mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-02-25 18:55:30 -06:00
952 lines
41 KiB
C++
952 lines
41 KiB
C++
/*
|
|
Copyright 2013, 2015 SINTEF ICT, Applied Mathematics.
|
|
Copyright 2014, 2015 Dr. Blatt - HPC-Simulation-Software & Services
|
|
Copyright 2014, 2015 Statoil ASA.
|
|
Copyright 2015 NTNU
|
|
Copyright 2015 IRIS AS
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef OPM_BLACKOILPOLYMERMODEL_IMPL_HEADER_INCLUDED
|
|
#define OPM_BLACKOILPOLYMERMODEL_IMPL_HEADER_INCLUDED
|
|
|
|
#include <opm/polymer/fullyimplicit/BlackoilPolymerModel.hpp>
|
|
|
|
#include <opm/autodiff/AutoDiffBlock.hpp>
|
|
#include <opm/autodiff/AutoDiffHelpers.hpp>
|
|
#include <opm/autodiff/GridHelpers.hpp>
|
|
#include <opm/autodiff/BlackoilPropsAdInterface.hpp>
|
|
#include <opm/autodiff/GeoProps.hpp>
|
|
#include <opm/autodiff/WellDensitySegmented.hpp>
|
|
|
|
#include <opm/core/grid.h>
|
|
#include <opm/core/linalg/LinearSolverInterface.hpp>
|
|
#include <opm/core/linalg/ParallelIstlInformation.hpp>
|
|
#include <opm/core/props/rock/RockCompressibility.hpp>
|
|
#include <opm/core/utility/ErrorMacros.hpp>
|
|
#include <opm/core/utility/Exceptions.hpp>
|
|
#include <opm/core/utility/Units.hpp>
|
|
#include <opm/core/well_controls.h>
|
|
#include <opm/core/utility/parameters/ParameterGroup.hpp>
|
|
|
|
#include <cassert>
|
|
#include <cmath>
|
|
#include <iostream>
|
|
#include <iomanip>
|
|
#include <limits>
|
|
|
|
namespace Opm {
|
|
|
|
|
|
|
|
namespace detail {
|
|
|
|
template <class PU>
|
|
int polymerPos(const PU& pu)
|
|
{
|
|
const int maxnp = Opm::BlackoilPhases::MaxNumPhases;
|
|
int pos = 0;
|
|
for (int phase = 0; phase < maxnp; ++phase) {
|
|
if (pu.phase_used[phase]) {
|
|
pos++;
|
|
}
|
|
}
|
|
|
|
return pos;
|
|
}
|
|
|
|
} // namespace detail
|
|
|
|
|
|
|
|
template <class Grid>
|
|
BlackoilPolymerModel<Grid>::BlackoilPolymerModel(const typename Base::ModelParameters& param,
|
|
const Grid& grid,
|
|
const BlackoilPropsAdInterface& fluid,
|
|
const DerivedGeology& geo,
|
|
const RockCompressibility* rock_comp_props,
|
|
const PolymerPropsAd& polymer_props_ad,
|
|
const Wells* wells,
|
|
const NewtonIterationBlackoilInterface& linsolver,
|
|
const bool has_disgas,
|
|
const bool has_vapoil,
|
|
const bool has_polymer,
|
|
const bool has_plyshlog,
|
|
const bool has_shrate,
|
|
const std::vector<double>& wells_rep_radius,
|
|
const std::vector<double>& wells_perf_length,
|
|
const std::vector<double>& wells_bore_diameter,
|
|
const bool terminal_output)
|
|
: Base(param, grid, fluid, geo, rock_comp_props, wells, linsolver,
|
|
has_disgas, has_vapoil, terminal_output),
|
|
polymer_props_ad_(polymer_props_ad),
|
|
has_polymer_(has_polymer),
|
|
has_plyshlog_(has_plyshlog),
|
|
has_shrate_(has_shrate),
|
|
poly_pos_(detail::polymerPos(fluid.phaseUsage())),
|
|
wells_rep_radius_(wells_rep_radius),
|
|
wells_perf_length_(wells_perf_length),
|
|
wells_bore_diameter_(wells_bore_diameter)
|
|
{
|
|
if (has_polymer_) {
|
|
if (!active_[Water]) {
|
|
OPM_THROW(std::logic_error, "Polymer must solved in water!\n");
|
|
}
|
|
// If deck has polymer, residual_ should contain polymer equation.
|
|
rq_.resize(fluid_.numPhases() + 1);
|
|
residual_.material_balance_eq.resize(fluid_.numPhases() + 1, ADB::null());
|
|
assert(poly_pos_ == fluid_.numPhases());
|
|
}
|
|
}
|
|
|
|
|
|
|
|
template <class Grid>
|
|
void
|
|
BlackoilPolymerModel<Grid>::
|
|
prepareStep(const double dt,
|
|
ReservoirState& reservoir_state,
|
|
WellState& well_state)
|
|
{
|
|
Base::prepareStep(dt, reservoir_state, well_state);
|
|
// Initial max concentration of this time step from PolymerBlackoilState.
|
|
cmax_ = Eigen::Map<const V>(reservoir_state.maxconcentration().data(), Opm::AutoDiffGrid::numCells(grid_));
|
|
}
|
|
|
|
|
|
|
|
|
|
template <class Grid>
|
|
void
|
|
BlackoilPolymerModel<Grid>::
|
|
afterStep(const double /* dt */,
|
|
ReservoirState& reservoir_state,
|
|
WellState& /* well_state */)
|
|
{
|
|
computeCmax(reservoir_state);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <class Grid>
|
|
void
|
|
BlackoilPolymerModel<Grid>::makeConstantState(SolutionState& state) const
|
|
{
|
|
Base::makeConstantState(state);
|
|
state.concentration = ADB::constant(state.concentration.value());
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <class Grid>
|
|
std::vector<V>
|
|
BlackoilPolymerModel<Grid>::variableStateInitials(const ReservoirState& x,
|
|
const WellState& xw) const
|
|
{
|
|
std::vector<V> vars0 = Base::variableStateInitials(x, xw);
|
|
assert(int(vars0.size()) == fluid_.numPhases() + 2);
|
|
|
|
// Initial polymer concentration.
