mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-04 13:36:57 -06:00
538 lines
19 KiB
C++
538 lines
19 KiB
C++
/*
|
|
Copyright 2013 SINTEF ICT, Applied Mathematics.
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef OPM_AUTODIFFBLOCK_HEADER_INCLUDED
|
|
#define OPM_AUTODIFFBLOCK_HEADER_INCLUDED
|
|
|
|
#include "disable_warning_pragmas.h"
|
|
|
|
#include <Eigen/Eigen>
|
|
#include <Eigen/Sparse>
|
|
|
|
#include "reenable_warning_pragmas.h"
|
|
|
|
#include <vector>
|
|
#include <cassert>
|
|
|
|
namespace Opm
|
|
{
|
|
|
|
/// A class for forward-mode automatic differentiation with vector
|
|
/// values and sparse jacobian matrices.
|
|
///
|
|
/// The class contains a (column) vector of values and multiple
|
|
/// sparse matrices representing its partial derivatives. Each
|
|
/// such matrix has a number of rows equal to the number of rows
|
|
/// in the value vector, and a number of columns equal to the
|
|
/// number of discrete variables we want to compute the
|
|
/// derivatives with respect to. The reason to have multiple such
|
|
/// jacobians instead of just one is to allow simpler grouping of
|
|
/// variables, making it easier to implement various
|
|
/// preconditioning schemes. Only basic arithmetic operators are
|
|
/// implemented for this class, reflecting our needs so far.
|
|
///
|
|
/// The class is built on the Eigen library, using an Eigen array
|
|
/// type to contain the values and Eigen sparse matrices for the
|
|
/// jacobians. The overloaded operators are intended to behave in
|
|
/// a similar way to Eigen arrays, meaning for example that the *
|
|
/// operator is elementwise multiplication. The only exception is
|
|
/// multiplication with a sparse matrix from the left, which is
|
|
/// treated as an Eigen matrix operation.
|
|
///
|
|
/// There are no public constructors, instead we use the Named
|
|
/// Constructor pattern. In general, one needs to know which
|
|
/// variables one wants to compute the derivatives with respect to
|
|
/// before constructing an AutoDiffBlock. Some of the constructors
|
|
/// require you to pass a block pattern. This should be a vector
|
|
/// containing the number of columns you want for each jacobian
|
|
/// matrix.
|
|
///
|
|
/// For example: you want the derivatives with respect to three
|
|
/// different variables p, r and s. Assuming that there are 10
|
|
/// elements in p, and 20 in each of r and s, the block pattern is
|
|
/// { 10, 20, 20 }. When creating the variables p, r and s in your
|
|
/// program you have two options:
|
|
/// - Use the variable() constructor three times, passing the
|
|
/// index (0 for p, 1 for r and 2 for s), initial value of
|
|
/// each variable and the block pattern.
|
|
/// - Use the variables() constructor passing only the initial
|
|
/// values of each variable. The block pattern will be
|
|
/// inferred from the size of the initial value vectors.
|
|
/// This is usually the simplest option if you have multiple
|
|
/// variables. Note that this constructor returns a vector
|
|
/// of all three variables, so you need to use index access
|
|
/// (operator[]) to get the individual variables (that is p,
|
|
/// r and s).
|
|
///
|
|
/// After this, the r variable for example will have a size() of
|
|
/// 20 and three jacobian matrices. The first is a 20 by 10 zero
|
|
/// matrix, the second is a 20 by 20 identity matrix, and the
|
|
/// third is a 20 by 20 zero matrix.
|
|
template <typename Scalar>
|
|
class AutoDiffBlock
|
|
{
|
|
public:
|
|
/// Underlying type for values.
|
|
typedef Eigen::Array<Scalar, Eigen::Dynamic, 1> V;
|
|
/// Underlying type for jacobians.
|
|
typedef Eigen::SparseMatrix<Scalar> M;
|
|
|
|
/// Construct an empty AutoDiffBlock.
|
|
static AutoDiffBlock null()
|
|
{
|
|
V val;
|
|
std::vector<M> jac;
|
|
return AutoDiffBlock(val, jac);
|
|
}
|
|
|
|
/// Create an AutoDiffBlock representing a constant.
|
|
/// \param[in] val values
|
|
static AutoDiffBlock constant(const V& val)
|
|
{
|
|
return AutoDiffBlock(val);
|
|
}
|
|
|
|
/// Create an AutoDiffBlock representing a constant.
