opm-simulators/ebos/equil/initstateequil.hh
2020-08-27 08:19:39 +02:00

1966 lines
68 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/**
* \file
*
* \brief Routines that actually solve the ODEs that emerge from the hydrostatic
* equilibrium problem
*/
#ifndef EWOMS_INITSTATEEQUIL_HH
#define EWOMS_INITSTATEEQUIL_HH
#include "equilibrationhelpers.hh"
#include "opm/grid/utility/RegionMapping.hpp"
#include <opm/models/utils/propertysystem.hh>
#include <opm/grid/cpgrid/GridHelpers.hpp>
#include <opm/parser/eclipse/Units/Units.hpp>
#include <opm/parser/eclipse/EclipseState/EclipseState.hpp>
#include <opm/parser/eclipse/EclipseState/InitConfig/Equil.hpp>
#include <opm/parser/eclipse/EclipseState/InitConfig/InitConfig.hpp>
#include <opm/parser/eclipse/EclipseState/Tables/TableContainer.hpp>
#include <opm/parser/eclipse/EclipseState/Tables/TableManager.hpp>
#include <opm/parser/eclipse/EclipseState/Tables/RsvdTable.hpp>
#include <opm/parser/eclipse/EclipseState/Tables/RvvdTable.hpp>
#include <opm/parser/eclipse/EclipseState/Tables/PbvdTable.hpp>
#include <opm/parser/eclipse/EclipseState/Tables/PdvdTable.hpp>
#include <opm/parser/eclipse/EclipseState/Tables/SaltvdTable.hpp>
#include <opm/common/OpmLog/OpmLog.hpp>
#include <opm/common/data/SimulationDataContainer.hpp>
#include <opm/material/fluidsystems/BlackOilFluidSystem.hpp>
#include <opm/material/fluidstates/SimpleModularFluidState.hpp>
#include <opm/material/fluidmatrixinteractions/EclMaterialLawManager.hpp>
#include <algorithm>
#include <array>
#include <cassert>
#include <cstddef>
#include <limits>
#include <stdexcept>
#include <type_traits>
#include <utility>
#include <vector>
namespace Opm {
/**
* Types and routines that collectively implement a basic
* ECLIPSE-style equilibration-based initialisation scheme.
*
* This namespace is intentionally nested to avoid name clashes
* with other parts of OPM.
*/
namespace EQUIL {
namespace Details {
template <class RHS>
class RK4IVP {
public:
RK4IVP(const RHS& f,
const std::array<double,2>& span,
const double y0,
const int N)
: N_(N)
, span_(span)
{
const double h = stepsize();
const double h2 = h / 2;
const double h6 = h / 6;
y_.reserve(N + 1);
f_.reserve(N + 1);
y_.push_back(y0);
f_.push_back(f(span_[0], y0));
for (int i = 0; i < N; ++i) {
const double x = span_[0] + i*h;
const double y = y_.back();
const double k1 = f_[i];
const double k2 = f(x + h2, y + h2*k1);
const double k3 = f(x + h2, y + h2*k2);
const double k4 = f(x + h, y + h*k3);
y_.push_back(y + h6*(k1 + 2*(k2 + k3) + k4));
f_.push_back(f(x + h, y_.back()));
}
assert (y_.size() == std::vector<double>::size_type(N + 1));
}
double
operator()(const double x) const
{
// Dense output (O(h**3)) according to Shampine
// (Hermite interpolation)
const double h = stepsize();
int i = (x - span_[0]) / h;
const double t = (x - (span_[0] + i*h)) / h;
// Crude handling of evaluation point outside "span_";
if (i < 0) { i = 0; }
if (N_ <= i) { i = N_ - 1; }
const double y0 = y_[i], y1 = y_[i + 1];
const double f0 = f_[i], f1 = f_[i + 1];
double u = (1 - 2*t) * (y1 - y0);
u += h * ((t - 1)*f0 + t*f1);
u *= t * (t - 1);
u += (1 - t)*y0 + t*y1;
return u;
}
private:
int N_;
std::array<double,2> span_;
std::vector<double> y_;
std::vector<double> f_;
double
stepsize() const { return (span_[1] - span_[0]) / N_; }
};
namespace PhasePressODE {
template <class FluidSystem>
class Water
{
using TabulatedFunction = Opm::Tabulated1DFunction<double>;
public:
Water(const double temp,
const TabulatedFunction& saltVdTable,
const int pvtRegionIdx,
const double normGrav)
: temp_(temp)
, saltVdTable_(saltVdTable)
, pvtRegionIdx_(pvtRegionIdx)
, g_(normGrav)
{}
double
operator()(const double depth,
const double press) const
{
return this->density(depth, press) * g_;
}
private:
const double temp_;
const TabulatedFunction& saltVdTable_;
const int pvtRegionIdx_;
const double g_;
double
density(const double depth,
const double press) const
{
// The initializing algorithm can give depths outside the range due to numerical noise i.e. we extrapolate
double saltConcentration = saltVdTable_.eval(depth, /*extrapolate=*/true);
double rho = FluidSystem::waterPvt().inverseFormationVolumeFactor(pvtRegionIdx_, temp_, press, saltConcentration);
rho *= FluidSystem::referenceDensity(FluidSystem::waterPhaseIdx, pvtRegionIdx_);
return rho;
}
};
template <class FluidSystem, class RS>
class Oil
{
public:
Oil(const double temp,
const RS& rs,
const int pvtRegionIdx,
const double normGrav)
: temp_(temp)
, rs_(rs)
, pvtRegionIdx_(pvtRegionIdx)
, g_(normGrav)
{}
double
operator()(const double depth,
const double press) const
{
return this->density(depth, press) * g_;
}
private:
const double temp_;
const RS& rs_;
const int pvtRegionIdx_;
const double g_;
double
density(const double depth,
const double press) const
{
double rs = rs_(depth, press, temp_);
double bOil = 0.0;
if (!FluidSystem::enableDissolvedGas() || rs >= FluidSystem::oilPvt().saturatedGasDissolutionFactor(pvtRegionIdx_, temp_, press)) {
bOil = FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(pvtRegionIdx_, temp_, press);
}
else {
bOil = FluidSystem::oilPvt().inverseFormationVolumeFactor(pvtRegionIdx_, temp_, press, rs);
}
double rho = bOil * FluidSystem::referenceDensity(FluidSystem::oilPhaseIdx, pvtRegionIdx_);
if (FluidSystem::enableDissolvedGas()) {
rho += rs * bOil * FluidSystem::referenceDensity(FluidSystem::gasPhaseIdx, pvtRegionIdx_);
}
return rho;
}
};
template <class FluidSystem, class RV>
class Gas
{
public:
Gas(const double temp,
const RV& rv,
const int pvtRegionIdx,
const double normGrav)
: temp_(temp)
, rv_(rv)
, pvtRegionIdx_(pvtRegionIdx)
, g_(normGrav)
{}
double
operator()(const double depth,
const double press) const
{
return this->density(depth, press) * g_;
}
private:
const double temp_;
const RV& rv_;
const int pvtRegionIdx_;
const double g_;
double
density(const double depth,
const double press) const
{
double rv = rv_(depth, press, temp_);
double bGas = 0.0;
if (!FluidSystem::enableVaporizedOil() || rv >= FluidSystem::gasPvt().saturatedOilVaporizationFactor(pvtRegionIdx_, temp_, press)) {
bGas = FluidSystem::gasPvt().saturatedInverseFormationVolumeFactor(pvtRegionIdx_, temp_, press);
}
else {
bGas = FluidSystem::gasPvt().inverseFormationVolumeFactor(pvtRegionIdx_, temp_, press, rv);
}
double rho = bGas * FluidSystem::referenceDensity(FluidSystem::gasPhaseIdx, pvtRegionIdx_);
if (FluidSystem::enableVaporizedOil()) {
rho += rv * bGas * FluidSystem::referenceDensity(FluidSystem::oilPhaseIdx, pvtRegionIdx_);
}
return rho;
}
};
} // namespace PhasePressODE
template <class FluidSystem, class Region>
class PressureTable
{
public:
using VSpan = std::array<double, 2>;
/// Constructor
///
/// \param[in] gravity Norm of gravity vector (acceleration strength due
/// to gravity). Normally the standardised value at Tellus equator
/// (9.80665 m/s^2).
