opm-simulators/opm/autodiff/WellInterface.hpp

308 lines
11 KiB
C++

/*
Copyright 2017 SINTEF ICT, Applied Mathematics.
Copyright 2017 Statoil ASA.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_WELLINTERFACE_HEADER_INCLUDED
#define OPM_WELLINTERFACE_HEADER_INCLUDED
#include <opm/common/OpmLog/OpmLog.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/Well.hpp>
#include <opm/core/wells.h>
#include <opm/core/well_controls.h>
#include <opm/core/props/BlackoilPhases.hpp>
#include <opm/autodiff/VFPProperties.hpp>
#include <opm/autodiff/VFPInjProperties.hpp>
#include <opm/autodiff/VFPProdProperties.hpp>
#include <opm/autodiff/WellHelpers.hpp>
#include <opm/autodiff/WellStateFullyImplicitBlackoilDense.hpp>
#include <opm/autodiff/BlackoilModelParameters.hpp>
#include <opm/simulators/WellSwitchingLogger.hpp>
#include<dune/common/fmatrix.hh>
#include<dune/istl/bcrsmatrix.hh>
#include<dune/istl/matrixmatrix.hh>
#include <opm/material/densead/Math.hpp>
#include <opm/material/densead/Evaluation.hpp>
#include <string>
#include <memory>
#include <vector>
#include <cassert>
namespace Opm
{
template<typename TypeTag>
class WellInterface
{
public:
using WellState = WellStateFullyImplicitBlackoilDense;
typedef BlackoilModelParameters ModelParameters;
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, Indices) BlackoilIndices;
typedef typename GET_PROP_TYPE(TypeTag, IntensiveQuantities) IntensiveQuantities;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
static const int numEq = BlackoilIndices::numEq;
typedef double Scalar;
typedef Dune::FieldVector<Scalar, numEq > VectorBlockType;
typedef Dune::FieldMatrix<Scalar, numEq, numEq > MatrixBlockType;
typedef Dune::BCRSMatrix <MatrixBlockType> Mat;
typedef Dune::BlockVector<VectorBlockType> BVector;
typedef DenseAd::Evaluation<double, /*size=*/numEq> Eval;
static const bool has_solvent = GET_PROP_VALUE(TypeTag, EnableSolvent);
static const bool has_polymer = GET_PROP_VALUE(TypeTag, EnablePolymer);
/// Constructor
// TODO: Well can be reference.
WellInterface(const Well* well, const int time_step, const Wells* wells);
/// Well name.
const std::string& name() const;
/// The index of the well in Wells struct
// It is used to locate the inforation in Wells and also WellState for now.
int indexOfWell() const;
/// Well type, INJECTOR or PRODUCER.
WellType wellType() const;
/// number of phases
int numberOfPhases() const;
/// Component fractions for each phase for the well
const std::vector<double>& compFrac() const;
/// Well controls
// TODO: later to see whether we need to return const.
WellControls* wellControls() const;
/// Number of the perforations
int numberOfPerforations() const;
/// Well productivity index for each perforation.
const std::vector<double>& wellIndex() const;
/// Depth of perforations
const std::vector<double>& perfDepth() const;
/// Indices of the grid cells/blocks that perforations are completed within.
