M, V>::criterion(prm);
PrecPtr prec = std::make_shared<Dune::Amg::AMGCPR<O, V, Smoother, C>>(op, crit, sargs, comm);
return prec;
} else if (smoother == "ILUn") {
using SeqSmoother = SeqILU<M, V, V>;
using Smoother = Dune::BlockPreconditioner<V, V, C, SeqSmoother>;
using SmootherArgs = typename Dune::Amg::SmootherTraits<Smoother>::Arguments;
SmootherArgs sargs;
auto crit = AMGHelper<O, C, M, V>::criterion(prm);
PrecPtr prec = std::make_shared<Dune::Amg::AMGCPR<O, V, Smoother, C>>(op, crit, sargs, comm);
return prec;
} else {
OPM_THROW(std::invalid_argument, "Properties: No smoother with name " + smoother + ".");
}
});
}
F::addCreator("cpr",
[](const O& op,
const P& prm,
const std::function<V()> weightsCalculator,
std::size_t pressureIndex,
const C& comm) {
assert(weightsCalculator);
if (pressureIndex == std::numeric_limits<std::size_t>::max()) {
OPM_THROW(std::logic_error,
"Pressure index out of bounds. It needs to specified for CPR");
}
using Scalar = typename V::field_type;
using LevelTransferPolicy = PressureTransferPolicy<O, Comm, Scalar, false>;
return std::make_shared<OwningTwoLevelPreconditioner<O, V, LevelTransferPolicy, Comm>>(
op, prm, weightsCalculator, pressureIndex, comm);
});
F::addCreator("cprt",
[](const O& op,
const P& prm,
const std::function<V()> weightsCalculator,
std::size_t pressureIndex,
const C& comm) {
assert(weightsCalculator);
if (pressureIndex == std::numeric_limits<std::size_t>::max()) {
OPM_THROW(std::logic_error,
"Pressure index out of bounds. It needs to specified for CPR");
}
using Scalar = typename V::field_type;
using LevelTransferPolicy = PressureTransferPolicy<O, Comm, Scalar, true>;
return std::make_shared<OwningTwoLevelPreconditioner<O, V, LevelTransferPolicy, Comm>>(
op, prm, weightsCalculator, pressureIndex, comm);
});
if constexpr (std::is_same_v<O, WellModelGhostLastMatrixAdapter<M, V, V, true>>) {
F::addCreator("cprw",
[](const O& op,
const P& prm,
const std::function<V()> weightsCalculator,
std::size_t pressureIndex,
const C& comm) {
assert(weightsCalculator);
if (pressureIndex == std::numeric_limits<std::size_t>::max()) {
OPM_THROW(std::logic_error,
"Pressure index out of bounds. It needs to specified for CPR");
}
using Scalar = typename V::field_type;
using LevelTransferPolicy = PressureBhpTransferPolicy<O, Comm, Scalar, false>;
return std::make_shared<OwningTwoLevelPreconditioner<O, V, LevelTransferPolicy, Comm>>(
op, prm, weightsCalculator, pressureIndex, comm);
});
}
#if HAVE_CUDA
F::addCreator("GPUILU0", [](const O& op, const P& prm, const std::function<V()>&, std::size_t, const C& comm) {
const double w = prm.get<double>("relaxation", 1.0);
using field_type = typename V::field_type;
using GpuILU0 = typename gpuistl::
GpuSeqILU0<M, gpuistl::GpuVector<field_type>, gpuistl::GpuVector<field_type>>;
auto gpuILU0 = std::make_shared<GpuILU0>(op.getmat(), w);
auto adapted = std::make_shared<gpuistl::PreconditionerAdapter<V, V, GpuILU0>>(gpuILU0);
auto wrapped = std::make_shared<gpuistl::GpuBlockPreconditioner<V, V, Comm>>(adapted, comm);
return wrapped;
});