///
/// \param[in] samplePoints Number of equally spaced depth sample points
/// in each internal phase pressure table.
explicit PressureTable(const double gravity,
const int samplePoints = 2000)
: gravity_(gravity)
, nsample_(samplePoints)
{}
/// Copy constructor
///
/// \param[in] rhs Source object for copy initialization.
PressureTable(const PressureTable& rhs)
: gravity_(rhs.gravity)
, nsample_(rhs.nsample_)
{
this->copyInPointers(rhs);
}
/// Move constructor
///
/// \param[in,out] rhs Source object for move initialization. On output,
/// left in a moved-from ("valid but unspecified") state. Internal
/// pointers in \p rhs are null (\c unique_ptr guarantee).
PressureTable(PressureTable&& rhs)
: gravity_(rhs.gravity_)
, nsample_(rhs.nsample_)
, oil_ (std::move(rhs.oil_))
, gas_ (std::move(rhs.gas_))
, wat_ (std::move(rhs.wat_))
{}
/// Assignment operator
///
/// \param[in] rhs Source object.
///
/// \return \code *this \endcode.
PressureTable& operator=(const PressureTable& rhs)
{
this->gravity_ = rhs.gravity_;
this->nsample_ = rhs.nsample_;
this->copyInPointers(rhs);
return *this;
}
/// Move-assignment operator
///
/// \param[in] rhs Source object. On output, left in a moved-from ("valid
/// but unspecified") state. Internal pointers in \p rhs are null (\c
/// unique_ptr guarantee).
///
/// \return \code *this \endcode.
PressureTable& operator=(PressureTable&& rhs)
{
this->gravity_ = rhs.gravity_;
this->nsample_ = rhs.nsample_;
this->oil_ = std::move(rhs.oil_);
this->gas_ = std::move(rhs.gas_);
this->wat_ = std::move(rhs.wat_);
return *this;
}
void equilibrate(const Region& reg,
const VSpan& span)
{
// One of the PressureTable::equil_*() member functions.
auto equil = this->selectEquilibrationStrategy(reg);
(this->*equil)(reg, span);
}
/// Predicate for whether or not oil is an active phase
bool oilActive() const
{
return FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx);
}
/// Predicate for whether or not gas is an active phase
bool gasActive() const
{
return FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx);
}
/// Predicate for whether or not water is an active phase
bool waterActive() const
{
return FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx);
}
/// Evaluate oil phase pressure at specified depth.
///
/// \param[in] depth Depth of evaluation point. Should generally be
/// within the \c span from the previous call to \code equilibrate()
/// \endcode.
///
/// \return Oil phase pressure at specified depth.
double oil(const double depth) const
{
this->checkPtr(this->oil_.get(), "OIL");
return this->oil_->value(depth);
}
/// Evaluate gas phase pressure at specified depth.
///
/// \param[in] depth Depth of evaluation point. Should generally be
/// within the \c span from the previous call to \code equilibrate()
/// \endcode.
///
/// \return Gas phase pressure at specified depth.
double gas(const double depth) const
{
this->checkPtr(this->gas_.get(), "GAS");
return this->gas_->value(depth);
}
/// Evaluate water phase pressure at specified depth.
///
/// \param[in] depth Depth of evaluation point. Should generally be
/// within the \c span from the previous call to \code equilibrate()
/// \endcode.
///
/// \return Water phase pressure at specified depth.
double water(const double depth) const
{
this->checkPtr(this->wat_.get(), "WATER");
return this->wat_->value(depth);
}
private:
template <class ODE>
class PressureFunction
{
public:
struct InitCond {
double depth;
double pressure;
};
explicit PressureFunction(const ODE& ode,
const InitCond& ic,
const int nsample,
const VSpan& span)
: initial_(ic)
{
this->value_[Direction::Up] = std::make_unique<Distribution>
(ode, VSpan {{ ic.depth, span[0] }}, ic.pressure, nsample);
this->value_[Direction::Down] = std::make_unique<Distribution>
(ode, VSpan {{ ic.depth, span[1] }}, ic.pressure, nsample);
}
PressureFunction(const PressureFunction& rhs)
: initial_(rhs.initial_)
{
this->value_[Direction::Up] =
std::make_unique<Distribution>(*rhs.value_[Direction::Up]);
this->value_[Direction::Down] =
std::make_unique<Distribution>(*rhs.value_[Direction::Down]);
}
PressureFunction(PressureFunction&& rhs) = default;
PressureFunction& operator=(const PressureFunction& rhs)
{
this->initial_ = rhs.initial_;
this->value_[Direction::Up] =
std::make_unique<Distribution>(*rhs.value_[Direction::Up]);
this->value_[Direction::Down] =
std::make_unique<Distribution>(*rhs.value_[Direction::Down]);
return *this;
}
PressureFunction& operator=(PressureFunction&& rhs)
{
this->initial_ = rhs.initial_;
this->value_ = std::move(rhs.value_);
return *this;
}
double value(const double depth) const
{
if (depth < this->initial_.depth) {
// Value above initial condition depth.
return (*this->value_[Direction::Up])(depth);
}
else if (depth > this->initial_.depth) {
// Value below initial condition depth.
return (*this->value_[Direction::Down])(depth);
}
else {
// Value *at* initial condition depth.
