mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-27 18:16:26 -06:00
c880efae5b
this code mostly used the Eigen vectors as arrays anyway, so let's use `std::vector`. also, this patch only "mostly eliminates" Eigen from from these parts of the code because the source files of the VFP code still use AutoDiffBlock; Unfortunately this cannot easily be changed because `flow_legacy` depends on these methods. (`flow_ebos` does not use the incriminating methods.)
245 lines
8.4 KiB
C++
245 lines
8.4 KiB
C++
/*
|
|
Copyright 2015 SINTEF ICT, Applied Mathematics.
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "config.h"
|
|
|
|
#include <opm/autodiff/VFPProdProperties.hpp>
|
|
#include <opm/parser/eclipse/EclipseState/Tables/VFPProdTable.hpp>
|
|
#include <opm/core/props/BlackoilPhases.hpp>
|
|
#include <opm/common/ErrorMacros.hpp>
|
|
#include <opm/autodiff/AutoDiffBlock.hpp>
|
|
#include <opm/autodiff/AutoDiffHelpers.hpp>
|
|
#include <opm/material/densead/Math.hpp>
|
|
#include <opm/material/densead/Evaluation.hpp>
|
|
#include <opm/autodiff/VFPHelpers.hpp>
|
|
|
|
|
|
|
|
namespace Opm {
|
|
|
|
|
|
|
|
|
|
VFPProdProperties::VFPProdProperties() {
|
|
|
|
}
|
|
|
|
|
|
|
|
VFPProdProperties::VFPProdProperties(const VFPProdTable* table){
|
|
m_tables[table->getTableNum()] = table;
|
|
}
|
|
|
|
|
|
|
|
|
|
VFPProdProperties::VFPProdProperties(const std::map<int, VFPProdTable>& tables) {
|
|
for (const auto& table : tables) {
|
|
m_tables[table.first] = &table.second;
|
|
}
|
|
}
|
|
|
|
VFPProdProperties::ADB VFPProdProperties::bhp(const std::vector<int>& table_id,
|
|
const Wells& wells,
|
|
const ADB& qs,
|
|
const ADB& thp_arg,
|
|
const ADB& alq) const {
|
|
const int nw = wells.number_of_wells;
|
|
|
|
//Short-hands for water / oil / gas phases
|
|
//TODO enable support for two-phase.
|
|
assert(wells.number_of_phases == 3);
|
|
const ADB& w = subset(qs, Span(nw, 1, BlackoilPhases::Aqua*nw));
|
|
const ADB& o = subset(qs, Span(nw, 1, BlackoilPhases::Liquid*nw));
|
|
const ADB& g = subset(qs, Span(nw, 1, BlackoilPhases::Vapour*nw));
|
|
|
|
return bhp(table_id, w, o, g, thp_arg, alq);
|
|
}
|
|
|
|
|
|
VFPProdProperties::ADB VFPProdProperties::bhp(const std::vector<int>& table_id,
|
|
const ADB& aqua,
|
|
const ADB& liquid,
|
|
const ADB& vapour,
|
|
const ADB& thp_arg,
|
|
const ADB& alq) const {
|
|
const int nw = thp_arg.size();
|
|
|
|
std::vector<int> block_pattern = detail::commonBlockPattern(aqua, liquid, vapour, thp_arg, alq);
|
|
|
|
assert(static_cast<int>(table_id.size()) == nw);
|
|
assert(aqua.size() == nw);
|
|
assert(liquid.size() == nw);
|
|
assert(vapour.size() == nw);
|
|
assert(thp_arg.size() == nw);
|
|
assert(alq.size() == nw);
|
|
|
|
//Allocate data for bhp's and partial derivatives
|
|
ADB::V value = ADB::V::Zero(nw);
|
|
ADB::V dthp = ADB::V::Zero(nw);
|
|
ADB::V dwfr = ADB::V::Zero(nw);
|
|
ADB::V dgfr = ADB::V::Zero(nw);
|
|
ADB::V dalq = ADB::V::Zero(nw);
|
|
ADB::V dflo = ADB::V::Zero(nw);
|
|
|
|
//Get the table for each well
|
|
std::vector<const VFPProdTable*> well_tables(nw, nullptr);
|
|
for (int i=0; i<nw; ++i) {
|
|
if (table_id[i] >= 0) {
|
|
well_tables[i] = detail::getTable(m_tables, table_id[i]);
|
|
}
|
|
}
|
|
|
|
//Get the right FLO/GFR/WFR variable for each well as a single ADB
|
|
const ADB flo = detail::combineADBVars<VFPProdTable::FLO_TYPE>(well_tables, aqua, liquid, vapour);
|
|
const ADB wfr = detail::combineADBVars<VFPProdTable::WFR_TYPE>(well_tables, aqua, liquid, vapour);
|
|
const ADB gfr = detail::combineADBVars<VFPProdTable::GFR_TYPE>(well_tables, aqua, liquid, vapour);
|
|
|
|
//Compute the BHP for each well independently
|
|
for (int i=0; i<nw; ++i) {
|
|
const VFPProdTable* table = well_tables[i];
|
|
if (table != nullptr) {
|
|
//First, find the values to interpolate between
|
|
//Value of FLO is negative in OPM for producers, but positive in VFP table
|
|
auto flo_i = detail::findInterpData(-flo.value()[i], table->getFloAxis());
|
|
auto thp_i = detail::findInterpData( thp_arg.value()[i], table->getTHPAxis());
|
|