|
|
if (has_polymer_) {
|
|
assert (not x.concentration().empty());
|
|
const int nc = x.concentration().size();
|
|
const V c = Eigen::Map<const V>(&x.concentration()[0], nc);
|
|
// Concentration belongs after other reservoir vars but before well vars.
|
|
auto concentration_pos = vars0.begin() + fluid_.numPhases();
|
|
assert(concentration_pos == vars0.end() - 2);
|
|
vars0.insert(concentration_pos, c);
|
|
}
|
|
return vars0;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <class Grid>
|
|
std::vector<int>
|
|
BlackoilPolymerModel<Grid>::variableStateIndices() const
|
|
{
|
|
std::vector<int> ind = Base::variableStateIndices();
|
|
assert(ind.size() == 5);
|
|
if (has_polymer_) {
|
|
ind.resize(6);
|
|
// Concentration belongs after other reservoir vars but before well vars.
|
|
ind[Concentration] = fluid_.numPhases();
|
|
// Concentration is pushing back the well vars.
|
|
++ind[Qs];
|
|
++ind[Bhp];
|
|
}
|
|
return ind;
|
|
}
|
|
|
|
|
|
|
|
|
|
template <class Grid>
|
|
typename BlackoilPolymerModel<Grid>::SolutionState
|
|
BlackoilPolymerModel<Grid>::variableStateExtractVars(const ReservoirState& x,
|
|
const std::vector<int>& indices,
|
|
std::vector<ADB>& vars) const
|
|
{
|
|
SolutionState state = Base::variableStateExtractVars(x, indices, vars);
|
|
if (has_polymer_) {
|
|
state.concentration = std::move(vars[indices[Concentration]]);
|
|
}
|
|
return state;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <class Grid>
|
|
void
|
|
BlackoilPolymerModel<Grid>::computeAccum(const SolutionState& state,
|
|
const int aix )
|
|
{
|
|
Base::computeAccum(state, aix);
|
|
|
|
// Compute accumulation of polymer equation only if needed.
|
|
if (has_polymer_) {
|
|
const ADB& press = state.pressure;
|
|
const std::vector<ADB>& sat = state.saturation;
|
|
const ADB& c = state.concentration;
|
|
const ADB pv_mult = poroMult(press); // also computed in Base::computeAccum, could be optimized.
|
|
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
|
|
// compute polymer properties.
|
|
const ADB cmax = ADB::constant(cmax_, state.concentration.blockPattern());
|
|
const ADB ads = polymer_props_ad_.adsorption(state.concentration, cmax);
|
|
const double rho_rock = polymer_props_ad_.rockDensity();
|
|
const V phi = Eigen::Map<const V>(&fluid_.porosity()[0], AutoDiffGrid::numCells(grid_));
|
|
const double dead_pore_vol = polymer_props_ad_.deadPoreVol();
|
|
// Compute polymer accumulation term.
|
|
rq_[poly_pos_].accum[aix] = pv_mult * rq_[pu.phase_pos[Water]].b * sat[pu.phase_pos[Water]] * c * (1. - dead_pore_vol)
|
|
+ pv_mult * rho_rock * (1. - phi) / phi * ads;
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template <class Grid>
|
|
void BlackoilPolymerModel<Grid>::computeCmax(ReservoirState& state)
|
|
{
|
|
const int nc = AutoDiffGrid::numCells(grid_);
|
|
V tmp = V::Zero(nc);
|
|
for (int i = 0; i < nc; ++i) {
|
|
tmp[i] = std::max(state.maxconcentration()[i], state.concentration()[i]);
|
|
}
|
|
std::copy(&tmp[0], &tmp[0] + nc, state.maxconcentration().begin());
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <class Grid>
|
|
void
|
|
BlackoilPolymerModel<Grid>::
|
|
assembleMassBalanceEq(const SolutionState& state)
|
|
{
|
|
// Base::assembleMassBalanceEq(state);
|
|
|
|
// Compute b_p and the accumulation term b_p*s_p for each phase,
|
|
// except gas. For gas, we compute b_g*s_g + Rs*b_o*s_o.
|
|
// These quantities are stored in rq_[phase].accum[1].
|
|
// The corresponding accumulation terms from the start of
|
|
// the timestep (b^0_p*s^0_p etc.) were already computed
|
|
// on the initial call to assemble() and stored in rq_[phase].accum[0].
|
|
computeAccum(state, 1);
|
|
|
|
// Set up the common parts of the mass balance equations
|
|
// for each active phase.
|
|
const V transi = subset(geo_.transmissibility(), ops_.internal_faces);
|
|
const std::vector<ADB> kr = computeRelPerm(state);
|
|
|
|
|
|
if (has_plyshlog_) {
|
|
std::vector<double> water_vel;
|
|
std::vector<double> visc_mult;
|
|
|
|
computeWaterShearVelocityFaces(transi, kr, state.canonical_phase_pressures, state, water_vel, visc_mult);
|
|
if ( !polymer_props_ad_.computeShearMultLog(water_vel, visc_mult, shear_mult_faces_) ) {
|
|
// std::cerr << " failed in calculating the shear-multiplier " << std::endl;
|
|
OPM_THROW(std::runtime_error, " failed in calculating the shear-multiplier. ");
|
|
}
|
|
}
|
|
|
|
for (int phaseIdx = 0; phaseIdx < fluid_.numPhases(); ++phaseIdx) {
|
|
computeMassFlux(phaseIdx, transi, kr[canph_[phaseIdx]], state.canonical_phase_pressures[canph_[phaseIdx]], state);
|
|
|
|
residual_.material_balance_eq[ phaseIdx ] =
|
|
pvdt_ * (rq_[phaseIdx].accum[1] - rq_[phaseIdx].accum[0])
|
|
+ ops_.div*rq_[phaseIdx].mflux;
|
|
}
|
|
|
|
// -------- Extra (optional) rs and rv contributions to the mass balance equations --------
|
|
|
|
// Add the extra (flux) terms to the mass balance equations
|
|
// From gas dissolved in the oil phase (rs) and oil vaporized in the gas phase (rv)
|
|
// The extra terms in the accumulation part of the equation are already handled.