return this->initial_.pressure;
}
}
private:
enum Direction : std::size_t { Up, Down, NumDir };
using Distribution = Details::RK4IVP<ODE>;
using DistrPtr = std::unique_ptr<Distribution>;
InitCond initial_;
std::array<DistrPtr, Direction::NumDir> value_;
};
using OilPressODE = PhasePressODE::Oil<
FluidSystem, typename Region::CalcDissolution
>;
using GasPressODE = PhasePressODE::Gas<
FluidSystem, typename Region::CalcEvaporation
>;
using WatPressODE = PhasePressODE::Water<FluidSystem>;
using OPress = PressureFunction<OilPressODE>;
using GPress = PressureFunction<GasPressODE>;
using WPress = PressureFunction<WatPressODE>;
using Strategy = void (PressureTable::*)
(const Region&, const VSpan&);
double gravity_;
int nsample_;
double temperature_{ 273.15 + 20 };
std::unique_ptr<OPress> oil_{};
std::unique_ptr<GPress> gas_{};
std::unique_ptr<WPress> wat_{};
template <typename PressFunc>
void checkPtr(const PressFunc* phasePress,
const std::string& phaseName) const
{
if (phasePress != nullptr) { return; }
throw std::invalid_argument {
"Phase pressure function for \"" + phaseName
+ "\" most not be null"
};
}
Strategy selectEquilibrationStrategy(const Region& reg) const
{
if (reg.datum() > reg.zwoc()) { // Datum in water zone
return &PressureTable::equil_WOG;
}
else if (reg.datum() < reg.zgoc()) { // Datum in gas zone
return &PressureTable::equil_GOW;
}
else { // Datum in oil zone
return &PressureTable::equil_OWG;
}
}
void copyInPointers(const PressureTable& rhs)
{
if (rhs.oil_ != nullptr) {
this->oil_ = std::make_unique<OPress>(*rhs.oil_);
}
if (rhs.gas_ != nullptr) {
this->gas_ = std::make_unique<GPress>(*rhs.gas_);
}
if (rhs.wat_ != nullptr) {
this->wat_ = std::make_unique<WPress>(*rhs.wat_);
}
}
void equil_WOG(const Region& reg, const VSpan& span);
void equil_GOW(const Region& reg, const VSpan& span);
void equil_OWG(const Region& reg, const VSpan& span);
void makeOilPressure(const typename OPress::InitCond& ic,
const Region& reg,
const VSpan& span);
void makeGasPressure(const typename GPress::InitCond& ic,
const Region& reg,
const VSpan& span);
void makeWatPressure(const typename WPress::InitCond& ic,
const Region& reg,
const VSpan& span);
};
template <class FluidSystem, class Region>
void PressureTable<FluidSystem, Region>::
equil_WOG(const Region& reg, const VSpan& span)
{
// Datum depth in water zone. Calculate phase pressure for water first,
// followed by oil and gas if applicable.
if (! this->waterActive()) {
throw std::invalid_argument {
"Don't know how to interpret EQUIL datum depth in "
"WATER zone in model without active water phase"
};
}
{
const auto ic = typename WPress::InitCond {
reg.datum(), reg.pressure()
};
this->makeWatPressure(ic, reg, span);
}
if (this->oilActive()) {
// Pcow = Po - Pw => Po = Pw + Pcow
const auto ic = typename OPress::InitCond {
reg.zwoc(),
this->water(reg.zwoc()) + reg.pcowWoc()
};
this->makeOilPressure(ic, reg, span);
}
if (this->gasActive()) {
// Pcgo = Pg - Po => Pg = Po + Pcgo
const auto ic = typename GPress::InitCond {
reg.zgoc(),
this->oil(reg.zgoc()) + reg.pcgoGoc()
};
this->makeGasPressure(ic, reg, span);
}
}
template <class FluidSystem, class Region>
void PressureTable<FluidSystem, Region>::
equil_GOW(const Region& reg, const VSpan& span)
{
// Datum depth in gas zone. Calculate phase pressure for gas first,
// followed by oil and water if applicable.
if (! this->gasActive()) {
throw std::invalid_argument {
"Don't know how to interpret EQUIL datum depth in "
"GAS zone in model without active gas phase"
};
}
{
const auto ic = typename GPress::InitCond {
reg.datum(), reg.pressure()
};
this->makeGasPressure(ic, reg, span);
}
if (this->oilActive()) {
// Pcgo = Pg - Po => Po = Pg - Pcgo
const auto ic = typename OPress::InitCond {
reg.zgoc(),
this->gas(reg.zgoc()) - reg.pcgoGoc()
};
this->makeOilPressure(ic, reg, span);
}
if (this->waterActive()) {
// Pcow = Po - Pw => Pw = Po - Pcow
const auto ic = typename WPress::InitCond {
reg.zwoc(),
this->oil(reg.zwoc()) - reg.pcowWoc()
};
this->makeWatPressure(ic, reg, span);
}
}
template <class FluidSystem, class Region>
void PressureTable<FluidSystem, Region>::
equil_OWG(const Region& reg, const VSpan& span)
{
// Datum depth in gas zone. Calculate phase pressure for gas first,
// followed by oil and water if applicable.
if (! this->oilActive()) {
throw std::invalid_argument {
"Don't know how to interpret EQUIL datum depth in "
"OIL zone in model without active oil phase"
};
}
{
const auto ic = typename OPress::InitCond {
reg.datum(), reg.pressure()
};
this->makeOilPressure(ic, reg, span);
}
if (this->waterActive()) {
// Pcow = Po - Pw => Pw = Po - Pcow
const auto ic = typename WPress::InitCond {
reg.zwoc(),
this->oil(reg.zwoc()) - reg.pcowWoc()
};
this->makeWatPressure(ic, reg, span);
}
if (this->gasActive()) {
// Pcgo = Pg - Po => Pg = Po + Pcgo
const auto ic = typename GPress::InitCond {
reg.zgoc(),
this->oil(reg.zgoc()) + reg.pcgoGoc()
};
this->makeGasPressure(ic, reg, span);
}
}
template <class FluidSystem, class Region>
void PressureTable<FluidSystem, Region>::
makeOilPressure(const typename OPress::InitCond& ic,
const Region& reg,
const VSpan& span)
{
const auto drho = OilPressODE {
this->temperature_, reg.dissolutionCalculator(),
reg.pvtIdx(), this->gravity_
};
this->oil_ = std::make_unique<OPress>(drho, ic, this->nsample_, span);
}
template <class FluidSystem, class Region>
void PressureTable<FluidSystem, Region>::
makeGasPressure(const typename GPress::InitCond& ic,
const Region& reg,
const VSpan& span)
{
const auto drho = GasPressODE {
this->temperature_, reg.evaporationCalculator(),
reg.pvtIdx(), this->gravity_
};
this->gas_ = std::make_unique<GPress>(drho, ic, this->nsample_, span);
}
template <class FluidSystem, class Region>
void PressureTable<FluidSystem, Region>::
makeWatPressure(const typename WPress::InitCond& ic,
const Region& reg,
const VSpan& span)
{
const auto drho = WatPressODE {
this->temperature_, reg.saltVdTable(), reg.pvtIdx(), this->gravity_
};
this->wat_ = std::make_unique<WPress>(drho, ic, this->nsample_, span);
}
// ===========================================================================
/// Simple set of per-phase (named by primary component) quantities.
