opm-simulators/opm/models/discretization/common/fvbaseadlocallinearizer.hh
2022-08-02 11:24:40 +02:00

308 lines
10 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::FvBaseAdLocalLinearizer
*/
#ifndef EWOMS_FV_BASE_AD_LOCAL_LINEARIZER_HH
#define EWOMS_FV_BASE_AD_LOCAL_LINEARIZER_HH
#include "fvbaseproperties.hh"
#include <opm/material/densead/Math.hpp>
#include <opm/material/common/Valgrind.hpp>
#include <dune/istl/bvector.hh>
#include <dune/istl/matrix.hh>
#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>
namespace Opm {
// forward declaration
template<class TypeTag>
class FvBaseAdLocalLinearizer;
}
namespace Opm::Properties {
// declare the property tags required for the finite differences local linearizer
namespace TTag {
struct AutoDiffLocalLinearizer {};
} // namespace TTag
// set the properties to be spliced in
template<class TypeTag>
struct LocalLinearizer<TypeTag, TTag::AutoDiffLocalLinearizer>
{ using type = FvBaseAdLocalLinearizer<TypeTag>; };
//! Set the function evaluation w.r.t. the primary variables
template<class TypeTag>
struct Evaluation<TypeTag, TTag::AutoDiffLocalLinearizer>
{
private:
static const unsigned numEq = getPropValue<TypeTag, Properties::NumEq>();
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
public:
using type = DenseAd::Evaluation<Scalar, numEq>;
};
} // namespace Opm::Properties
namespace Opm {
/*!
* \ingroup FiniteVolumeDiscretizations
*
* \brief Calculates the local residual and its Jacobian for a single element of the grid.
*
* This class uses automatic differentiation to calculate the partial derivatives (the
* alternative is finite differences).
*/
template<class TypeTag>
class FvBaseAdLocalLinearizer
{
private:
using Implementation = GetPropType<TypeTag, Properties::LocalLinearizer>;
using LocalResidual = GetPropType<TypeTag, Properties::LocalResidual>;
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
using Problem = GetPropType<TypeTag, Properties::Problem>;
using Model = GetPropType<TypeTag, Properties::Model>;
using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using GridView = GetPropType<TypeTag, Properties::GridView>;
using Element = typename GridView::template Codim<0>::Entity;
enum { numEq = getPropValue<TypeTag, Properties::NumEq>() };
using ScalarVectorBlock = Dune::FieldVector<Scalar, numEq>;
// extract local matrices from jacobian matrix for consistency
using ScalarMatrixBlock = typename GetPropType<TypeTag, Properties::SparseMatrixAdapter>::MatrixBlock;
using ScalarLocalBlockVector = Dune::BlockVector<ScalarVectorBlock>;
using ScalarLocalBlockMatrix = Dune::Matrix<ScalarMatrixBlock>;
public:
FvBaseAdLocalLinearizer()
: internalElemContext_(0)
{ }
// copying local linearizer objects around is a very bad idea, so we explicitly
// prevent it...
FvBaseAdLocalLinearizer(const FvBaseAdLocalLinearizer&) = delete;
~FvBaseAdLocalLinearizer()
{ delete internalElemContext_; }
/*!
* \brief Register all run-time parameters for the local jacobian.
*/
static void registerParameters()
{ }
/*!
* \brief Initialize the local Jacobian object.
*
* At this point we can assume that everything has been allocated,
* although some objects may not yet be completely initialized.
*
* \param simulator The simulator object of the simulation.
*/
void init(Simulator& simulator)
{
simulatorPtr_ = &simulator;
delete internalElemContext_;
internalElemContext_ = new ElementContext(simulator);
}
/*!
* \brief Compute an element's local Jacobian matrix and evaluate its residual.
*
* The local Jacobian for a given context is defined as the derivatives of the
* residuals of all degrees of freedom featured by the stencil with regard to the
* primary variables of the stencil's "primary" degrees of freedom. Adding the local
* Jacobians for all elements in the grid will give the global Jacobian 'grad f(x)'.
*
* \param element The grid element for which the local residual and its local
* Jacobian should be calculated.
*/
void linearize(const Element& element)
{
linearize(*internalElemContext_, element);
}
/*!
* \brief Compute an element's local Jacobian matrix and evaluate its residual.
*
* The local Jacobian for a given context is defined as the derivatives of the
* residuals of all degrees of freedom featured by the stencil with regard to the
* primary variables of the stencil's "primary" degrees of freedom. Adding the local
* Jacobians for all elements in the grid will give the global Jacobian 'grad f(x)'.
*
* After calling this method the ElementContext is in an undefined state, so do not
* use it anymore!