|
|
/// This variant requires specifying the block sizes used
|
|
/// for the Jacobians even though the Jacobian matrices
|
|
/// themselves will be zero.
|
|
/// \param[in] val values
|
|
/// \param[in] blocksizes block pattern
|
|
static AutoDiffBlock constant(const V& val, const std::vector<int>& blocksizes)
|
|
{
|
|
std::vector<M> jac;
|
|
const int num_elem = val.size();
|
|
const int num_blocks = blocksizes.size();
|
|
// For constants, all jacobian blocks are zero.
|
|
jac.resize(num_blocks);
|
|
for (int i = 0; i < num_blocks; ++i) {
|
|
jac[i] = M(num_elem, blocksizes[i]);
|
|
}
|
|
return AutoDiffBlock(val, jac);
|
|
}
|
|
|
|
/// Create an AutoDiffBlock representing a single variable block.
|
|
/// \param[in] index index of the variable you are constructing
|
|
/// \param[in] val values
|
|
/// \param[in] blocksizes block pattern
|
|
/// The resulting object will have size() equal to block_pattern[index].
|
|
/// Its jacobians will all be zero, except for derivative()[index], which
|
|
/// will be an identity matrix.
|
|
static AutoDiffBlock variable(const int index, const V& val, const std::vector<int>& blocksizes)
|
|
{
|
|
std::vector<M> jac;
|
|
const int num_elem = val.size();
|
|
const int num_blocks = blocksizes.size();
|
|
// First, set all jacobian blocks to zero...
|
|
jac.resize(num_blocks);
|
|
for (int i = 0; i < num_blocks; ++i) {
|
|
jac[i] = M(num_elem, blocksizes[i]);
|
|
}
|
|
// ... then set the one corrresponding to this variable to identity.
|
|
assert(blocksizes[index] == num_elem);
|
|
jac[index].reserve(Eigen::VectorXi::Constant(val.size(), 1));
|
|
for (typename M::Index row = 0; row < val.size(); ++row) {
|
|
jac[index].insert(row, row) = Scalar(1.0);
|
|
}
|
|
return AutoDiffBlock(val, jac);
|
|
}
|
|
|
|
/// Create an AutoDiffBlock by directly specifying values and jacobians.
|
|
/// \param[in] val values
|
|
/// \param[in] jac vector of jacobians
|
|
static AutoDiffBlock function(const V& val, const std::vector<M>& jac)
|
|
{
|
|
return AutoDiffBlock(val, jac);
|
|
}
|
|
|
|
/// Construct a set of primary variables, each initialized to
|
|
/// a given vector.
|
|
static std::vector<AutoDiffBlock> variables(const std::vector<V>& initial_values)
|
|
{
|
|
const int num_vars = initial_values.size();
|
|
std::vector<int> bpat;
|
|
for (int v = 0; v < num_vars; ++v) {
|
|
bpat.push_back(initial_values[v].size());
|
|
}
|
|
std::vector<AutoDiffBlock> vars;
|
|
for (int v = 0; v < num_vars; ++v) {
|
|
vars.emplace_back(variable(v, initial_values[v], bpat));
|
|
}
|
|
return vars;
|
|
}
|
|
|
|
/// Elementwise operator +=
|
|
AutoDiffBlock& operator+=(const AutoDiffBlock& rhs)
|
|
{
|
|
if (jac_.empty()) {
|
|
jac_ = rhs.jac_;
|
|
} else if (!rhs.jac_.empty()) {
|
|
assert (numBlocks() == rhs.numBlocks());
|
|
assert (value().size() == rhs.value().size());
|
|
|
|
const int num_blocks = numBlocks();
|
|
for (int block = 0; block < num_blocks; ++block) {
|
|
assert(jac_[block].rows() == rhs.jac_[block].rows());
|
|
assert(jac_[block].cols() == rhs.jac_[block].cols());
|
|
jac_[block] += rhs.jac_[block];
|
|
}
|
|
}
|
|
|
|
val_ += rhs.val_;
|
|
|
|
return *this;
|
|
}
|
|
|
|
/// Elementwise operator -=
|
|
AutoDiffBlock& operator-=(const AutoDiffBlock& rhs)
|
|
{
|
|
if (jac_.empty()) {
|
|
const int num_blocks = rhs.numBlocks();
|
|
jac_.resize(num_blocks);
|
|
for (int block = 0; block < num_blocks; ++block) {
|
|
jac_[block] = -rhs.jac_[block];
|
|
}
|
|
} else if (!rhs.jac_.empty()) {
|
|