|
|
if (active_[ Oil ] && active_[ Gas ]) {
|
|
const int po = fluid_.phaseUsage().phase_pos[ Oil ];
|
|
const int pg = fluid_.phaseUsage().phase_pos[ Gas ];
|
|
|
|
const UpwindSelector<double> upwindOil(grid_, ops_,
|
|
rq_[po].dh.value());
|
|
const ADB rs_face = upwindOil.select(state.rs);
|
|
|
|
const UpwindSelector<double> upwindGas(grid_, ops_,
|
|
rq_[pg].dh.value());
|
|
const ADB rv_face = upwindGas.select(state.rv);
|
|
|
|
residual_.material_balance_eq[ pg ] += ops_.div * (rs_face * rq_[po].mflux);
|
|
residual_.material_balance_eq[ po ] += ops_.div * (rv_face * rq_[pg].mflux);
|
|
|
|
// OPM_AD_DUMP(residual_.material_balance_eq[ Gas ]);
|
|
|
|
}
|
|
|
|
// Add polymer equation.
|
|
if (has_polymer_) {
|
|
residual_.material_balance_eq[poly_pos_] = pvdt_ * (rq_[poly_pos_].accum[1] - rq_[poly_pos_].accum[0])
|
|
+ ops_.div*rq_[poly_pos_].mflux;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <class Grid>
|
|
void BlackoilPolymerModel<Grid>::addWellContributionToMassBalanceEq(const std::vector<ADB>& cq_s,
|
|
const SolutionState& state,
|
|
WellState& xw)
|
|
|
|
{
|
|
Base::addWellContributionToMassBalanceEq(cq_s, state, xw);
|
|
|
|
// Add well contributions to polymer mass balance equation
|
|
if (has_polymer_) {
|
|
const ADB mc = computeMc(state);
|
|
const int nc = xw.polymerInflow().size();
|
|
const V polyin = Eigen::Map<const V>(xw.polymerInflow().data(), nc);
|
|
const int nperf = wells().well_connpos[wells().number_of_wells];
|
|
const std::vector<int> well_cells(wells().well_cells, wells().well_cells + nperf);
|
|
const V poly_in_perf = subset(polyin, well_cells);
|
|
const V poly_mc_perf = subset(mc.value(), well_cells);
|
|
const ADB& cq_s_water = cq_s[fluid_.phaseUsage().phase_pos[Water]];
|
|
Selector<double> injector_selector(cq_s_water.value());
|
|
const V poly_perf = injector_selector.select(poly_in_perf, poly_mc_perf);
|
|
const ADB cq_s_poly = cq_s_water * poly_perf;
|
|
residual_.material_balance_eq[poly_pos_] -= superset(cq_s_poly, well_cells, nc);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template <class Grid>
|
|
void BlackoilPolymerModel<Grid>::updateState(const V& dx,
|
|
ReservoirState& reservoir_state,
|
|
WellState& well_state)
|
|
{
|
|
if (has_polymer_) {
|
|
// Extract concentration change.
|
|
const int np = fluid_.numPhases();
|
|
const int nc = Opm::AutoDiffGrid::numCells(grid_);
|
|
const V zero = V::Zero(nc);
|
|
const int concentration_start = nc * np;
|
|
const V dc = subset(dx, Span(nc, 1, concentration_start));
|
|
|
|
// Create new dx with the dc part deleted.
|
|
V modified_dx = V::Zero(dx.size() - nc);
|
|
modified_dx.head(concentration_start) = dx.head(concentration_start);
|
|
const int tail_len = dx.size() - concentration_start - nc;
|
|
modified_dx.tail(tail_len) = dx.tail(tail_len);
|
|
|
|
// Call base version.
|
|
Base::updateState(modified_dx, reservoir_state, well_state);
|
|
|
|
// Update concentration.
|
|
const V c_old = Eigen::Map<const V>(&reservoir_state.concentration()[0], nc, 1);
|
|
const V c = (c_old - dc).max(zero);
|
|
std::copy(&c[0], &c[0] + nc, reservoir_state.concentration().begin());
|
|
} else {
|
|
// Just forward call to base version.
|
|
Base::updateState(dx, reservoir_state, well_state);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <class Grid>
|
|
void
|
|
BlackoilPolymerModel<Grid>::computeMassFlux(const int actph ,
|
|
const V& transi,
|
|
const ADB& kr ,
|
|
const ADB& phasePressure,
|
|
const SolutionState& state)
|
|
{
|
|
Base::computeMassFlux(actph, transi, kr, phasePressure, state);
|
|
|
|
// Polymer treatment.
|
|
const int canonicalPhaseIdx = canph_[ actph ];
|
|
if (canonicalPhaseIdx == Water) {
|
|
if (has_polymer_) {
|
|
const std::vector<PhasePresence>& cond = phaseCondition();
|
|
const ADB tr_mult = transMult(state.pressure);
|
|
const ADB mu = fluidViscosity(canonicalPhaseIdx, phasePressure, state.temperature, state.rs, state.rv, cond, cells_);
|
|
const ADB cmax = ADB::constant(cmax_, state.concentration.blockPattern());
|
|
const ADB mc = computeMc(state);
|
|
const ADB krw_eff = polymer_props_ad_.effectiveRelPerm(state.concentration, cmax, kr);
|
|
const ADB inv_wat_eff_visc = polymer_props_ad_.effectiveInvWaterVisc(state.concentration, mu.value().data());
|
|
// Reduce mobility of water phase by relperm reduction and effective viscosity increase.