struct PhaseQuantityValue {
double oil{0.0};
double gas{0.0};
double water{0.0};
PhaseQuantityValue& axpy(const PhaseQuantityValue& rhs, const double a)
{
this->oil += a * rhs.oil;
this->gas += a * rhs.gas;
this->water += a * rhs.water;
return *this;
}
PhaseQuantityValue& operator/=(const double x)
{
this->oil /= x;
this->gas /= x;
this->water /= x;
return *this;
}
void reset()
{
this->oil = this->gas = this->water = 0.0;
}
};
/// Calculator for phase saturations
///
/// Computes saturation values at arbitrary depths.
///
/// \tparam MaterialLawManager Container for material laws. Typically a
/// specialization of the \code Opm::EclMaterialLawManager<> \endcode
/// template.
///
/// \tparam FluidSystem An OPM fluid system type. Typically a
/// specialization of the \code Opm::BlackOilFluidSystem<> \endcode
/// template.
///
/// \tparam Region Representation of an equilibration region. Typically
/// \code Opm::EQUIL::EquilReg \endcode from the equilibrationhelpers.
///
/// \tparam CellID Representation an equilibration region's cell IDs.
/// Typically \code std::size_t \endcode.
template <class MaterialLawManager, class FluidSystem, class Region, typename CellID>
class PhaseSaturations
{
public:
/// Evaluation point within a model geometry.
///
/// Associates a particular depth to specific cell.
struct Position {
CellID cell;
double depth;
};
/// Convenience type alias
using PTable = PressureTable<FluidSystem, Region>;
/// Constructor
///
/// \param[in,out] matLawMgr Read/write reference to a material law
/// container. Mutated by member functions.
///
/// \param[in] swatInit Initial water saturation array (from SWATINIT
/// data). Empty if SWATINIT is not used in this simulation model.
explicit PhaseSaturations(MaterialLawManager& matLawMgr,
const std::vector<double>& swatInit)
: matLawMgr_(matLawMgr)
, swatInit_ (swatInit)
{}
/// Copy constructor.
///
/// \param[in] rhs Source object.
PhaseSaturations(const PhaseSaturations& rhs)
: matLawMgr_(rhs.matLawMgr_)
, swatInit_ (rhs.swatInit_)
, sat_ (rhs.sat_)
, press_ (rhs.press_)
{
// Note: We don't need to do anything to the 'fluidState_' here.
this->setEvaluationPoint(*rhs.evalPt_.position,
*rhs.evalPt_.region,
*rhs.evalPt_.ptable);
}
/// Disabled assignment operator.
PhaseSaturations& operator=(const PhaseSaturations&) = delete;
/// Disabled move-assignment operator.
PhaseSaturations& operator=(PhaseSaturations&&) = delete;
/// Calculate phase saturations at particular point of the simulation
/// model geometry.
///
/// \param[in] x Specific geometric point (depth within a specific cell).
///
/// \param[in] reg Equilibration information for a single equilibration
/// region; notably contact depths.
///
/// \param[in] ptable Previously equilibrated phase pressure table
/// pertaining to the equilibration region \p reg.
///
/// \return Set of phase saturation values defined at particular point.
const PhaseQuantityValue&
deriveSaturations(const Position& x,
const Region& reg,
const PTable& ptable)
{
this->setEvaluationPoint(x, reg, ptable);
this->initializePhaseQuantities();
if (ptable.waterActive()) { this->deriveWaterSat(); }
if (ptable.gasActive()) { this->deriveGasSat(); }
if (this->isOverlappingTransition()) {
this->fixUnphysicalTransition();
}
if (ptable.oilActive()) { this->deriveOilSat(); }
this->accountForScaledSaturations();
return this->sat_;
}
/// Retrieve saturation-corrected phase pressures
///
/// Values associated with evaluation point of previous call to \code
/// deriveSaturations() \endcode.
const PhaseQuantityValue& correctedPhasePressures() const
{
return this->press_;
}
private:
/// Convenience amalgamation of the deriveSaturations() input state.
/// These values are almost always used in concert.
struct EvaluationPoint {
const Position* position{nullptr};
const Region* region {nullptr};
const PTable* ptable {nullptr};
};
/// Simplified fluid state object that contains only the pieces of
/// information needed to calculate the capillary pressure values from
/// the current set of material laws.
using FluidState = ::Opm::
SimpleModularFluidState<double, /*numPhases=*/3, /*numComponents=*/3,
FluidSystem,
/*storePressure=*/false,
/*storeTemperature=*/false,
/*storeComposition=*/false,
/*storeFugacity=*/false,
/*storeSaturation=*/true,
/*storeDensity=*/false,
/*storeViscosity=*/false,
/*storeEnthalpy=*/false>;
/// Convenience type alias.
using MaterialLaw = typename MaterialLawManager::MaterialLaw;
/// Fluid system's representation of phase indices.
using PhaseIdx = std::remove_cv_t<
std::remove_reference_t<decltype(FluidSystem::oilPhaseIdx)>
>;
/// Read/write reference to client's material law container.
MaterialLawManager& matLawMgr_;
/// Client's SWATINIT data.
const std::vector<double>& swatInit_;
/// Evaluated phase saturations.
PhaseQuantityValue sat_;
/// Saturation-corrected phase pressure values.
PhaseQuantityValue press_;
/// Current evaluation point.
EvaluationPoint evalPt_;
/// Capillary pressure fluid state.
FluidState fluidState_;
/// Evaluated capillary pressures from current set of material laws.
std::array<double, FluidSystem::numPhases> matLawCapPress_;
/// Capture the input evaluation point information in internal state.
///
/// \param[in] x Specific geometric point (depth within a specific cell).
///
/// \param[in] reg Equilibration information for a single equilibration
/// region; notably contact depths.
///
/// \param[in] ptable Previously equilibrated phase pressure table
/// pertaining to the equilibration region \p reg.
void setEvaluationPoint(const Position& x,
const Region& reg,
const PTable& ptable)
{
this->evalPt_.position = &x;
this->evalPt_.region = &reg;
this->evalPt_.ptable = &ptable;
}
/// Initialize phase saturation and phase pressure values.