auto wfr_i = detail::findInterpData( wfr.value()[i], table->getWFRAxis());
|
|
auto gfr_i = detail::findInterpData( gfr.value()[i], table->getGFRAxis());
|
|
auto alq_i = detail::findInterpData( alq.value()[i], table->getALQAxis());
|
|
|
|
detail::VFPEvaluation bhp_val = detail::interpolate(table->getTable(), flo_i, thp_i, wfr_i, gfr_i, alq_i);
|
|
|
|
value[i] = bhp_val.value;
|
|
dthp[i] = bhp_val.dthp;
|
|
dwfr[i] = bhp_val.dwfr;
|
|
dgfr[i] = bhp_val.dgfr;
|
|
dalq[i] = bhp_val.dalq;
|
|
dflo[i] = bhp_val.dflo;
|
|
}
|
|
else {
|
|
value[i] = -1e100; //Signal that this value has not been calculated properly, due to "missing" table
|
|
}
|
|
}
|
|
|
|
//Create diagonal matrices from ADB::Vs
|
|
ADB::M dthp_diag(dthp.matrix().asDiagonal());
|
|
ADB::M dwfr_diag(dwfr.matrix().asDiagonal());
|
|
ADB::M dgfr_diag(dgfr.matrix().asDiagonal());
|
|
ADB::M dalq_diag(dalq.matrix().asDiagonal());
|
|
ADB::M dflo_diag(dflo.matrix().asDiagonal());
|
|
|
|
//Calculate the Jacobians
|
|
const int num_blocks = block_pattern.size();
|
|
std::vector<ADB::M> jacs(num_blocks);
|
|
for (int block = 0; block < num_blocks; ++block) {
|
|
//Could have used fastSparseProduct and temporary variables
|
|
//but may not save too much on that.
|
|
jacs[block] = ADB::M(nw, block_pattern[block]);
|
|
|
|
if (!thp_arg.derivative().empty()) {
|
|
jacs[block] += dthp_diag * thp_arg.derivative()[block];
|
|
}
|
|
if (!wfr.derivative().empty()) {
|
|
jacs[block] += dwfr_diag * wfr.derivative()[block];
|
|
}
|
|
if (!gfr.derivative().empty()) {
|
|
jacs[block] += dgfr_diag * gfr.derivative()[block];
|
|
}
|
|
if (!alq.derivative().empty()) {
|
|
jacs[block] += dalq_diag * alq.derivative()[block];
|
|
}
|
|
if (!flo.derivative().empty()) {
|
|
jacs[block] -= dflo_diag * flo.derivative()[block];
|
|
}
|
|
}
|
|
|
|
ADB retval = ADB::function(std::move(value), std::move(jacs));
|
|
return retval;
|
|
}
|
|
|
|
|
|
|
|
double VFPProdProperties::bhp(int table_id,
|
|
const double& aqua,
|
|
const double& liquid,
|
|
const double& vapour,
|
|
const double& thp_arg,
|
|
const double& alq) const {
|
|
const VFPProdTable* table = detail::getTable(m_tables, table_id);
|
|
|
|
detail::VFPEvaluation retval = detail::bhp(table, aqua, liquid, vapour, thp_arg, alq);
|
|
return retval.value;
|
|
}
|
|
|
|
|
|
|
|
double VFPProdProperties::thp(int table_id,
|
|
const double& aqua,
|
|
const double& liquid,
|
|
const double& vapour,
|
|
const double& bhp_arg,
|
|
const double& alq) const {
|
|
const VFPProdTable* table = detail::getTable(m_tables, table_id);
|
|
const VFPProdTable::array_type& data = table->getTable();
|
|
|
|
//Find interpolation variables
|
|
double flo = detail::getFlo(aqua, liquid, vapour, table->getFloType());
|
|
double wfr = detail::getWFR(aqua, liquid, vapour, table->getWFRType());
|
|
double gfr = detail::getGFR(aqua, liquid, vapour, table->getGFRType());
|
|
|
|
const std::vector<double> thp_array = table->getTHPAxis();
|
|
int nthp = thp_array.size();
|
|
|
|
/**
|
|
* Find the function bhp_array(thp) by creating a 1D view of the data
|
|
* by interpolating for every value of thp. This might be somewhat
|
|
* expensive, but let us assome that nthp is small
|
|
* Recall that flo is negative in Opm, so switch the sign
|
|
*/
|
|
auto flo_i = detail::findInterpData(-flo, table->getFloAxis());
|
|
auto wfr_i = detail::findInterpData( wfr, table->getWFRAxis());
|
|
auto gfr_i = detail::findInterpData( gfr, table->getGFRAxis());
|
|
auto alq_i = detail::findInterpData( alq, table->getALQAxis());
|
|
std::vector<double> bhp_array(nthp);
|
|
for (int i=0; i<nthp; ++i) {
|
|
auto thp_i = detail::findInterpData(thp_array[i], thp_array);
|
|
bhp_array[i] = detail::interpolate(data, flo_i, thp_i, wfr_i, gfr_i, alq_i).value;
|
|
}
|
|
|
|
double retval = detail::findTHP(bhp_array, thp_array, bhp_arg);
|
|
return retval;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
const VFPProdTable* VFPProdProperties::getTable(const int table_id) const {
|
|
return detail::getTable(m_tables, table_id);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
}
|