|
|
rq_[actph].mob = tr_mult * krw_eff * inv_wat_eff_visc;
|
|
// Compute polymer mobility.
|
|
rq_[poly_pos_].mob = tr_mult * mc * krw_eff * inv_wat_eff_visc;
|
|
rq_[poly_pos_].b = rq_[actph].b;
|
|
rq_[poly_pos_].dh = rq_[actph].dh;
|
|
UpwindSelector<double> upwind(grid_, ops_, rq_[poly_pos_].dh.value());
|
|
// Compute polymer flux.
|
|
rq_[poly_pos_].mflux = upwind.select(rq_[poly_pos_].b * rq_[poly_pos_].mob) * (transi * rq_[poly_pos_].dh);
|
|
// Must recompute water flux since we have to use modified mobilities.
|
|
rq_[ actph ].mflux = upwind.select(rq_[actph].b * rq_[actph].mob) * (transi * rq_[actph].dh);
|
|
|
|
// applying the shear-thinning factors
|
|
if (has_plyshlog_) {
|
|
V shear_mult_faces_v = Eigen::Map<V>(shear_mult_faces_.data(), shear_mult_faces_.size());
|
|
ADB shear_mult_faces_adb = ADB::constant(shear_mult_faces_v);
|
|
rq_[poly_pos_].mflux = rq_[poly_pos_].mflux / shear_mult_faces_adb;
|
|
rq_[actph].mflux = rq_[actph].mflux / shear_mult_faces_adb;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <class Grid>
|
|
double
|
|
BlackoilPolymerModel<Grid>::convergenceReduction(const Eigen::Array<double, Eigen::Dynamic, MaxNumPhases+1>& B,
|
|
const Eigen::Array<double, Eigen::Dynamic, MaxNumPhases+1>& tempV,
|
|
const Eigen::Array<double, Eigen::Dynamic, MaxNumPhases+1>& R,
|
|
std::array<double,MaxNumPhases+1>& R_sum,
|
|
std::array<double,MaxNumPhases+1>& maxCoeff,
|
|
std::array<double,MaxNumPhases+1>& B_avg,
|
|
std::vector<double>& maxNormWell,
|
|
int nc,
|
|
int nw) const
|
|
{
|
|
// Do the global reductions
|
|
#if HAVE_MPI
|
|
if ( linsolver_.parallelInformation().type() == typeid(ParallelISTLInformation) )
|
|
{
|
|
const ParallelISTLInformation& info =
|
|
boost::any_cast<const ParallelISTLInformation&>(linsolver_.parallelInformation());
|
|
|
|
// Compute the global number of cells and porevolume
|
|
std::vector<int> v(nc, 1);
|
|
auto nc_and_pv = std::tuple<int, double>(0, 0.0);
|
|
auto nc_and_pv_operators = std::make_tuple(Opm::Reduction::makeGlobalSumFunctor<int>(),
|
|
Opm::Reduction::makeGlobalSumFunctor<double>());
|
|
auto nc_and_pv_containers = std::make_tuple(v, geo_.poreVolume());
|
|
info.computeReduction(nc_and_pv_containers, nc_and_pv_operators, nc_and_pv);
|
|
|
|
for ( int idx=0; idx<MaxNumPhases+1; ++idx )
|
|
{
|
|
if ((idx == MaxNumPhases && has_polymer_) || active_[idx]) { // Dealing with polymer *or* an active phase.
|
|
auto values = std::tuple<double,double,double>(0.0 ,0.0 ,0.0);
|
|
auto containers = std::make_tuple(B.col(idx),
|
|
tempV.col(idx),
|
|
R.col(idx));
|
|
auto operators = std::make_tuple(Opm::Reduction::makeGlobalSumFunctor<double>(),
|
|
Opm::Reduction::makeGlobalMaxFunctor<double>(),
|
|
Opm::Reduction::makeGlobalSumFunctor<double>());
|
|
info.computeReduction(containers, operators, values);
|
|
B_avg[idx] = std::get<0>(values)/std::get<0>(nc_and_pv);
|
|
maxCoeff[idx] = std::get<1>(values);
|
|
R_sum[idx] = std::get<2>(values);
|
|
if (idx != MaxNumPhases) { // We do not compute a well flux residual for polymer.
|
|
maxNormWell[idx] = 0.0;
|
|
for ( int w=0; w<nw; ++w ) {
|
|
maxNormWell[idx] = std::max(maxNormWell[idx], std::abs(residual_.well_flux_eq.value()[nw*idx + w]));
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
maxNormWell[idx] = R_sum[idx] = B_avg[idx] = maxCoeff[idx] = 0.0;
|
|
}
|
|
}
|
|
info.communicator().max(&maxNormWell[0], MaxNumPhases+1);
|
|
// Compute pore volume
|
|
return std::get<1>(nc_and_pv);
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
for ( int idx=0; idx<MaxNumPhases+1; ++idx )
|
|
{
|
|
if ((idx == MaxNumPhases && has_polymer_) || active_[idx]) { // Dealing with polymer *or* an active phase.
|
|
B_avg[idx] = B.col(idx).sum()/nc;
|
|
maxCoeff[idx] = tempV.col(idx).maxCoeff();
|
|
R_sum[idx] = R.col(idx).sum();
|
|
}
|
|
else
|
|
{
|
|
R_sum[idx] = B_avg[idx] = maxCoeff[idx] =0.0;
|
|
}
|
|
if (idx != MaxNumPhases) { // We do not compute a well flux residual for polymer.