///
/// Looks up phase pressure values from the input pressure table.
void initializePhaseQuantities()
{
this->sat_.reset();
this->press_.reset();
const auto depth = this->evalPt_.position->depth;
const auto& ptable = *this->evalPt_.ptable;
if (ptable.oilActive()) {
this->press_.oil = ptable.oil(depth);
}
if (ptable.gasActive()) {
this->press_.gas = ptable.gas(depth);
}
if (ptable.waterActive()) {
this->press_.water = ptable.water(depth);
}
}
/// Derive phase saturation for oil.
///
/// Calculated as 1 - Sw - Sg.
void deriveOilSat();
/// Derive phase saturation for gas.
///
/// Inverts capillary pressure curve if non-constant or uses a simple
/// depth consideration with respect to G/O contact depth otherwise.
void deriveGasSat();
/// Derive phase saturation for water.
///
/// Uses input data if simulation model is defined in terms of SWATINIT.
/// Otherwise, inverts capillary pressure curve if non-constant or uses
/// a simple depth consideration with respect to the O/W contact depth
/// if capillary pressure curve is constant within the current cell.
void deriveWaterSat();
/// Correct phase saturation and pressure values to account for
/// overlapping transition zones between G/O and O/W systems.
void fixUnphysicalTransition();
/// Re-adjust phase pressure values to account for phase saturations
/// outside permissible ranges.
void accountForScaledSaturations();
// --------------------------------------------------------------------
// Note: Function 'applySwatInit' is non-const because the overload set
// needs to mutate the 'matLawMgr_'.
// --------------------------------------------------------------------
/// Derive water saturation from SWATINIT data.
///
/// Uses SWATINIT array data from current cell directly. Also updates
/// the material law container's internal notion of the maximum
/// attainable O/W capillary pressure value.
///
/// \param[in] pcow O/W capillary pressure value (Po - Pw).
///
/// \return Water saturation value.
double applySwatInit(const double pcow);
/// Derive water saturation from SWATINIT data.
///
/// Uses explicitly passed-in saturation value. Also updates the
/// material law container's internal notion of the maximum attainable
/// O/W capillary pressure value.
///
/// \param[in] pc x/W capillary pressure value (Px - Pw; x in {O, G}).
///
/// \param[in] sw Water saturation value.
///
/// \return Water saturation value. Input value, possibly mollified by
/// current set of material laws.
double applySwatInit(const double pc, const double sw);
/// Invoke material law container's capillary pressure calculator on
/// current fluid state.
void computeMaterialLawCapPress();
/// Extract gas/oil capillary pressure value (Pg - Po) from current
/// fluid state.
double materialLawCapPressGasOil() const;
/// Extract oil/water capillary pressure value (Po - Pw) from current
/// fluid state.
double materialLawCapPressOilWater() const;
/// Predicate for whether specific phase has constant capillary pressure
/// curve in current cell.
///
/// \param[in] phaseIdx Phase. Typically gas or water.
///
/// \return Whether or not \p phaseIdx has constant capillary pressure
/// curve in current cell.
bool isConstCapPress(const PhaseIdx phaseIdx) const;
/// Predicate for whether or not the G/O and O/W transition zones
/// overlap in the current cell.
///
/// This is the case when inverting the capillary pressure curves
/// produces a negative oil saturation--i.e., when Sg + Sw > 1.
bool isOverlappingTransition() const;
/// Derive phase saturation value from simple depth consideration.
///
/// Assumes that the pertinent capillary pressure curve is constant
/// (typically zero) in the current cell--i.e., that there is a sharp
/// interface between the two phases.
///
/// \param[in] contactdepth Depth of relevant phase separation contact.
///
/// \param[in] Position of phase in three-phase enumeration. Typically
/// \code gasPos() \endcode or \code waterPos() \endcode.
///
/// \param[in] isincr Whether the capillary pressure curve is normally
/// increasing as a function of phase saturation (e.g., Pcgo(Sg) = Pg
/// - Po) or if the curve is normally decreasing as a function of
/// increasing phase saturation (e.g., Pcow(Sw) = Po - Pw). True for
/// capillary pressure functions that are normally increasing as a
/// function of phase saturation.
///
/// \return Phase saturation.
double fromDepthTable(const double contactdepth,
const PhaseIdx phasePos,
const bool isincr) const;
/// Derive phase saturation by inverting non-constant capillary pressure
/// curve.
///
/// \param[in] pc Target capillary pressure value.
///
/// \param[in] Position of phase in three-phase enumeration. Typically
/// \code gasPos() \endcode or \code waterPos() \endcode.
///
/// \param[in] isincr Whether the capillary pressure curve is normally
/// increasing as a function of phase saturation (e.g., Pcgo(Sg) = Pg
/// - Po) or if the curve is normally decreasing as a function of
/// increasing phase saturation (e.g., Pcow(Sw) = Po - Pw). True for
/// capillary pressure functions that are normally increasing as a
/// function of phase saturation.
///
/// \return Phase saturation at which capillary pressure attains target
/// value.
double invertCapPress(const double pc,
const PhaseIdx phasePos,
const bool isincr) const;
/// Position of oil in fluid system's three-phase enumeration.
PhaseIdx oilPos() const
{
return FluidSystem::oilPhaseIdx;
}
/// Position of gas in fluid system's three-phase enumeration.
PhaseIdx gasPos() const
{
return FluidSystem::gasPhaseIdx;
}
/// Position of water in fluid system's three-phase enumeration.
PhaseIdx waterPos() const
{
return FluidSystem::waterPhaseIdx;
}
};
template <class MaterialLawManager, class FluidSystem, class Region, typename CellID>
void PhaseSaturations<MaterialLawManager, FluidSystem, Region, CellID>::deriveOilSat()
{
this->sat_.oil = 1.0 - this->sat_.water - this->sat_.gas;
}
template <class MaterialLawManager, class FluidSystem, class Region, typename CellID>
void PhaseSaturations<MaterialLawManager, FluidSystem, Region, CellID>::deriveGasSat()
{
auto& sg = this->sat_.gas;
const auto isIncr = true; // dPcgo/dSg >= 0 for all Sg.
if (this->isConstCapPress(this->gasPos())) {
// Sharp interface between phases. Can derive phase saturation
// directly from knowing where 'depth' of evaluation point is
// relative to depth of O/G contact.
sg = this->fromDepthTable(this->evalPt_.region->zgoc(),
this->gasPos(), isIncr);
}
else {
// Capillary pressure curve is non-constant, meaning there is a
// transition zone between the gas and oil phases. Invert capillary
// pressure relation
//
// Pcgo(Sg) = Pg - Po
//
// Note that Pcgo is defined to be (Pg - Po), not (Po - Pg).