const std::vector<int>& wellCells() const;
// TODO: the following function should be able to be removed by refactoring the well class
// It is probably only needed for StandardWell
/// the densities of the fluid in each perforation
virtual const std::vector<double>& perfDensities() const = 0;
virtual std::vector<double>& perfDensities() = 0;
/// the pressure difference between different perforations
virtual const std::vector<double>& perfPressureDiffs() const = 0;
virtual std::vector<double>& perfPressureDiffs() = 0;
// TODO: the parameters need to be optimized/adjusted
virtual void init(const PhaseUsage* phase_usage_arg,
const std::vector<bool>* active_arg,
const VFPProperties* vfp_properties_arg,
const double gravity_arg,
const int num_cells);
// TODO: temporary
virtual void setWellVariables(const WellState& well_state) = 0;
const std::vector<bool>& active() const;
const PhaseUsage& phaseUsage() const;
int flowPhaseToEbosCompIdx( const int phaseIdx ) const;
int flowToEbosPvIdx( const int flowPv ) const;
int flowPhaseToEbosPhaseIdx( const int phaseIdx ) const;
int numPhases() const;
int numComponents() const;
// simply returning allow_cf_
// TODO: to check whether needed, it causes name problem with the crossFlowAllowed
bool allowCrossFlow() const;
virtual bool crossFlowAllowed(const Simulator& ebosSimulator) const = 0;
// TODO: for this kind of function, maybe can make a function with parameter perf
const std::vector<int>& saturationTableNumber() const;
double wsolvent() const;
double wpolymer() const;
virtual bool getWellConvergence(Simulator& ebosSimulator,
const std::vector<double>& B_avg,
const ModelParameters& param) const = 0;
virtual void wellEqIteration(Simulator& ebosSimulator,
const ModelParameters& param,
WellState& well_state) = 0;
virtual void assembleWellEq(Simulator& ebosSimulator,
const double dt,
WellState& well_state,
bool only_wells) = 0;
virtual void updateWellStateWithTarget(const int current,
WellState& xw) const = 0;
virtual void updateWellControl(WellState& xw) const = 0;
virtual void computeAccumWell() = 0;
// TODO: it should come with a different name
// for MS well, the definition is different and should not use this name anymore
virtual void computeWellConnectionPressures(const Simulator& ebosSimulator,
const WellState& xw) = 0;
// Ax = Ax - C D^-1 B x
virtual void apply(const BVector& x, BVector& Ax) const = 0;
// r = r - C D^-1 Rw
virtual void apply(BVector& r) const = 0;
// using the solution x to recover the solution xw for wells and applying
// xw to update Well State
virtual void applySolutionWellState(const BVector& x, const ModelParameters& param,
WellState& well_state) const = 0;
virtual void computeWellPotentials(const Simulator& ebosSimulator,
const WellState& well_state,
std::vector<double>& well_potentials) const = 0;
void setWellEfficiencyFactor(const double efficiency_factor);
bool checkRateEconLimits(const WellEconProductionLimits& econ_production_limits,
const WellState& well_state) const;
void updateListEconLimited(const WellState& well_state,
DynamicListEconLimited& list_econ_limited) const;
protected:
// to indicate a invalid connection
static const int INVALIDCONNECTION = -100000;
const Well* well_ecl_;
const int current_step_;
// TODO: some variables shared by all the wells should be made static
// well name
std::string name_;
// the index of well in Wells struct
int index_of_well_;
// well type
// INJECTOR or PRODUCER
enum WellType well_type_;
// whether the well allows crossflow
bool allow_cf_;
// number of phases
int number_of_phases_;
// component fractions for each well
// typically, it should apply to injection wells
std::vector<double> comp_frac_;
// controls for this well
// TODO: later will check whehter to let it stay with pointer
struct WellControls* well_controls_;
// number of the perforations for this well
int number_of_perforations_;
// record the index of the first perforation
// TODO: it might not be needed if we refactor WellState to be a vector
// of states of individual well.
int first_perf_;
// well index for each perforation
std::vector<double> well_index_;
// depth for each perforation
std::vector<double> perf_depth_;
// reference depth for the BHP
double ref_depth_;
double well_efficiency_factor_;
// cell index for each well perforation
std::vector<int> well_cell_;
// saturation table nubmer for each well perforation
std::vector<int> saturation_table_number_;
const PhaseUsage* phase_usage_;
const std::vector<bool>* active_;
const VFPProperties* vfp_properties_;
double gravity_;
bool wellHasTHPConstraints() const;
double mostStrictBhpFromBhpLimits() const;
// a tuple type for ratio limit check.
// first value indicates whether ratio limit is violated, when the ratio limit is not violated, the following three
// values should not be used.
// second value indicates whehter there is only one connection left.
// third value indicates the indx of the worst-offending connection.
// the last value indicates the extent of the violation for the worst-offending connection, which is defined by
// the ratio of the actual value to the value of the violated limit.
using RatioCheckTuple = std::tuple<bool, bool, int, double>;
RatioCheckTuple checkMaxWaterCutLimit(const WellEconProductionLimits& econ_production_limits,
const WellState& well_state) const;
RatioCheckTuple checkRatioEconLimits(const WellEconProductionLimits& econ_production_limits,
const WellState& well_state) const;
};
}
#include "WellInterface_impl.hpp"
#endif // OPM_WELLINTERFACE_HEADER_INCLUDED