|
|
maxNormWell[idx] = 0.0;
|
|
for ( int w=0; w<nw; ++w ) {
|
|
maxNormWell[idx] = std::max(maxNormWell[idx], std::abs(residual_.well_flux_eq.value()[nw*idx + w]));
|
|
}
|
|
}
|
|
}
|
|
// Compute total pore volume
|
|
return geo_.poreVolume().sum();
|
|
}
|
|
}
|
|
|
|
|
|
template <class Grid>
|
|
void
|
|
BlackoilPolymerModel<Grid>::assemble(const ReservoirState& reservoir_state,
|
|
WellState& well_state,
|
|
const bool initial_assembly)
|
|
{
|
|
using namespace Opm::AutoDiffGrid;
|
|
|
|
// Possibly switch well controls and updating well state to
|
|
// get reasonable initial conditions for the wells
|
|
updateWellControls(well_state);
|
|
|
|
// Create the primary variables.
|
|
SolutionState state = variableState(reservoir_state, well_state);
|
|
|
|
if (initial_assembly) {
|
|
// Create the (constant, derivativeless) initial state.
|
|
SolutionState state0 = state;
|
|
makeConstantState(state0);
|
|
// Compute initial accumulation contributions
|
|
// and well connection pressures.
|
|
computeAccum(state0, 0);
|
|
computeWellConnectionPressures(state0, well_state);
|
|
}
|
|
|
|
// OPM_AD_DISKVAL(state.pressure);
|
|
// OPM_AD_DISKVAL(state.saturation[0]);
|
|
// OPM_AD_DISKVAL(state.saturation[1]);
|
|
// OPM_AD_DISKVAL(state.saturation[2]);
|
|
// OPM_AD_DISKVAL(state.rs);
|
|
// OPM_AD_DISKVAL(state.rv);
|
|
// OPM_AD_DISKVAL(state.qs);
|
|
// OPM_AD_DISKVAL(state.bhp);
|
|
|
|
// -------- Mass balance equations --------
|
|
assembleMassBalanceEq(state);
|
|
|
|
// -------- Well equations ----------
|
|
if ( ! wellsActive() ) {
|
|
return;
|
|
}
|
|
|
|
V aliveWells;
|
|
|
|
const int np = wells().number_of_phases;
|
|
std::vector<ADB> cq_s(np, ADB::null());
|
|
|
|
const int nw = wells().number_of_wells;
|
|
const int nperf = wells().well_connpos[nw];
|
|
const std::vector<int> well_cells(wells().well_cells, wells().well_cells + nperf);
|
|
|
|
std::vector<ADB> mob_perfcells(np, ADB::null());
|
|
std::vector<ADB> b_perfcells(np, ADB::null());
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
mob_perfcells[phase] = subset(rq_[phase].mob, well_cells);
|
|
b_perfcells[phase] = subset(rq_[phase].b, well_cells);
|
|
}
|
|
if (param_.solve_welleq_initially_ && initial_assembly) {
|
|
// solve the well equations as a pre-processing step
|
|
Base::solveWellEq(mob_perfcells, b_perfcells, state, well_state);
|
|
}
|
|
|
|
Base::computeWellFlux(state, mob_perfcells, b_perfcells, aliveWells, cq_s);
|
|
|
|
if (has_plyshlog_) {
|
|
std::vector<double> water_vel_wells;
|
|
std::vector<double> visc_mult_wells;
|
|
|
|
const int water_pos = fluid_.phaseUsage().phase_pos[Water];
|
|
computeWaterShearVelocityWells(state, well_state, cq_s[water_pos], water_vel_wells, visc_mult_wells);
|
|
|
|
if ( !polymer_props_ad_.computeShearMultLog(water_vel_wells, visc_mult_wells, shear_mult_wells_) ) {
|
|
OPM_THROW(std::runtime_error, " failed in calculating the shear factors for wells ");
|
|
}
|
|
|
|
// applying the shear-thinning to the water phase
|
|
V shear_mult_wells_v = Eigen::Map<V>(shear_mult_wells_.data(), shear_mult_wells_.size());
|
|
ADB shear_mult_wells_adb = ADB::constant(shear_mult_wells_v);
|
|
mob_perfcells[water_pos] = mob_perfcells[water_pos] / shear_mult_wells_adb;
|
|
}
|
|
|
|
Base::computeWellFlux(state, mob_perfcells, b_perfcells, aliveWells, cq_s);
|
|
Base::updatePerfPhaseRatesAndPressures(cq_s, state, well_state);
|
|
Base::addWellFluxEq(cq_s, state);
|
|
addWellContributionToMassBalanceEq(cq_s, state, well_state);
|
|
addWellControlEq(state, well_state, aliveWells);
|
|
}
|
|
|
|
|
|
|
|
|
|
template <class Grid>
|
|
bool
|
|
BlackoilPolymerModel<Grid>::getConvergence(const double dt, const int iteration)
|
|
{
|
|
const double tol_mb = param_.tolerance_mb_;
|
|
const double tol_cnv = param_.tolerance_cnv_;
|
|
const double tol_wells = param_.tolerance_wells_;
|
|
|
|
const int nc = Opm::AutoDiffGrid::numCells(grid_);
|
|
const int nw = wellsActive() ? wells().number_of_wells : 0;
|
|
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
|
|
|
|
const V pv = geo_.poreVolume();
|
|
|
|
const std::vector<PhasePresence> cond = phaseCondition();
|
|
|
|
std::array<double,MaxNumPhases+1> CNV = {{0., 0., 0., 0.}};
|
|
std::array<double,MaxNumPhases+1> R_sum = {{0., 0., 0., 0.}};
|
|