const auto pcgo = this->press_.gas - this->press_.oil;
sg = this->invertCapPress(pcgo, this->gasPos(), isIncr);
}
}
template <class MaterialLawManager, class FluidSystem, class Region, typename CellID>
void PhaseSaturations<MaterialLawManager, FluidSystem, Region, CellID>::deriveWaterSat()
{
auto& sw = this->sat_.water;
const auto isIncr = false; // dPcow/dSw <= 0 for all Sw.
if (this->isConstCapPress(this->waterPos())) {
// Sharp interface between phases. Can derive phase saturation
// directly from knowing where 'depth' of evaluation point is
// relative to depth of O/W contact.
sw = this->fromDepthTable(this->evalPt_.region->zwoc(),
this->waterPos(), isIncr);
}
else {
// Capillary pressure curve is non-constant, meaning there is a
// transition zone between the oil and water phases. Invert
// capillary pressure relation
//
// Pcow(Sw) = Po - Pw
//
// unless the model uses "SWATINIT". In the latter case, pick the
// saturation directly from the SWATINIT array of the pertinent
// cell.
const auto pcow = this->press_.oil - this->press_.water;
sw = this->swatInit_.empty()
? this->invertCapPress(pcow, this->waterPos(), isIncr)
: this->applySwatInit(pcow);
}
}
template <class MaterialLawManager, class FluidSystem, class Region, typename CellID>
void PhaseSaturations<MaterialLawManager, FluidSystem, Region, CellID>::
fixUnphysicalTransition()
{
auto& sg = this->sat_.gas;
auto& sw = this->sat_.water;
// Overlapping gas/oil and oil/water transition zones can lead to
// unphysical phase saturations when individual saturations are derived
// directly from inverting O/G and O/W capillary pressure curves.
//
// Recalculate phase saturations using the implied gas/water capillary
// pressure: Pg - Pw.
const auto pcgw = this->press_.gas - this->press_.water;
if (! this->swatInit_.empty()) {
// Re-scale Pc to reflect imposed sw for vanishing oil phase. This
// seems consistent with ECLIPSE, but fails to honour SWATINIT in
// case of non-trivial gas/oil capillary pressure.
sw = this->applySwatInit(pcgw, sw);
}
sw = satFromSumOfPcs<FluidSystem, MaterialLaw>
(this->matLawMgr_, this->waterPos(), this->gasPos(),
this->evalPt_.position->cell, pcgw);
sg = 1.0 - sw;
this->fluidState_.setSaturation(this->oilPos(), 1.0 - sw - sg);
this->fluidState_.setSaturation(this->gasPos(), sg);
this->fluidState_.setSaturation(this->waterPos(), this->evalPt_
.ptable->waterActive() ? sw : 0.0);
// Pcgo = Pg - Po => Po = Pg - Pcgo
this->computeMaterialLawCapPress();
this->press_.oil = this->press_.gas - this->materialLawCapPressGasOil();
}
template <class MaterialLawManager, class FluidSystem, class Region, typename CellID>
void PhaseSaturations<MaterialLawManager, FluidSystem, Region, CellID>::
accountForScaledSaturations()
{
const auto gasActive = this->evalPt_.ptable->gasActive();
const auto watActive = this->evalPt_.ptable->waterActive();
const auto& scaledDrainageInfo = this->matLawMgr_
.oilWaterScaledEpsInfoDrainage(this->evalPt_.position->cell);
const auto sg = this->sat_.gas;
const auto sw = this->sat_.water;
{
auto so = 1.0;
if (watActive) {
const auto swu = scaledDrainageInfo.Swu;
so -= swu;
this->fluidState_.setSaturation(this->waterPos(), swu);
}
if (gasActive) {
const auto sgu = scaledDrainageInfo.Sgu;
so -= sgu;
this->fluidState_.setSaturation(this->gasPos(), sgu);
}
this->fluidState_.setSaturation(this->oilPos(), so);
}
const auto thresholdSat = 1.0e-6;
if (watActive && ((sw + thresholdSat) > scaledDrainageInfo.Swu)) {
// Water saturation exceeds maximum possible value. Reset oil phase
// pressure to that which corresponds to maximum possible water
// saturation value.
this->fluidState_.setSaturation(this->waterPos(), scaledDrainageInfo.Swu);
this->computeMaterialLawCapPress();
// Pcow = Po - Pw => Po = Pw + Pcow
this->press_.oil = this->press_.water + this->materialLawCapPressOilWater();
}
else if (gasActive && ((sg + thresholdSat) > scaledDrainageInfo.Sgu)) {
// Gas saturation exceeds maximum possible value. Reset oil phase
// pressure to that which corresponds to maximum possible gas
// saturation value.
this->fluidState_.setSaturation(this->gasPos(), scaledDrainageInfo.Sgu);
this->computeMaterialLawCapPress();
// Pcgo = Pg - Po => Po = Pg - Pcgo
this->press_.oil = this->press_.gas - this->materialLawCapPressGasOil();
}
if (gasActive && ((sg - thresholdSat) < scaledDrainageInfo.Sgl)) {
// Gas saturation less than minimum possible value in cell. Reset
// gas phase pressure to that which corresponds to minimum possible
// gas saturation.
this->fluidState_.setSaturation(this->gasPos(), scaledDrainageInfo.Sgl);
this->computeMaterialLawCapPress();
// Pcgo = Pg - Po => Pg = Po + Pcgo
this->press_.gas = this->press_.oil + this->materialLawCapPressGasOil();
}
if (watActive && ((sw - thresholdSat) < scaledDrainageInfo.Swl)) {
// Water saturation less than minimum possible value in cell. Reset
// water phase pressure to that which corresponds to minimum
// possible water saturation value.