F::addCreator("GPUJAC", [](const O& op, const P& prm, const std::function<V()>&, std::size_t, const C& comm) {
const double w = prm.get<double>("relaxation", 1.0);
using field_type = typename V::field_type;
using GpuJac =
typename gpuistl::GpuJac<M, gpuistl::GpuVector<field_type>, gpuistl::GpuVector<field_type>>;
auto gpuJac = std::make_shared<GpuJac>(op.getmat(), w);
auto adapted = std::make_shared<gpuistl::PreconditionerAdapter<V, V, GpuJac>>(gpuJac);
auto wrapped = std::make_shared<gpuistl::GpuBlockPreconditioner<V, V, Comm>>(adapted, comm);
return wrapped;
});
F::addCreator("GPUDILU", [](const O& op, [[maybe_unused]] const P& prm, const std::function<V()>&, std::size_t, const C& comm) {
const bool split_matrix = prm.get<bool>("split_matrix", true);
const bool tune_gpu_kernels = prm.get<bool>("tune_gpu_kernels", true);
using field_type = typename V::field_type;
using GpuDILU = typename gpuistl::GpuDILU<M, gpuistl::GpuVector<field_type>, gpuistl::GpuVector<field_type>>;
auto gpuDILU = std::make_shared<GpuDILU>(op.getmat(), split_matrix, tune_gpu_kernels);
auto adapted = std::make_shared<gpuistl::PreconditionerAdapter<V, V, GpuDILU>>(gpuDILU);
auto wrapped = std::make_shared<gpuistl::GpuBlockPreconditioner<V, V, Comm>>(adapted, comm);
return wrapped;
});
F::addCreator("OPMCUILU0", [](const O& op, [[maybe_unused]] const P& prm, const std::function<V()>&, std::size_t, const C& comm) {
const bool split_matrix = prm.get<bool>("split_matrix", true);
const bool tune_gpu_kernels = prm.get<bool>("tune_gpu_kernels", true);
using field_type = typename V::field_type;
using OpmCuILU0 = typename gpuistl::OpmCuILU0<M, gpuistl::GpuVector<field_type>, gpuistl::GpuVector<field_type>>;
auto cuilu0 = std::make_shared<OpmCuILU0>(op.getmat(), split_matrix, tune_gpu_kernels);
auto adapted = std::make_shared<gpuistl::PreconditionerAdapter<V, V, OpmCuILU0>>(cuilu0);
auto wrapped = std::make_shared<gpuistl::GpuBlockPreconditioner<V, V, Comm>>(adapted, comm);
return wrapped;
});
#endif
}
static typename PreconditionerFactory<Operator, Comm>::PrecPtr
createParILU(const Operator& op, const PropertyTree& prm, const Comm& comm, const int ilulevel)
{
using F = PreconditionerFactory<Operator, Comm>;
using M = typename F::Matrix;
using V = typename F::Vector;
const double w = prm.get<double>("relaxation", 1.0);
const bool redblack = prm.get<bool>("redblack", false);
const bool reorder_spheres = prm.get<bool>("reorder_spheres", false);
// Already a parallel preconditioner. Need to pass comm, but no need to wrap it in a BlockPreconditioner.
if (ilulevel == 0) {
const std::size_t num_interior = interiorIfGhostLast(comm);
return std::make_shared<ParallelOverlappingILU0<M, V, V, Comm>>(
op.getmat(), comm, w, MILU_VARIANT::ILU, num_interior, redblack, reorder_spheres);
} else {
return std::make_shared<ParallelOverlappingILU0<M, V, V, Comm>>(
op.getmat(), comm, ilulevel, w, MILU_VARIANT::ILU, redblack, reorder_spheres);
}
}
/// Helper method to determine if the local partitioning has the
/// K interior cells from [0, K-1] and ghost cells from [K, N-1].