std::array<double,MaxNumPhases+1> B_avg = {{0., 0., 0., 0.}};
|
|
std::array<double,MaxNumPhases+1> maxCoeff = {{0., 0., 0., 0.}};
|
|
std::array<double,MaxNumPhases+1> mass_balance_residual = {{0., 0., 0., 0.}};
|
|
std::array<double,MaxNumPhases> well_flux_residual = {{0., 0., 0.}};
|
|
std::size_t cols = MaxNumPhases+1; // needed to pass the correct type to Eigen
|
|
Eigen::Array<V::Scalar, Eigen::Dynamic, MaxNumPhases+1> B(nc, cols);
|
|
Eigen::Array<V::Scalar, Eigen::Dynamic, MaxNumPhases+1> R(nc, cols);
|
|
Eigen::Array<V::Scalar, Eigen::Dynamic, MaxNumPhases+1> tempV(nc, cols);
|
|
std::vector<double> maxNormWell(MaxNumPhases);
|
|
|
|
for ( int idx=0; idx<MaxNumPhases; ++idx )
|
|
{
|
|
if (active_[idx]) {
|
|
const int pos = pu.phase_pos[idx];
|
|
const ADB& tempB = rq_[pos].b;
|
|
B.col(idx) = 1./tempB.value();
|
|
R.col(idx) = residual_.material_balance_eq[idx].value();
|
|
tempV.col(idx) = R.col(idx).abs()/pv;
|
|
}
|
|
}
|
|
if (has_polymer_) {
|
|
const ADB& tempB = rq_[poly_pos_].b;
|
|
B.col(MaxNumPhases) = 1. / tempB.value();
|
|
R.col(MaxNumPhases) = residual_.material_balance_eq[poly_pos_].value();
|
|
tempV.col(MaxNumPhases) = R.col(MaxNumPhases).abs()/pv;
|
|
}
|
|
|
|
const double pvSum = convergenceReduction(B, tempV, R, R_sum, maxCoeff, B_avg,
|
|
maxNormWell, nc, nw);
|
|
|
|
bool converged_MB = true;
|
|
bool converged_CNV = true;
|
|
bool converged_Well = true;
|
|
// Finish computation
|
|
for ( int idx=0; idx<MaxNumPhases+1; ++idx )
|
|
{
|
|
CNV[idx] = B_avg[idx] * dt * maxCoeff[idx];
|
|
mass_balance_residual[idx] = std::abs(B_avg[idx]*R_sum[idx]) * dt / pvSum;
|
|
converged_MB = converged_MB && (mass_balance_residual[idx] < tol_mb);
|
|
converged_CNV = converged_CNV && (CNV[idx] < tol_cnv);
|
|
if (idx != MaxNumPhases) { // No well flux residual for polymer.
|
|
well_flux_residual[idx] = B_avg[idx] * dt * maxNormWell[idx];
|
|
converged_Well = converged_Well && (well_flux_residual[idx] < tol_wells);
|
|
}
|
|
}
|
|
|
|
const double residualWell = detail::infinityNormWell(residual_.well_eq,
|
|
linsolver_.parallelInformation());
|
|
converged_Well = converged_Well && (residualWell < Opm::unit::barsa);
|
|
const bool converged = converged_MB && converged_CNV && converged_Well;
|
|
|
|
// if one of the residuals is NaN, throw exception, so that the solver can be restarted
|
|
if (std::isnan(mass_balance_residual[Water]) || mass_balance_residual[Water] > maxResidualAllowed() ||
|
|
std::isnan(mass_balance_residual[Oil]) || mass_balance_residual[Oil] > maxResidualAllowed() ||
|
|
std::isnan(mass_balance_residual[Gas]) || mass_balance_residual[Gas] > maxResidualAllowed() ||
|
|
std::isnan(mass_balance_residual[MaxNumPhases]) || mass_balance_residual[MaxNumPhases] > maxResidualAllowed() ||
|
|
std::isnan(CNV[Water]) || CNV[Water] > maxResidualAllowed() ||
|
|
std::isnan(CNV[Oil]) || CNV[Oil] > maxResidualAllowed() ||
|
|
std::isnan(CNV[Gas]) || CNV[Gas] > maxResidualAllowed() ||
|
|
std::isnan(CNV[MaxNumPhases]) || CNV[MaxNumPhases] > maxResidualAllowed() ||
|
|
std::isnan(well_flux_residual[Water]) || well_flux_residual[Water] > maxResidualAllowed() ||
|
|
std::isnan(well_flux_residual[Oil]) || well_flux_residual[Oil] > maxResidualAllowed() ||
|
|
std::isnan(well_flux_residual[Gas]) || well_flux_residual[Gas] > maxResidualAllowed() ||
|
|
std::isnan(residualWell) || residualWell > maxResidualAllowed() )
|
|
{
|
|
OPM_THROW(Opm::NumericalProblem,"One of the residuals is NaN or too large!");
|
|
}
|
|
|
|
if ( terminal_output_ )
|
|
{
|
|
// Only rank 0 does print to std::cout
|
|
if (iteration == 0) {
|
|
std::cout << "\nIter MB(WATER) MB(OIL) MB(GAS) MB(POLY) CNVW CNVO CNVG CNVP W-FLUX(W) W-FLUX(O) W-FLUX(G)\n";
|
|
}
|
|
const std::streamsize oprec = std::cout.precision(3);
|
|
const std::ios::fmtflags oflags = std::cout.setf(std::ios::scientific);
|
|
std::cout << std::setw(4) << iteration
|
|
<< std::setw(11) << mass_balance_residual[Water]
|
|
<< std::setw(11) << mass_balance_residual[Oil]
|
|
<< std::setw(11) << mass_balance_residual[Gas]
|
|
<< std::setw(11) << mass_balance_residual[MaxNumPhases]
|
|
<< std::setw(11) << CNV[Water]
|
|
<< std::setw(11) << CNV[Oil]
|
|
<< std::setw(11) << CNV[Gas]
|
|
<< std::setw(11) << CNV[MaxNumPhases]
|
|
<< std::setw(11) << well_flux_residual[Water]
|
|