this->fluidState_.setSaturation(this->waterPos(), scaledDrainageInfo.Swl);
this->computeMaterialLawCapPress();
// Pcwo = Po - Pw => Pw = Po - Pcow
this->press_.water = this->press_.oil - this->materialLawCapPressOilWater();
}
}
template <class MaterialLawManager, class FluidSystem, class Region, typename CellID>
double PhaseSaturations<MaterialLawManager, FluidSystem, Region, CellID>::
applySwatInit(const double pcow)
{
return this->applySwatInit(pcow, this->swatInit_[this->evalPt_.position->cell]);
}
template <class MaterialLawManager, class FluidSystem, class Region, typename CellID>
double PhaseSaturations<MaterialLawManager, FluidSystem, Region, CellID>::
applySwatInit(const double pcow, const double sw)
{
return this->matLawMgr_
.applySwatinit(this->evalPt_.position->cell, pcow, sw);
}
template <class MaterialLawManager, class FluidSystem, class Region, typename CellID>
void PhaseSaturations<MaterialLawManager, FluidSystem, Region, CellID>::
computeMaterialLawCapPress()
{
const auto& matParams = this->matLawMgr_
.materialLawParams(this->evalPt_.position->cell);
this->matLawCapPress_.fill(0.0);
MaterialLaw::capillaryPressures(this->matLawCapPress_,
matParams, this->fluidState_);
}
template <class MaterialLawManager, class FluidSystem, class Region, typename CellID>
double PhaseSaturations<MaterialLawManager, FluidSystem, Region, CellID>::
materialLawCapPressGasOil() const
{
return this->matLawCapPress_[this->oilPos()]
+ this->matLawCapPress_[this->gasPos()];
}
template <class MaterialLawManager, class FluidSystem, class Region, typename CellID>
double PhaseSaturations<MaterialLawManager, FluidSystem, Region, CellID>::
materialLawCapPressOilWater() const
{
return this->matLawCapPress_[this->oilPos()]
- this->matLawCapPress_[this->waterPos()];
}
template <class MaterialLawManager, class FluidSystem, class Region, typename CellID>
bool PhaseSaturations<MaterialLawManager, FluidSystem, Region, CellID>::
isConstCapPress(const PhaseIdx phaseIdx) const
{
return isConstPc<FluidSystem, MaterialLaw>
(this->matLawMgr_, phaseIdx, this->evalPt_.position->cell);
}
template <class MaterialLawManager, class FluidSystem, class Region, typename CellID>
bool PhaseSaturations<MaterialLawManager, FluidSystem, Region, CellID>::
isOverlappingTransition() const
{
return this->evalPt_.ptable->gasActive()
&& this->evalPt_.ptable->waterActive()
&& ((this->sat_.gas + this->sat_.water) > 1.0);
}
template <class MaterialLawManager, class FluidSystem, class Region, typename CellID>
double PhaseSaturations<MaterialLawManager, FluidSystem, Region, CellID>::
fromDepthTable(const double contactdepth,
const PhaseIdx phasePos,
const bool isincr) const
{
return satFromDepth<FluidSystem, MaterialLaw>
(this->matLawMgr_, this->evalPt_.position->depth,
contactdepth, static_cast<int>(phasePos),
this->evalPt_.position->cell, isincr);
}
template <class MaterialLawManager, class FluidSystem, class Region, typename CellID>
double PhaseSaturations<MaterialLawManager, FluidSystem, Region, CellID>::
invertCapPress(const double pc,
const PhaseIdx phasePos,
const bool isincr) const
{
return satFromPc<FluidSystem, MaterialLaw>
(this->matLawMgr_, static_cast<int>(phasePos),
this->evalPt_.position->cell, pc, isincr);
}
// ===========================================================================
template <typename Grid, typename CellRange>
void verticalExtent(const Grid& grid,
const CellRange& cells,
std::array<double,2>& span)
{
// This code is only supported in three space dimensions
assert (Grid::dimensionworld == 3);
span[0] = std::numeric_limits<double>::max();
span[1] = std::numeric_limits<double>::lowest();
const int nd = Grid::dimensionworld;
// Define vertical span as
//
// [minimum(node depth(cells)), maximum(node depth(cells))]
//
// Note: We use a sledgehammer approach--looping all
// the nodes of all the faces of all the 'cells'--to
// compute those bounds. This necessarily entails
// visiting some nodes (and faces) multiple times.
//
// Note: The implementation of 'RK4IVP<>' implicitly
// imposes the requirement that cell centroids are all
// within this vertical span. That requirement is not
// checked.
auto cell2Faces = Opm::UgGridHelpers::cell2Faces(grid);
auto faceVertices = Opm::UgGridHelpers::face2Vertices(grid);
for (typename CellRange::const_iterator
ci = cells.begin(), ce = cells.end();
ci != ce; ++ci)
{
for (auto fi = cell2Faces[*ci].begin(),
fe = cell2Faces[*ci].end();
fi != fe; ++fi)
{
for (auto i = faceVertices[*fi].begin(),
e = faceVertices[*fi].end();
i != e; ++i)
{
const double z = Opm::UgGridHelpers::
vertexCoordinates(grid, *i)[nd - 1];
if (z < span[0]) { span[0] = z; }
if (z > span[1]) { span[1] = z; }
}
}
}
}
template <typename Grid, typename CellID>
std::pair<double, double>
horizontalTopBottomDepths(const Grid& grid, const CellID cell)
{
const auto nd = Grid::dimensionworld;
auto c2f = Opm::UgGridHelpers::cell2Faces(grid);
auto top = std::numeric_limits<double>::max();
auto bot = std::numeric_limits<double>::lowest();
const auto topTag = 4; // Top face
const auto botTag = 5; // Bottom face
for (auto f = c2f[cell].begin(), e = c2f[cell].end(); f != e; ++f) {
const auto tag = Opm::UgGridHelpers::faceTag(grid, f);
if ((tag != topTag) && (tag != botTag)) {
// Not top/bottom face. Skip.
continue;
}
const auto depth = Opm::UgGridHelpers::
faceCentroid(grid, *f)[nd - 1];
if (tag == topTag) { // Top face
top = std::min(top, depth);
}
else { // Bottom face (tag == 5)
bot = std::max(bot, depth);
}
}
return std::make_pair(top, bot);
}
inline
void subdivisionCentrePoints(const double left,
const double right,
const int numIntervals,
std::vector<std::pair<double, double>>& subdiv)
{
const auto h = (right - left) / numIntervals;
auto end = left;
for (auto i = 0*numIntervals; i < numIntervals; ++i) {
const auto start = end;
end = left + (i + 1)*h;
subdiv.emplace_back((start + end) / 2, h);
}
}
template <typename Grid, typename CellID>
std::vector<std::pair<double, double>>
horizontalSubdivision(const Grid& grid,
const CellID cell,
const int numIntervals)
{
auto subdiv = std::vector<std::pair<double, double>>{};
subdiv.reserve(2 * numIntervals);
const auto topbot = horizontalTopBottomDepths(grid, cell);
if (topbot.first > topbot.second) {
throw std::out_of_range {
"Negative thickness (inverted top/bottom faces) in cell "
+ std::to_string(cell)
};
}
subdivisionCentrePoints(topbot.first, topbot.second,
2*numIntervals, subdiv);
return subdiv;
}
} // namespace Details
namespace DeckDependent {
inline std::vector<Opm::EquilRecord>
getEquil(const Opm::EclipseState& state)
{
const auto& init = state.getInitConfig();
if(!init.hasEquil()) {
throw std::domain_error("Deck does not provide equilibration data.");
}
const auto& equil = init.getEquil();
return { equil.begin(), equil.end() };
}
template<class Grid>
std::vector<int>
equilnum(const Opm::EclipseState& eclipseState,
const Grid& grid)
{
std::vector<int> eqlnum(grid.size(0), 0);
if (eclipseState.fieldProps().has_int("EQLNUM")) {
const auto& e = eclipseState.fieldProps().get_int("EQLNUM");
std::transform(e.begin(), e.end(), eqlnum.begin(), [](int n){ return n - 1;});
}
return eqlnum;
}
template<class TypeTag>
class InitialStateComputer
{
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
using Grid = GetPropType<TypeTag, Properties::Grid>;
public:
template<class MaterialLawManager>
InitialStateComputer(MaterialLawManager& materialLawManager,
const Opm::EclipseState& eclipseState,
const Grid& grid,
const double grav = Opm::unit::gravity,
const bool applySwatInit = true)
: temperature_(grid.size(/*codim=*/0)),
saltConcentration_(grid.size(/*codim=*/0)),
pp_(FluidSystem::numPhases,
std::vector<double>(grid.size(/*codim=*/0))),
sat_(FluidSystem::numPhases,
std::vector<double>(grid.size(/*codim=*/0))),
rs_(grid.size(/*codim=*/0)),
rv_(grid.size(/*codim=*/0))
{
//Check for presence of kw SWATINIT
if (applySwatInit) {
if (eclipseState.fieldProps().has_double("SWATINIT")) {
swatInit_ = eclipseState.fieldProps().get_double("SWATINIT");
}
}
// Get the equilibration records.