assert (numBlocks() == rhs.numBlocks());
|
|
assert (value().size() == rhs.value().size());
|
|
|
|
const int num_blocks = numBlocks();
|
|
for (int block = 0; block < num_blocks; ++block) {
|
|
assert(jac_[block].rows() == rhs.jac_[block].rows());
|
|
assert(jac_[block].cols() == rhs.jac_[block].cols());
|
|
jac_[block] -= rhs.jac_[block];
|
|
}
|
|
}
|
|
|
|
val_ -= rhs.val_;
|
|
|
|
return *this;
|
|
}
|
|
|
|
/// Elementwise operator +
|
|
AutoDiffBlock operator+(const AutoDiffBlock& rhs) const
|
|
{
|
|
if (jac_.empty() && rhs.jac_.empty()) {
|
|
return constant(val_ + rhs.val_);
|
|
}
|
|
if (jac_.empty()) {
|
|
return val_ + rhs;
|
|
}
|
|
if (rhs.jac_.empty()) {
|
|
return *this + rhs.val_;
|
|
}
|
|
std::vector<M> jac = jac_;
|
|
assert(numBlocks() == rhs.numBlocks());
|
|
int num_blocks = numBlocks();
|
|
for (int block = 0; block < num_blocks; ++block) {
|
|
assert(jac[block].rows() == rhs.jac_[block].rows());
|
|
assert(jac[block].cols() == rhs.jac_[block].cols());
|
|
jac[block] += rhs.jac_[block];
|
|
}
|
|
return function(val_ + rhs.val_, jac);
|
|
}
|
|
|
|
/// Elementwise operator -
|
|
AutoDiffBlock operator-(const AutoDiffBlock& rhs) const
|
|
{
|
|
if (jac_.empty() && rhs.jac_.empty()) {
|
|
return constant(val_ - rhs.val_);
|
|
}
|
|
if (jac_.empty()) {
|
|
return val_ - rhs;
|
|
}
|
|
if (rhs.jac_.empty()) {
|
|
return *this - rhs.val_;
|
|
}
|
|
std::vector<M> jac = jac_;
|
|
assert(numBlocks() == rhs.numBlocks());
|
|
int num_blocks = numBlocks();
|
|
for (int block = 0; block < num_blocks; ++block) {
|
|
assert(jac[block].rows() == rhs.jac_[block].rows());
|
|
assert(jac[block].cols() == rhs.jac_[block].cols());
|
|
jac[block] -= rhs.jac_[block];
|
|
}
|
|
return function(val_ - rhs.val_, jac);
|
|
}
|
|
|
|
/// Elementwise operator *
|
|
AutoDiffBlock operator*(const AutoDiffBlock& rhs) const
|
|
{
|
|
if (jac_.empty() && rhs.jac_.empty()) {
|
|
return constant(val_ * rhs.val_);
|
|
}
|
|
if (jac_.empty()) {
|
|
return val_ * rhs;
|
|
}
|
|
if (rhs.jac_.empty()) {
|
|
return *this * rhs.val_;
|
|
}
|
|
int num_blocks = numBlocks();
|
|
std::vector<M> jac(num_blocks);
|
|
assert(numBlocks() == rhs.numBlocks());
|
|
typedef Eigen::DiagonalMatrix<Scalar, Eigen::Dynamic> D;
|
|
D D1 = val_.matrix().asDiagonal();
|
|
D D2 = rhs.val_.matrix().asDiagonal();
|
|
for (int block = 0; block < num_blocks; ++block) {
|
|
assert(jac_[block].rows() == rhs.jac_[block].rows());
|
|
assert(jac_[block].cols() == rhs.jac_[block].cols());
|
|
jac[block] = D2*jac_[block] + D1*rhs.jac_[block];
|
|
}
|
|
return function(val_ * rhs.val_, jac);
|
|
}
|
|
|
|
/// Elementwise operator /
|
|
AutoDiffBlock operator/(const AutoDiffBlock& rhs) const
|
|
{
|
|
if (jac_.empty() && rhs.jac_.empty()) {
|
|
return constant(val_ / rhs.val_);
|
|
}
|
|
if (jac_.empty()) {
|
|
return val_ / rhs;
|
|
}
|
|
if (rhs.jac_.empty()) {
|
|
return *this / rhs.val_;
|
|
}
|
|
int num_blocks = numBlocks();
|
|
std::vector<M> jac(num_blocks);
|
|
assert(numBlocks() == rhs.numBlocks());
|
|
typedef Eigen::DiagonalMatrix<Scalar, Eigen::Dynamic> D;
|
|
D D1 = val_.matrix().asDiagonal();
|
|
D D2 = rhs.val_.matrix().asDiagonal();
|
|
D D3 = (1.0/(rhs.val_*rhs.val_)).matrix().asDiagonal();
|
|
for (int block = 0; block < num_blocks; ++block) {
|
|
assert(jac_[block].rows() == rhs.jac_[block].rows());
|
|
assert(jac_[block].cols() == rhs.jac_[block].cols());
|
|
jac[block] = D3 * (D2*jac_[block] - D1*rhs.jac_[block]);
|
|
}
|
|
return function(val_ / rhs.val_, jac);
|
|
}
|
|
|
|
/// I/O.