<< std::setw(11) << well_flux_residual[Oil]
|
|
<< std::setw(11) << well_flux_residual[Gas]
|
|
<< std::endl;
|
|
std::cout.precision(oprec);
|
|
std::cout.flags(oflags);
|
|
}
|
|
return converged;
|
|
}
|
|
|
|
template <class Grid>
|
|
ADB
|
|
BlackoilPolymerModel<Grid>::computeMc(const SolutionState& state) const
|
|
{
|
|
return polymer_props_ad_.polymerWaterVelocityRatio(state.concentration);
|
|
}
|
|
|
|
template<class Grid>
|
|
void
|
|
BlackoilPolymerModel<Grid>::computeWaterShearVelocityFaces(const V& transi, const std::vector<ADB>& kr,
|
|
const std::vector<ADB>& phasePressure, const SolutionState& state,
|
|
std::vector<double>& water_vel, std::vector<double>& visc_mult)
|
|
{
|
|
|
|
std::vector<double> b_faces;
|
|
|
|
const int phase = fluid_.phaseUsage().phase_pos[Water]; // water position
|
|
|
|
const int canonicalPhaseIdx = canph_[phase];
|
|
|
|
const std::vector<PhasePresence> cond = phaseCondition();
|
|
|
|
const ADB tr_mult = transMult(state.pressure);
|
|
const ADB mu = fluidViscosity(canonicalPhaseIdx, phasePressure[canonicalPhaseIdx], state.temperature, state.rs, state.rv,cond, cells_);
|
|
rq_[phase].mob = tr_mult * kr[canonicalPhaseIdx] / mu;
|
|
|
|
// compute gravity potensial using the face average as in eclipse and MRST
|
|
const ADB rho = fluidDensity(canonicalPhaseIdx, phasePressure[canonicalPhaseIdx], state.temperature, state.rs, state.rv,cond, cells_);
|
|
const ADB rhoavg = ops_.caver * rho;
|
|
rq_[ phase ].dh = ops_.ngrad * phasePressure[ canonicalPhaseIdx ] - geo_.gravity()[2] * (rhoavg * (ops_.ngrad * geo_.z().matrix()));
|
|
if (use_threshold_pressure_) {
|
|
applyThresholdPressures(rq_[ phase ].dh);
|
|
}
|
|
|
|
const ADB& b = rq_[ phase ].b;
|
|
const ADB& mob = rq_[ phase ].mob;
|
|
const ADB& dh = rq_[ phase ].dh;
|
|
UpwindSelector<double> upwind(grid_, ops_, dh.value());
|
|
|
|
const ADB cmax = ADB::constant(cmax_, state.concentration.blockPattern());
|
|
const ADB mc = computeMc(state);
|
|
ADB krw_eff = polymer_props_ad_.effectiveRelPerm(state.concentration,
|
|
cmax,
|
|
kr[canonicalPhaseIdx]);
|
|
ADB inv_wat_eff_visc = polymer_props_ad_.effectiveInvWaterVisc(state.concentration, mu.value().data());
|
|
rq_[ phase ].mob = tr_mult * krw_eff * inv_wat_eff_visc;
|
|
|
|
const V& polymer_conc = state.concentration.value();
|
|
V visc_mult_cells = polymer_props_ad_.viscMult(polymer_conc);
|
|
V visc_mult_faces = upwind.select(visc_mult_cells);
|
|
|
|
size_t nface = visc_mult_faces.size();
|
|
visc_mult.resize(nface);
|
|
std::copy(&(visc_mult_faces[0]), &(visc_mult_faces[0]) + nface, visc_mult.begin());
|
|
|
|
rq_[ phase ].mflux = upwind.select(b * mob) * (transi * dh);
|
|
|
|
const auto& b_faces_adb = upwind.select(b);
|
|
b_faces.resize(b_faces_adb.size());
|
|
std::copy(&(b_faces_adb.value()[0]), &(b_faces_adb.value()[0]) + b_faces_adb.size(), b_faces.begin());
|
|
|
|
const auto& internal_faces = ops_.internal_faces;
|
|
|
|
std::vector<double> internal_face_areas;
|
|
internal_face_areas.resize(internal_faces.size());
|
|
|
|
for (int i = 0; i < internal_faces.size(); ++i) {
|
|
internal_face_areas[i] = grid_.face_areas[internal_faces[i]];
|
|
}
|
|
|
|
const ADB phi = Opm::AutoDiffBlock<double>::constant(Eigen::Map<const V>(& fluid_.porosity()[0], AutoDiffGrid::numCells(grid_), 1));
|
|
const ADB phiavg_adb = ops_.caver * phi;
|
|
|
|
std::vector<double> phiavg;
|
|
phiavg.resize(phiavg_adb.size());
|
|
std::copy(&(phiavg_adb.value()[0]), &(phiavg_adb.value()[0]) + phiavg_adb.size(), phiavg.begin());
|
|
|
|
water_vel.resize(nface);
|
|
std::copy(&(rq_[0].mflux.value()[0]), &(rq_[0].mflux.value()[0]) + nface, water_vel.begin());
|
|
|
|
for (int i = 0; i < nface; ++i) {
|
|
water_vel[i] = water_vel[i] / (b_faces[i] * phiavg[i] * internal_face_areas[i]);
|
|
}
|
|
|
|
// for SHRATE keyword treatment
|
|
if (has_shrate_) {
|
|
|
|
// get the upwind water saturation
|
|
const Opm::PhaseUsage pu = fluid_.phaseUsage();
|
|
const ADB& sw = state.saturation[pu.phase_pos[ Water ]];
|
|
const ADB& sw_upwind_adb = upwind.select(sw);
|
|
|
|
std::vector<double> sw_upwind;
|
|
sw_upwind.resize(sw_upwind_adb.size());
|
|
std::copy(&(sw_upwind_adb.value()[0]), &(sw_upwind_adb.value()[0]) + sw_upwind_adb.size(), sw_upwind.begin());
|
|
|
|
// get the absolute permeability for the faces