/// Returns K if true, otherwise returns N. This is motivated by
/// usage in the ParallelOverlappingILU0 preconditioner.
static std::size_t interiorIfGhostLast(const Comm& comm)
{
std::size_t interior_count = 0;
std::size_t highest_interior_index = 0;
const auto& is = comm.indexSet();
for (const auto& ind : is) {
if (Comm::OwnerSet::contains(ind.local().attribute())) {
++interior_count;
highest_interior_index = std::max(highest_interior_index, ind.local().local());
}
}
if (highest_interior_index + 1 == interior_count) {
return interior_count;
} else {
return is.size();
}
}
};
template <class Operator>
struct StandardPreconditioners<Operator, Dune::Amg::SequentialInformation> {
static void add()
{
using namespace Dune;
using O = Operator;
using C = Dune::Amg::SequentialInformation;
using F = PreconditionerFactory<O, C>;
using M = typename F::Matrix;
using V = typename F::Vector;
using P = PropertyTree;
F::addCreator("ILU0", [](const O& op, const P& prm, const std::function<V()>&, std::size_t) {
const double w = prm.get<double>("relaxation", 1.0);
return std::make_shared<ParallelOverlappingILU0<M, V, V, C>>(
op.getmat(), 0, w, MILU_VARIANT::ILU);
});
F::addCreator("DuneILU", [](const O& op, const P& prm, const std::function<V()>&, std::size_t) {
const double w = prm.get<double>("relaxation", 1.0);
const int n = prm.get<int>("ilulevel", 0);
const bool resort = prm.get<bool>("resort", false);
return getRebuildOnUpdateWrapper<Dune::SeqILU<M, V, V>>(op.getmat(), n, w, resort);
});
F::addCreator("ParOverILU0", [](const O& op, const P& prm, const std::function<V()>&, std::size_t) {
const double w = prm.get<double>("relaxation", 1.0);
const int n = prm.get<int>("ilulevel", 0);
return std::make_shared<ParallelOverlappingILU0<M, V, V, C>>(
op.getmat(), n, w, MILU_VARIANT::ILU);
});
F::addCreator("ILUn", [](const O& op, const P& prm, const std::function<V()>&, std::size_t) {
const int n = prm.get<int>("ilulevel", 0);
const double w = prm.get<double>("relaxation", 1.0);
return std::make_shared<ParallelOverlappingILU0<M, V, V, C>>(
op.getmat(), n, w, MILU_VARIANT::ILU);
});
F::addCreator("DILU", [](const O& op, const P& prm, const std::function<V()>&, std::size_t) {
DUNE_UNUSED_PARAMETER(prm);
return std::make_shared<MultithreadDILU<M, V, V>>(op.getmat());
});
F::addCreator("Jac", [](const O& op, const P& prm, const std::function<V()>&, std::size_t) {
const int n = prm.get<int>("repeats", 1);
const double w = prm.get<double>("relaxation", 1.0);
return getDummyUpdateWrapper<SeqJac<M, V, V>>(op.getmat(), n, w);
});
F::addCreator("GS", [](const O& op, const P& prm, const std::function<V()>&, std::size_t) {
const int n = prm.get<int>("repeats", 1);
const double w = prm.get<double>("relaxation", 1.0);
return getDummyUpdateWrapper<SeqGS<M, V, V>>(op.getmat(), n, w);
});
F::addCreator("SOR", [](const O& op, const P& prm, const std::function<V()>&, std::size_t) {
const int n = prm.get<int>("repeats", 1);
const double w = prm.get<double>("relaxation", 1.0);
return getDummyUpdateWrapper<SeqSOR<M, V, V>>(op.getmat(), n, w);
});
F::addCreator("SSOR", [](const O& op, const P& prm, const std::function<V()>&, std::size_t) {
const int n = prm.get<int>("repeats", 1);
const double w = prm.get<double>("relaxation", 1.0);
return getDummyUpdateWrapper<SeqSSOR<M, V, V>>(op.getmat(), n, w);
});
// Only add AMG preconditioners to the factory if the operator
// is an actual matrix operator.