*
* \param elemCtx The element execution context for which the local residual and its
* local Jacobian should be calculated.
*/
void linearize(ElementContext& elemCtx, const Element& elem)
{
elemCtx.updateStencil(elem);
elemCtx.updateAllIntensiveQuantities();
// update the weights of the primary variables for the context
model_().updatePVWeights(elemCtx);
// resize the internal arrays of the linearizer
resize_(elemCtx);
// compute the local residual and its Jacobian
unsigned numPrimaryDof = elemCtx.numPrimaryDof(/*timeIdx=*/0);
for (unsigned focusDofIdx = 0; focusDofIdx < numPrimaryDof; focusDofIdx++) {
elemCtx.setFocusDofIndex(focusDofIdx);
elemCtx.updateAllExtensiveQuantities();
// calculate the local residual
localResidual_.eval(elemCtx);
// convert the local Jacobian matrix and the right hand side from the data
// structures used by the automatic differentiation code to the conventional
// ones used by the linear solver.
updateLocalLinearization_(elemCtx, focusDofIdx);
}
}
/*!
* \brief Return reference to the local residual.
*/
LocalResidual& localResidual()
{ return localResidual_; }
/*!
* \brief Return reference to the local residual.
*/
const LocalResidual& localResidual() const
{ return localResidual_; }
/*!
* \brief Returns the local Jacobian matrix of the residual of a sub-control volume.
*
* \param domainScvIdx The local index of the sub control volume to which the primary
* variables are associated with
* \param rangeScvIdx The local index of the sub control volume which contains the
* local residual
*/
const ScalarMatrixBlock& jacobian(unsigned domainScvIdx, unsigned rangeScvIdx) const
{ return jacobian_[domainScvIdx][rangeScvIdx]; }
/*!
* \brief Returns the local residual of a sub-control volume.
*
* \param dofIdx The local index of the sub control volume
*/
const ScalarVectorBlock& residual(unsigned dofIdx) const
{ return residual_[dofIdx]; }
protected:
Implementation& asImp_()
{ return *static_cast<Implementation*>(this); }
const Implementation& asImp_() const
{ return *static_cast<const Implementation*>(this); }
const Simulator& simulator_() const
{ return *simulatorPtr_; }
const Problem& problem_() const
{ return simulatorPtr_->problem(); }
const Model& model_() const
{ return simulatorPtr_->model(); }
/*!
* \brief Resize all internal attributes to the size of the
* element.
*/
void resize_(const ElementContext& elemCtx)
{
size_t numDof = elemCtx.numDof(/*timeIdx=*/0);
size_t numPrimaryDof = elemCtx.numPrimaryDof(/*timeIdx=*/0);
residual_.resize(numDof);
if (jacobian_.N() != numDof || jacobian_.M() != numPrimaryDof)
jacobian_.setSize(numDof, numPrimaryDof);
}
/*!
* \brief Reset the all relevant internal attributes to 0
*/
void reset_(const ElementContext&)
{
residual_ = 0.0;
jacobian_ = 0.0;
}
/*!
* \brief Updates the current local Jacobian matrix with the partial derivatives of
* all equations for the degree of freedom associated with 'focusDofIdx'.
*/
void updateLocalLinearization_(const ElementContext& elemCtx,
unsigned focusDofIdx)
{
const auto& resid = localResidual_.residual();
for (unsigned eqIdx = 0; eqIdx < numEq; eqIdx++)
residual_[focusDofIdx][eqIdx] = resid[focusDofIdx][eqIdx].value();
size_t numDof = elemCtx.numDof(/*timeIdx=*/0);
for (unsigned dofIdx = 0; dofIdx < numDof; dofIdx++) {
for (unsigned eqIdx = 0; eqIdx < numEq; eqIdx++) {
for (unsigned pvIdx = 0; pvIdx < numEq; pvIdx++) {
// A[dofIdx][focusDofIdx][eqIdx][pvIdx] is the partial derivative of
// the residual function 'eqIdx' for the degree of freedom 'dofIdx'
// with regard to the focus variable 'pvIdx' of the degree of freedom
// 'focusDofIdx'
jacobian_[dofIdx][focusDofIdx][eqIdx][pvIdx] = resid[dofIdx][eqIdx].derivative(pvIdx);
Valgrind::CheckDefined(jacobian_[dofIdx][focusDofIdx][eqIdx][pvIdx]);
}
}
}
}
Simulator *simulatorPtr_;
Model *modelPtr_;
ElementContext *internalElemContext_;
LocalResidual localResidual_;
ScalarLocalBlockVector residual_;
ScalarLocalBlockMatrix jacobian_;
};
} // namespace Opm
#endif