opm-simulators/opm/autodiff/WellStateFullyImplicitBlackoil.hpp
Atgeirr Flø Rasmussen e7f4637461 Add WellStateFullyImplicitBlackoil class.
This is intended to be used instead of the WellState class in the fully
implicit blackoil simulator. It contains a WellState to reuse the init()
method and to enable users to call functions requiring a WellState.
This is done with containment and an access member function,
basicWellState(), instead of with inheritance to minimize surprises.
2014-03-18 11:23:05 +01:00

102 lines
3.9 KiB
C++

/*
Copyright 2014 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_WELLSTATEFULLYIMPLICITBLACKOIL_HEADER_INCLUDED
#define OPM_WELLSTATEFULLYIMPLICITBLACKOIL_HEADER_INCLUDED
#include <opm/core/wells.h>
#include <opm/core/well_controls.h>
#include <opm/core/simulator/WellState.hpp>
#include <vector>
#include <cassert>
namespace Opm
{
/// The state of a set of wells, tailored for use by the fully
/// implicit blackoil simulator.
class WellStateFullyImplicitBlackoil
{
public:
/// Allocate and initialize if wells is non-null. Also tries
/// to give useful initial values to the bhp(), wellRates()
/// and perfPhaseRates() fields, depending on controls
template <class State>
void init(const Wells* wells, const State& state)
{
if (wells == 0) {
return;
}
// We use the WellState::init() function to do bhp and well rates init.
// The alternative would be to copy that function wholesale.
basic_well_state_.init(wells, state);
// Initialize perfphaserates_, which must be done here.
const int nw = wells->number_of_wells;
const int np = wells->number_of_phases;
const int nperf = wells->well_connpos[nw];
perfphaserates_.resize(nperf * np, 0.0);
for (int w = 0; w < nw; ++w) {
assert((wells->type[w] == INJECTOR) || (wells->type[w] == PRODUCER));
const WellControls* ctrl = wells->ctrls[w];
if (well_controls_well_is_shut(ctrl)) {
// Shut well: perfphaserates_ are all zero.
} else {
// Open well: Initialize perfphaserates_ to well
// rates divided by the number of perforations.
const int num_perf_this_well = wells->well_connpos[w + 1] - wells->well_connpos[w];
for (int perf = wells->well_connpos[w]; perf < wells->well_connpos[w + 1]; ++perf) {
for (int p = 0; p < np; ++p) {
perfphaserates_[np*perf + p] = wellRates()[np*w + p] / double(num_perf_this_well);
}
}
}
}
}
/// One bhp pressure per well.
std::vector<double>& bhp() { return basic_well_state_.bhp(); }
const std::vector<double>& bhp() const { return basic_well_state_.bhp(); }
/// One rate per well and phase.
std::vector<double>& wellRates() { return basic_well_state_.wellRates(); }
const std::vector<double>& wellRates() const { return basic_well_state_.wellRates(); }
/// One rate per phase and well connection.
std::vector<double>& perfPhaseRates() { return perfphaserates_; }
const std::vector<double>& perfPhaseRates() const { return perfphaserates_; }
/// For interfacing with functions that take a WellState.
const WellState& basicWellState() const
{
return basic_well_state_;
}
private:
WellState basic_well_state_;
std::vector<double> perfphaserates_;
};
} // namespace Opm
#endif // OPM_WELLSTATEFULLYIMPLICITBLACKOIL_HEADER_INCLUDED