if constexpr (std::is_same_v<O, Dune::MatrixAdapter<M, V, V>>) {
F::addCreator("amg", [](const O& op, const P& prm, const std::function<V()>&, std::size_t) {
const std::string smoother = prm.get<std::string>("smoother", "ParOverILU0");
if (smoother == "ILU0" || smoother == "ParOverILU0") {
using Smoother = SeqILU<M, V, V>;
return AMGHelper<O, C, M, V>::template makeAmgPreconditioner<Smoother>(op, prm);
} else if (smoother == "Jac") {
using Smoother = SeqJac<M, V, V>;
return AMGHelper<O, C, M, V>::template makeAmgPreconditioner<Smoother>(op, prm);
} else if (smoother == "GS") {
using Smoother = SeqGS<M, V, V>;
return AMGHelper<O, C, M, V>::template makeAmgPreconditioner<Smoother>(op, prm);
} else if (smoother == "DILU") {
using Smoother = MultithreadDILU<M, V, V>;
return AMGHelper<O, C, M, V>::template makeAmgPreconditioner<Smoother>(op, prm);
} else if (smoother == "SOR") {
using Smoother = SeqSOR<M, V, V>;
return AMGHelper<O, C, M, V>::template makeAmgPreconditioner<Smoother>(op, prm);
} else if (smoother == "SSOR") {
using Smoother = SeqSSOR<M, V, V>;
return AMGHelper<O, C, M, V>::template makeAmgPreconditioner<Smoother>(op, prm);
} else if (smoother == "ILUn") {
using Smoother = SeqILU<M, V, V>;
return AMGHelper<O, C, M, V>::template makeAmgPreconditioner<Smoother>(op, prm);
} else {
OPM_THROW(std::invalid_argument, "Properties: No smoother with name " + smoother + ".");
}
});
F::addCreator("kamg", [](const O& op, const P& prm, const std::function<V()>&, std::size_t) {
const std::string smoother = prm.get<std::string>("smoother", "ParOverILU0");
if (smoother == "ILU0" || smoother == "ParOverILU0") {
using Smoother = SeqILU<M, V, V>;
return AMGHelper<O, C, M, V>::template makeAmgPreconditioner<Smoother>(op, prm, true);
} else if (smoother == "Jac") {
using Smoother = SeqJac<M, V, V>;
return AMGHelper<O, C, M, V>::template makeAmgPreconditioner<Smoother>(op, prm, true);
} else if (smoother == "SOR") {
using Smoother = SeqSOR<M, V, V>;
return AMGHelper<O, C, M, V>::template makeAmgPreconditioner<Smoother>(op, prm, true);
} else if (smoother == "GS") {
using Smoother = SeqGS<M, V, V>;
return AMGHelper<O, C, M, V>::template makeAmgPreconditioner<Smoother>(op, prm, true);
} else if (smoother == "SSOR") {
using Smoother = SeqSSOR<M, V, V>;
return AMGHelper<O, C, M, V>::template makeAmgPreconditioner<Smoother>(op, prm, true);
} else if (smoother == "ILUn") {
using Smoother = SeqILU<M, V, V>;
return AMGHelper<O, C, M, V>::template makeAmgPreconditioner<Smoother>(op, prm, true);
} else {
OPM_THROW(std::invalid_argument, "Properties: No smoother with name " + smoother + ".");
}
});
F::addCreator("famg", [](const O& op, const P& prm, const std::function<V()>&, std::size_t) {
if constexpr (std::is_same_v<typename V::field_type, float>) {
OPM_THROW(std::logic_error, "famg requires UMFPack which is not available for floats");
return nullptr;
} else {
auto crit = AMGHelper<O, C, M, V>::criterion(prm);
Dune::Amg::Parameters parms;
parms.setNoPreSmoothSteps(1);
parms.setNoPostSmoothSteps(1);
return getRebuildOnUpdateWrapper<Dune::Amg::FastAMG<O, V>>(op, crit, parms);