|
|
template <class Ostream>
|
|
Ostream&
|
|
print(Ostream& os) const
|
|
{
|
|
int num_blocks = jac_.size();
|
|
os << "Value =\n" << val_ << "\n\nJacobian =\n";
|
|
for (int i = 0; i < num_blocks; ++i) {
|
|
os << "Sub Jacobian #" << i << '\n' << jac_[i] << "\n";
|
|
}
|
|
return os;
|
|
}
|
|
|
|
/// Number of elements
|
|
int size() const
|
|
{
|
|
return val_.size();
|
|
}
|
|
|
|
/// Number of Jacobian blocks.
|
|
int numBlocks() const
|
|
{
|
|
return jac_.size();
|
|
}
|
|
|
|
/// Sizes (number of columns) of Jacobian blocks.
|
|
std::vector<int> blockPattern() const
|
|
{
|
|
const int nb = numBlocks();
|
|
std::vector<int> bp(nb);
|
|
for (int block = 0; block < nb; ++block) {
|
|
bp[block] = jac_[block].cols();
|
|
}
|
|
return bp;
|
|
}
|
|
|
|
/// Function value.
|
|
const V& value() const
|
|
{
|
|
return val_;
|
|
}
|
|
|
|
/// Function derivatives.
|
|
const std::vector<M>& derivative() const
|
|
{
|
|
return jac_;
|
|
}
|
|
|
|
private:
|
|
AutoDiffBlock(const V& val)
|
|
: val_(val)
|
|
{
|
|
}
|
|
|
|
AutoDiffBlock(const V& val,
|
|
const std::vector<M>& jac)
|
|
: val_(val), jac_(jac)
|
|
{
|
|
#ifndef NDEBUG
|
|
const int num_elem = val_.size();
|
|
const int num_blocks = jac_.size();
|
|
for (int block = 0; block < num_blocks; ++block) {
|
|
assert(num_elem == jac_[block].rows());
|
|
}
|
|
#endif
|
|
}
|
|
|
|
V val_;
|
|
std::vector<M> jac_;
|
|
};
|
|
|
|
|
|
// --------- Free functions and operators for AutoDiffBlock ---------
|
|
|
|
/// Stream output.
|
|
template <class Ostream, typename Scalar>
|
|
Ostream&
|
|
operator<<(Ostream& os, const AutoDiffBlock<Scalar>& fw)
|
|
{
|
|
return fw.print(os);
|
|
}
|
|
|
|
|
|
/// Multiply with sparse matrix from the left.
|
|
template <typename Scalar>
|
|
AutoDiffBlock<Scalar> operator*(const typename AutoDiffBlock<Scalar>::M& lhs,
|
|
const AutoDiffBlock<Scalar>& rhs)
|
|
{
|
|
int num_blocks = rhs.numBlocks();
|
|
std::vector<typename AutoDiffBlock<Scalar>::M> jac(num_blocks);
|
|
assert(lhs.cols() == rhs.value().rows());
|
|
for (int block = 0; block < num_blocks; ++block) {
|
|
jac[block] = lhs*rhs.derivative()[block];
|
|
}
|
|
typename AutoDiffBlock<Scalar>::V val = lhs*rhs.value().matrix();
|
|
return AutoDiffBlock<Scalar>::function(val, jac);
|
|
}
|
|
|
|
|
|
/// Elementwise multiplication with constant on the left.
|
|
template <typename Scalar>
|
|
AutoDiffBlock<Scalar> operator*(const typename AutoDiffBlock<Scalar>::V& lhs,
|
|
const AutoDiffBlock<Scalar>& rhs)
|
|
{
|
|
return AutoDiffBlock<Scalar>::constant(lhs, rhs.blockPattern()) * rhs;
|
|
}
|
|
|
|
|
|
/// Elementwise multiplication with constant on the right.