|
|
std::vector<double> perm;
|
|
perm.resize(transi.size());
|
|
|
|
for (size_t i = 0; i < transi.size(); ++i) {
|
|
perm[i] = transi[i] / internal_faces[i];
|
|
}
|
|
|
|
// get the upwind krw_eff
|
|
const ADB& krw_adb = upwind.select(krw_eff);
|
|
std::vector<double> krw_upwind;
|
|
krw_upwind.resize(krw_adb.size());
|
|
std::copy(&(krw_adb.value()[0]), &(krw_adb.value()[0]) + krw_adb.size(), krw_upwind.begin());
|
|
|
|
const double& shrate_const = polymer_props_ad_.shrate();
|
|
|
|
const double epsilon = std::numeric_limits<double>::epsilon();
|
|
// std::cout << "espilon is " << epsilon << std::endl;
|
|
// std::cin.ignore();
|
|
|
|
for (size_t i = 0; i < water_vel.size(); ++i) {
|
|
// assuming only when upwinding water saturation is not zero
|
|
// there will be non-zero water velocity
|
|
if (std::abs(water_vel[i]) < epsilon) {
|
|
continue;
|
|
}
|
|
|
|
water_vel[i] *= shrate_const * std::sqrt(phiavg[i] / (perm[i] * sw_upwind[i] * krw_upwind[i]));
|
|
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
template<class Grid>
|
|
void
|
|
BlackoilPolymerModel<Grid>::computeWaterShearVelocityWells(const SolutionState& state, WellState& xw, const ADB& cq_sw,
|
|
std::vector<double>& water_vel_wells, std::vector<double>& visc_mult_wells)
|
|
{
|
|
if( ! wellsActive() ) return ;
|
|
|
|
const int nw = wells().number_of_wells;
|
|
const int nperf = wells().well_connpos[nw];
|
|
const std::vector<int> well_cells(wells().well_cells, wells().well_cells + nperf);
|
|
|
|
water_vel_wells.resize(cq_sw.size());
|
|
std::copy(&(cq_sw.value()[0]), &(cq_sw.value()[0]) + cq_sw.size(), water_vel_wells.begin());
|
|
|
|
const V& polymer_conc = state.concentration.value();
|
|
|
|
V visc_mult_cells = polymer_props_ad_.viscMult(polymer_conc);
|
|
V visc_mult_wells_v = subset(visc_mult_cells, well_cells);
|
|
|
|
visc_mult_wells.resize(visc_mult_wells_v.size());
|
|
std::copy(&(visc_mult_wells_v[0]), &(visc_mult_wells_v[0]) + visc_mult_wells_v.size(), visc_mult_wells.begin());
|
|
|
|
const int water_pos = fluid_.phaseUsage().phase_pos[Water];
|
|
ADB b_perfcells = subset(rq_[water_pos].b, well_cells);
|
|
|
|
const ADB& p_perfcells = subset(state.pressure, well_cells);
|
|
const V& cdp = well_perforation_pressure_diffs_;
|
|
const ADB perfpressure = (wops_.w2p * state.bhp) + cdp;
|
|
// Pressure drawdown (also used to determine direction of flow)
|
|
const ADB drawdown = p_perfcells - perfpressure;
|
|
|
|
// selects injection perforations
|
|
V selectInjectingPerforations = V::Zero(nperf);
|
|
for (int c = 0; c < nperf; ++c) {
|
|
if (drawdown.value()[c] < 0) {
|
|
selectInjectingPerforations[c] = 1;
|
|
}
|
|
}
|
|
|
|
// for the injection wells
|
|
for (int i = 0; i < well_cells.size(); ++i) {
|
|
if (xw.polymerInflow()[well_cells[i]] == 0. && selectInjectingPerforations[i] == 1) { // maybe comparison with epsilon threshold
|
|
visc_mult_wells[i] = 1.;
|
|
}
|
|
}
|
|
|
|
const ADB phi = Opm::AutoDiffBlock<double>::constant(Eigen::Map<const V>(& fluid_.porosity()[0], AutoDiffGrid::numCells(grid_), 1));
|
|
const ADB phi_wells_adb = subset(phi, well_cells);
|
|
|
|
std::vector<double> phi_wells;
|
|
phi_wells.resize(phi_wells_adb.size());
|
|
std::copy(&(phi_wells_adb.value()[0]), &(phi_wells_adb.value()[0]) + phi_wells_adb.size(), phi_wells.begin());
|
|
|
|
std::vector<double> b_wells;
|
|
b_wells.resize(b_perfcells.size());
|
|
std::copy(&(b_perfcells.value()[0]), &(b_perfcells.value()[0]) + b_perfcells.size(), b_wells.begin());
|
|
|
|
for (int i = 0; i < water_vel_wells.size(); ++i) {
|
|
water_vel_wells[i] = b_wells[i] * water_vel_wells[i] / (phi_wells[i] * 2. * M_PI * wells_rep_radius_[i] * wells_perf_length_[i]);
|
|
// TODO: CHECK to make sure this formulation is corectly used. Why muliplied by bW.
|
|
// Although this formulation works perfectly with the tests compared with other formulations
|
|
}
|
|
|
|
// for SHRATE treatment
|
|
if (has_shrate_) {
|
|
const double& shrate_const = polymer_props_ad_.shrate();
|
|
for (int i = 0; i < water_vel_wells.size(); ++i) {
|
|
water_vel_wells[i] = shrate_const * water_vel_wells[i] / wells_bore_diameter_[i];
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
} // namespace Opm
|
|
|
|
#endif // OPM_BLACKOILPOLYMERMODEL_IMPL_HEADER_INCLUDED
|