}
});
}
if constexpr (std::is_same_v<O, WellModelMatrixAdapter<M, V, V, false>>) {
F::addCreator(
"cprw",
[](const O& op, const P& prm, const std::function<V()>& weightsCalculator, std::size_t pressureIndex) {
if (pressureIndex == std::numeric_limits<std::size_t>::max()) {
OPM_THROW(std::logic_error, "Pressure index out of bounds. It needs to specified for CPR");
}
using Scalar = typename V::field_type;
using LevelTransferPolicy
= PressureBhpTransferPolicy<O, Dune::Amg::SequentialInformation, Scalar, false>;
return std::make_shared<OwningTwoLevelPreconditioner<O, V, LevelTransferPolicy>>(
op, prm, weightsCalculator, pressureIndex);
});
}
F::addCreator(
"cpr",
[](const O& op, const P& prm, const std::function<V()>& weightsCalculator, std::size_t pressureIndex) {
if (pressureIndex == std::numeric_limits<std::size_t>::max()) {
OPM_THROW(std::logic_error, "Pressure index out of bounds. It needs to specified for CPR");
}
using Scalar = typename V::field_type;
using LevelTransferPolicy = PressureTransferPolicy<O, Dune::Amg::SequentialInformation, Scalar, false>;
return std::make_shared<OwningTwoLevelPreconditioner<O, V, LevelTransferPolicy>>(
op, prm, weightsCalculator, pressureIndex);
});
F::addCreator(
"cprt",
[](const O& op, const P& prm, const std::function<V()>& weightsCalculator, std::size_t pressureIndex) {
if (pressureIndex == std::numeric_limits<std::size_t>::max()) {
OPM_THROW(std::logic_error, "Pressure index out of bounds. It needs to specified for CPR");
}
using Scalar = typename V::field_type;
using LevelTransferPolicy = PressureTransferPolicy<O, Dune::Amg::SequentialInformation, Scalar, true>;
return std::make_shared<OwningTwoLevelPreconditioner<O, V, LevelTransferPolicy>>(
op, prm, weightsCalculator, pressureIndex);
});
#if HAVE_CUDA
F::addCreator("GPUILU0", [](const O& op, const P& prm, const std::function<V()>&, std::size_t) {
const double w = prm.get<double>("relaxation", 1.0);
using field_type = typename V::field_type;
using GpuILU0 = typename gpuistl::
GpuSeqILU0<M, gpuistl::GpuVector<field_type>, gpuistl::GpuVector<field_type>>;
return std::make_shared<gpuistl::PreconditionerAdapter<V, V, GpuILU0>>(
std::make_shared<GpuILU0>(op.getmat(), w));
});
F::addCreator("GPUILU0Float", [](const O& op, const P& prm, const std::function<V()>&, std::size_t) {
const double w = prm.get<double>("relaxation", 1.0);
using block_type = typename V::block_type;
using VTo = Dune::BlockVector<Dune::FieldVector<float, block_type::dimension>>;
using matrix_type_to =
typename Dune::BCRSMatrix<Dune::FieldMatrix<float, block_type::dimension, block_type::dimension>>;
using GpuILU0 = typename gpuistl::
GpuSeqILU0<matrix_type_to, gpuistl::GpuVector<float>, gpuistl::GpuVector<float>>;
using Adapter = typename gpuistl::PreconditionerAdapter<VTo, VTo, GpuILU0>;
using Converter = typename gpuistl::PreconditionerConvertFieldTypeAdapter<Adapter, M, V, V>;
auto converted = std::make_shared<Converter>(op.getmat());
auto adapted = std::make_shared<Adapter>(std::make_shared<GpuILU0>(converted->getConvertedMatrix(), w));