|
|
template <typename Scalar>
|
|
AutoDiffBlock<Scalar> operator*(const AutoDiffBlock<Scalar>& lhs,
|
|
const typename AutoDiffBlock<Scalar>::V& rhs)
|
|
{
|
|
return rhs * lhs; // Commutative operation.
|
|
}
|
|
|
|
|
|
/// Elementwise addition with constant on the left.
|
|
template <typename Scalar>
|
|
AutoDiffBlock<Scalar> operator+(const typename AutoDiffBlock<Scalar>::V& lhs,
|
|
const AutoDiffBlock<Scalar>& rhs)
|
|
{
|
|
return AutoDiffBlock<Scalar>::constant(lhs, rhs.blockPattern()) + rhs;
|
|
}
|
|
|
|
|
|
/// Elementwise addition with constant on the right.
|
|
template <typename Scalar>
|
|
AutoDiffBlock<Scalar> operator+(const AutoDiffBlock<Scalar>& lhs,
|
|
const typename AutoDiffBlock<Scalar>::V& rhs)
|
|
{
|
|
return rhs + lhs; // Commutative operation.
|
|
}
|
|
|
|
|
|
/// Elementwise subtraction with constant on the left.
|
|
template <typename Scalar>
|
|
AutoDiffBlock<Scalar> operator-(const typename AutoDiffBlock<Scalar>::V& lhs,
|
|
const AutoDiffBlock<Scalar>& rhs)
|
|
{
|
|
return AutoDiffBlock<Scalar>::constant(lhs, rhs.blockPattern()) - rhs;
|
|
}
|
|
|
|
|
|
/// Elementwise subtraction with constant on the right.
|
|
template <typename Scalar>
|
|
AutoDiffBlock<Scalar> operator-(const AutoDiffBlock<Scalar>& lhs,
|
|
const typename AutoDiffBlock<Scalar>::V& rhs)
|
|
{
|
|
return lhs - AutoDiffBlock<Scalar>::constant(rhs, lhs.blockPattern());
|
|
}
|
|
|
|
|
|
/// Elementwise division with constant on the left.
|
|
template <typename Scalar>
|
|
AutoDiffBlock<Scalar> operator/(const typename AutoDiffBlock<Scalar>::V& lhs,
|
|
const AutoDiffBlock<Scalar>& rhs)
|
|
{
|
|
return AutoDiffBlock<Scalar>::constant(lhs, rhs.blockPattern()) / rhs;
|
|
}
|
|
|
|
|
|
/// Elementwise division with constant on the right.
|
|
template <typename Scalar>
|
|
AutoDiffBlock<Scalar> operator/(const AutoDiffBlock<Scalar>& lhs,
|
|
const typename AutoDiffBlock<Scalar>::V& rhs)
|
|
{
|
|
return lhs / AutoDiffBlock<Scalar>::constant(rhs, lhs.blockPattern());
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Operator for multiplication with a scalar on the right-hand side
|
|
*
|
|
* @param lhs The left-hand side AD forward block
|
|
* @param rhs The scalar to multiply with
|
|
* @return The product
|
|
*/
|
|
template <typename Scalar>
|
|
AutoDiffBlock<Scalar> operator*(const AutoDiffBlock<Scalar>& lhs,
|
|
const Scalar& rhs)
|
|
{
|
|
std::vector< typename AutoDiffBlock<Scalar>::M > jac;
|
|
jac.reserve( lhs.numBlocks() );
|
|
for (int block=0; block<lhs.numBlocks(); block++) {
|
|
jac.emplace_back( lhs.derivative()[block] * rhs );
|
|
}
|
|
return AutoDiffBlock<Scalar>::function( lhs.value() * rhs, jac );
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Operator for multiplication with a scalar on the left-hand side
|
|
*
|
|
* @param lhs The scalar to multiply with
|
|
* @param rhs The right-hand side AD forward block
|
|
* @return The product
|
|
*/
|
|
template <typename Scalar>
|
|
AutoDiffBlock<Scalar> operator*(const Scalar& lhs,
|
|
const AutoDiffBlock<Scalar>& rhs)
|
|
{
|
|
return rhs * lhs; // Commutative operation.
|
|
}
|
|
|
|
|
|
} // namespace Opm
|
|
|
|
|
|
|
|
#endif // OPM_AUTODIFFBLOCK_HEADER_INCLUDED
|