opm-simulators/opm/simulators/linalg/FlexibleSolver.hpp

108 lines
4.1 KiB
C++

/*
Copyright 2019, 2020 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2020 Equinor.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_FLEXIBLE_SOLVER_HEADER_INCLUDED
#define OPM_FLEXIBLE_SOLVER_HEADER_INCLUDED
#include <opm/simulators/linalg/PreconditionerWithUpdate.hpp>
#include <opm/simulators/linalg/PropertyTree.hpp>
#include <dune/istl/solver.hh>
#include <dune/istl/paamg/pinfo.hh>
namespace Dune
{
/// A solver class that encapsulates all needed objects for a linear solver
/// (operator, scalar product, iterative solver and preconditioner) and sets
/// them up based on runtime parameters, using the PreconditionerFactory for
/// setting up preconditioners.
template <class Operator>
class FlexibleSolver : public Dune::InverseOperator<typename Operator::domain_type,
typename Operator::range_type>
{
public:
using VectorType = typename Operator::domain_type; // Assuming symmetry: domain == range
/// Base class type of the contained preconditioner.
using AbstractPrecondType = Dune::PreconditionerWithUpdate<VectorType, VectorType>;
/// Create a sequential solver.
FlexibleSolver(Operator& op,
const Opm::PropertyTree& prm,
const std::function<VectorType()>& weightsCalculator,
std::size_t pressureIndex);
/// Create a parallel solver (if Comm is e.g. OwnerOverlapCommunication).
template <class Comm>
FlexibleSolver(Operator& op,
const Comm& comm,
const Opm::PropertyTree& prm,
const std::function<VectorType()>& weightsCalculator,
std::size_t pressureIndex);
virtual void apply(VectorType& x, VectorType& rhs, Dune::InverseOperatorResult& res) override;
virtual void apply(VectorType& x, VectorType& rhs, double reduction, Dune::InverseOperatorResult& res) override;
/// Access the contained preconditioner.
AbstractPrecondType& preconditioner();
virtual Dune::SolverCategory::Category category() const override;
private:
using AbstractScalarProductType = Dune::ScalarProduct<VectorType>;
using AbstractSolverType = Dune::InverseOperator<VectorType, VectorType>;
// Machinery for making sequential or parallel operators/preconditioners/scalar products.
template <class Comm>
void initOpPrecSp(Operator& op, const Opm::PropertyTree& prm,
const std::function<VectorType()> weightsCalculator, const Comm& comm,
std::size_t pressureIndex);
void initOpPrecSp(Operator& op, const Opm::PropertyTree& prm,
const std::function<VectorType()> weightsCalculator, const Dune::Amg::SequentialInformation&,
std::size_t pressureIndex);
void initSolver(const Opm::PropertyTree& prm, const bool is_iorank);
// Main initialization routine.
// Call with Comm == Dune::Amg::SequentialInformation to get a serial solver.
template <class Comm>
void init(Operator& op,
const Comm& comm,
const Opm::PropertyTree& prm,
const std::function<VectorType()> weightsCalculator,
std::size_t pressureIndex);
Operator* linearoperator_for_solver_;
std::shared_ptr<AbstractPrecondType> preconditioner_;
std::shared_ptr<AbstractScalarProductType> scalarproduct_;
std::shared_ptr<AbstractSolverType> linsolver_;
};
} // namespace Dune
//#include <opm/simulators/linalg/FlexibleSolver_impl.hpp>
#endif // OPM_FLEXIBLE_SOLVER_HEADER_INCLUDED