converted->setUnderlyingPreconditioner(adapted);
return converted;
});
F::addCreator("GPUJAC", [](const O& op, const P& prm, const std::function<V()>&, std::size_t) {
const double w = prm.get<double>("relaxation", 1.0);
using field_type = typename V::field_type;
using GPUJac =
typename gpuistl::GpuJac<M, gpuistl::GpuVector<field_type>, gpuistl::GpuVector<field_type>>;
return std::make_shared<gpuistl::PreconditionerAdapter<V, V, GPUJac>>(
std::make_shared<GPUJac>(op.getmat(), w));
});
F::addCreator("OPMCUILU0", [](const O& op, [[maybe_unused]] const P& prm, const std::function<V()>&, std::size_t) {
const bool split_matrix = prm.get<bool>("split_matrix", true);
const bool tune_gpu_kernels = prm.get<bool>("tune_gpu_kernels", true);
using field_type = typename V::field_type;
using CUILU0 = typename gpuistl::OpmCuILU0<M, gpuistl::GpuVector<field_type>, gpuistl::GpuVector<field_type>>;
return std::make_shared<gpuistl::PreconditionerAdapter<V, V, CUILU0>>(std::make_shared<CUILU0>(op.getmat(), split_matrix, tune_gpu_kernels));
});
F::addCreator("GPUDILU", [](const O& op, [[maybe_unused]] const P& prm, const std::function<V()>&, std::size_t) {
const bool split_matrix = prm.get<bool>("split_matrix", true);
const bool tune_gpu_kernels = prm.get<bool>("tune_gpu_kernels", true);
using field_type = typename V::field_type;
using GPUDILU = typename gpuistl::GpuDILU<M, gpuistl::GpuVector<field_type>, gpuistl::GpuVector<field_type>>;
return std::make_shared<gpuistl::PreconditionerAdapter<V, V, GPUDILU>>(std::make_shared<GPUDILU>(op.getmat(), split_matrix, tune_gpu_kernels));
});
F::addCreator("GPUDILUFloat", [](const O& op, [[maybe_unused]] const P& prm, const std::function<V()>&, std::size_t) {
const bool split_matrix = prm.get<bool>("split_matrix", true);
const bool tune_gpu_kernels = prm.get<bool>("tune_gpu_kernels", true);
using block_type = typename V::block_type;
using VTo = Dune::BlockVector<Dune::FieldVector<float, block_type::dimension>>;
using matrix_type_to = typename Dune::BCRSMatrix<Dune::FieldMatrix<float, block_type::dimension, block_type::dimension>>;
using GpuDILU = typename gpuistl::GpuDILU<matrix_type_to, gpuistl::GpuVector<float>, gpuistl::GpuVector<float>>;
using Adapter = typename gpuistl::PreconditionerAdapter<VTo, VTo, GpuDILU>;
using Converter = typename gpuistl::PreconditionerConvertFieldTypeAdapter<Adapter, M, V, V>;
auto converted = std::make_shared<Converter>(op.getmat());
auto adapted = std::make_shared<Adapter>(std::make_shared<GpuDILU>(converted->getConvertedMatrix(), split_matrix, tune_gpu_kernels));
converted->setUnderlyingPreconditioner(adapted);
return converted;
});
#endif
}
};
template <class Operator, class Comm>
PreconditionerFactory<Operator, Comm>::PreconditionerFactory()
{
}
template <class Operator, class Comm>
PreconditionerFactory<Operator, Comm>&
PreconditionerFactory<Operator, Comm>::instance()
{
static PreconditionerFactory singleton;
return singleton;
}
template <class Operator, class Comm>
typename PreconditionerFactory<Operator, Comm>::PrecPtr
PreconditionerFactory<Operator, Comm>::doCreate(const Operator& op,
const PropertyTree& prm,
const std::function<Vector()> weightsCalculator,
std::size_t pressureIndex)
{
if (!defAdded_) {
StandardPreconditioners<Operator, Comm>::add();
defAdded_ = true;
}
const std::string& type = prm.get<std::string>("type", "ParOverILU0");
auto it = creators_.find(type);
if (it == creators_.end()) {
std::ostringstream msg;
msg << "Preconditioner type " << type << " is not registered in the factory. Available types are: ";
for (const auto& prec : creators_) {
msg << prec.first << ' ';
}
msg << std::endl;
OPM_THROW(std::invalid_argument, msg.str());
}
return it->second(op, prm, weightsCalculator, pressureIndex);
}
template <class Operator, class Comm>
typename PreconditionerFactory<Operator, Comm>::PrecPtr
PreconditionerFactory<Operator, Comm>::doCreate(const Operator& op,
const PropertyTree& prm,
const std::function<Vector()> weightsCalculator,
std::size_t pressureIndex,
const Comm& comm)
{
if (!defAdded_) {
StandardPreconditioners<Operator, Comm>::add();
defAdded_ = true;
}
const std::string& type = prm.get<std::string>("type", "ParOverILU0");
auto it = parallel_creators_.find(type);
if (it == parallel_creators_.end()) {
std::ostringstream msg;
msg << "Parallel preconditioner type " << type << " is not registered in the factory. Available types are: ";
for (const auto& prec : parallel_creators_) {
msg << prec.first << ' ';
}
msg << std::endl;
OPM_THROW(std::invalid_argument, msg.str());
}
return it->second(op, prm, weightsCalculator, pressureIndex, comm);
}
template <class Operator, class Comm>
void
PreconditionerFactory<Operator, Comm>::doAddCreator(const std::string& type, Creator c)
{
creators_[type] = c;
}
template <class Operator, class Comm>
void
PreconditionerFactory<Operator, Comm>::doAddCreator(const std::string& type, ParCreator c)
{
parallel_creators_[type] = c;
}
template <class Operator, class Comm>
typename PreconditionerFactory<Operator, Comm>::PrecPtr
PreconditionerFactory<Operator, Comm>::create(const Operator& op,
const PropertyTree& prm,
const std::function<Vector()>& weightsCalculator,
std::size_t pressureIndex)
{
return instance().doCreate(op, prm, weightsCalculator, pressureIndex);
}
template <class Operator, class Comm>
typename PreconditionerFactory<Operator, Comm>::PrecPtr
PreconditionerFactory<Operator, Comm>::create(const Operator& op,
const PropertyTree& prm,
const std::function<Vector()>& weightsCalculator,
const Comm& comm,
std::size_t pressureIndex)
{
return instance().doCreate(op, prm, weightsCalculator, pressureIndex, comm);
}
template <class Operator, class Comm>
typename PreconditionerFactory<Operator, Comm>::PrecPtr
PreconditionerFactory<Operator, Comm>::create(const Operator& op,
const PropertyTree& prm,
const Comm& comm,
std::size_t pressureIndex)
{
return instance().doCreate(op, prm, std::function<Vector()>(), pressureIndex, comm);
}
template <class Operator, class Comm>
void
PreconditionerFactory<Operator, Comm>::addCreator(const std::string& type, Creator creator)
{
instance().doAddCreator(type, creator);
}
template <class Operator, class Comm>
void
PreconditionerFactory<Operator, Comm>::addCreator(const std::string& type, ParCreator creator)
{
instance().doAddCreator(type, creator);
}
using CommSeq = Dune::Amg::SequentialInformation;
template <int Dim>
using OpFSeq = Dune::MatrixAdapter<Dune::BCRSMatrix<Dune::FieldMatrix<double, Dim, Dim>>,
Dune::BlockVector<Dune::FieldVector<double, Dim>>,
Dune::BlockVector<Dune::FieldVector<double, Dim>>>;
template <int Dim>
using OpBSeq = Dune::MatrixAdapter<Dune::BCRSMatrix<MatrixBlock<double, Dim, Dim>>,
Dune::BlockVector<Dune::FieldVector<double, Dim>>,
Dune::BlockVector<Dune::FieldVector<double, Dim>>>;
template <int Dim, bool overlap>
using OpW = WellModelMatrixAdapter<Dune::BCRSMatrix<MatrixBlock<double, Dim, Dim>>,
Dune::BlockVector<Dune::FieldVector<double, Dim>>,
Dune::BlockVector<Dune::FieldVector<double, Dim>>,
overlap>;
template <int Dim, bool overlap>
using OpWG = WellModelGhostLastMatrixAdapter<Dune::BCRSMatrix<MatrixBlock<double, Dim, Dim>>,
Dune::BlockVector<Dune::FieldVector<double, Dim>>,
Dune::BlockVector<Dune::FieldVector<double, Dim>>,
overlap>;
#if HAVE_MPI
using CommPar = Dune::OwnerOverlapCopyCommunication<int, int>;
template <int Dim>
using OpFPar = Dune::OverlappingSchwarzOperator<Dune::BCRSMatrix<Dune::FieldMatrix<double, Dim, Dim>>,
Dune::BlockVector<Dune::FieldVector<double, Dim>>,
Dune::BlockVector<Dune::FieldVector<double, Dim>>,
CommPar>;
template <int Dim>
using OpBPar = Dune::OverlappingSchwarzOperator<Dune::BCRSMatrix<MatrixBlock<double, Dim, Dim>>,
Dune::BlockVector<Dune::FieldVector<double, Dim>>,
Dune::BlockVector<Dune::FieldVector<double, Dim>>,
CommPar>;
template<int Dim>
using OpGLFPar = Opm::GhostLastMatrixAdapter<Dune::BCRSMatrix<Dune::FieldMatrix<double,Dim,Dim>>,
Dune::BlockVector<Dune::FieldVector<double,Dim>>,
Dune::BlockVector<Dune::FieldVector<double,Dim>>,
CommPar>;
template<int Dim>
using OpGLBPar = Opm::GhostLastMatrixAdapter<Dune::BCRSMatrix<MatrixBlock<double,Dim,Dim>>,
Dune::BlockVector<Dune::FieldVector<double,Dim>>,
Dune::BlockVector<Dune::FieldVector<double,Dim>>,
CommPar>;
#define INSTANCE_PF_PAR(Dim) \
template class PreconditionerFactory<OpBSeq<Dim>, CommPar>; \
template class PreconditionerFactory<OpFPar<Dim>, CommPar>; \
template class PreconditionerFactory<OpBPar<Dim>, CommPar>; \
template class PreconditionerFactory<OpGLFPar<Dim>,CommPar>; \
template class PreconditionerFactory<OpGLBPar<Dim>,CommPar>; \
template class PreconditionerFactory<OpW<Dim, false>, CommPar>; \
template class PreconditionerFactory<OpWG<Dim, true>, CommPar>; \
template class PreconditionerFactory<OpBPar<Dim>,CommSeq>; \
template class PreconditionerFactory<OpGLBPar<Dim>,CommSeq>;
#endif
#define INSTANCE_PF_SEQ(Dim) \
template class PreconditionerFactory<OpFSeq<Dim>, CommSeq>; \
template class PreconditionerFactory<OpBSeq<Dim>, CommSeq>; \
template class PreconditionerFactory<OpW<Dim, false>, CommSeq>; \
template class PreconditionerFactory<OpWG<Dim, true>, CommSeq>;
#if HAVE_MPI
#define INSTANCE_PF(Dim) \
INSTANCE_PF_PAR(Dim) \
INSTANCE_PF_SEQ(Dim)
#else
#define INSTANCE_PF(Dim) INSTANCE_PF_SEQ(Dim)
#endif
} // namespace Opm