const std::vector<Opm::EquilRecord> rec = getEquil(eclipseState);
const auto& tables = eclipseState.getTableManager();
// Create (inverse) region mapping.
const Opm::RegionMapping<> eqlmap(equilnum(eclipseState, grid));
const int invalidRegion = -1;
regionPvtIdx_.resize(rec.size(), invalidRegion);
setRegionPvtIdx(eclipseState, eqlmap);
// Create Rs functions.
rsFunc_.reserve(rec.size());
if (FluidSystem::enableDissolvedGas()) {
for (size_t i = 0; i < rec.size(); ++i) {
if (eqlmap.cells(i).empty()) {
rsFunc_.push_back(std::shared_ptr<Miscibility::RsVD<FluidSystem>>());
continue;
}
const int pvtIdx = regionPvtIdx_[i];
if (!rec[i].liveOilInitConstantRs()) {
const Opm::TableContainer& rsvdTables = tables.getRsvdTables();
const Opm::TableContainer& pbvdTables = tables.getPbvdTables();
if (rsvdTables.size() > 0) {
const Opm::RsvdTable& rsvdTable = rsvdTables.getTable<Opm::RsvdTable>(i);
std::vector<double> depthColumn = rsvdTable.getColumn("DEPTH").vectorCopy();
std::vector<double> rsColumn = rsvdTable.getColumn("RS").vectorCopy();
rsFunc_.push_back(std::make_shared<Miscibility::RsVD<FluidSystem>>(pvtIdx,
depthColumn, rsColumn));
} else if (pbvdTables.size() > 0) {
const Opm::PbvdTable& pbvdTable = pbvdTables.getTable<Opm::PbvdTable>(i);
std::vector<double> depthColumn = pbvdTable.getColumn("DEPTH").vectorCopy();
std::vector<double> pbubColumn = pbvdTable.getColumn("PBUB").vectorCopy();
rsFunc_.push_back(std::make_shared<Miscibility::PBVD<FluidSystem>>(pvtIdx,
depthColumn, pbubColumn));
} else {
throw std::runtime_error("Cannot initialise: RSVD or PBVD table not available.");
}
}
else {
if (rec[i].gasOilContactDepth() != rec[i].datumDepth()) {
throw std::runtime_error("Cannot initialise: when no explicit RSVD table is given, \n"
"datum depth must be at the gas-oil-contact. "
"In EQUIL region "+std::to_string(i + 1)+" (counting from 1), this does not hold.");
}
const double pContact = rec[i].datumDepthPressure();
const double TContact = 273.15 + 20; // standard temperature for now
rsFunc_.push_back(std::make_shared<Miscibility::RsSatAtContact<FluidSystem>>(pvtIdx, pContact, TContact));
}
}
}
else {
for (size_t i = 0; i < rec.size(); ++i) {
rsFunc_.push_back(std::make_shared<Miscibility::NoMixing>());
}
}
rvFunc_.reserve(rec.size());
if (FluidSystem::enableVaporizedOil()) {
for (size_t i = 0; i < rec.size(); ++i) {
if (eqlmap.cells(i).empty()) {
rvFunc_.push_back(std::shared_ptr<Miscibility::RvVD<FluidSystem>>());
continue;
}
const int pvtIdx = regionPvtIdx_[i];
if (!rec[i].wetGasInitConstantRv()) {
const Opm::TableContainer& rvvdTables = tables.getRvvdTables();
const Opm::TableContainer& pdvdTables = tables.getPdvdTables();
if (rvvdTables.size() > 0) {
const Opm::RvvdTable& rvvdTable = rvvdTables.getTable<Opm::RvvdTable>(i);
std::vector<double> depthColumn = rvvdTable.getColumn("DEPTH").vectorCopy();
std::vector<double> rvColumn = rvvdTable.getColumn("RV").vectorCopy();
rvFunc_.push_back(std::make_shared<Miscibility::RvVD<FluidSystem>>(pvtIdx,
depthColumn, rvColumn));
} else if (pdvdTables.size() > 0) {
const Opm::PdvdTable& pdvdTable = pdvdTables.getTable<Opm::PdvdTable>(i);
std::vector<double> depthColumn = pdvdTable.getColumn("DEPTH").vectorCopy();
std::vector<double> pdewColumn = pdvdTable.getColumn("PDEW").vectorCopy();
rvFunc_.push_back(std::make_shared<Miscibility::PDVD<FluidSystem>>(pvtIdx,
depthColumn, pdewColumn));
} else {
throw std::runtime_error("Cannot initialise: RVVD or PDCD table not available.");
}
}
else {
if (rec[i].gasOilContactDepth() != rec[i].datumDepth()) {
throw std::runtime_error(
"Cannot initialise: when no explicit RVVD table is given, \n"
"datum depth must be at the gas-oil-contact. "
"In EQUIL region "+std::to_string(i + 1)+" (counting from 1), this does not hold.");
}
const double pContact = rec[i].datumDepthPressure() + rec[i].gasOilContactCapillaryPressure();
const double TContact = 273.15 + 20; // standard temperature for now
rvFunc_.push_back(std::make_shared<Miscibility::RvSatAtContact<FluidSystem>>(pvtIdx,pContact, TContact));
}
}
}
else {
for (size_t i = 0; i < rec.size(); ++i) {
rvFunc_.push_back(std::make_shared<Miscibility::NoMixing>());
}
}
// EXTRACT the initial temperature
updateInitialTemperature_(eclipseState);
// EXTRACT the initial salt concentration
updateInitialSaltConcentration_(eclipseState, eqlmap, grid);
// Compute pressures, saturations, rs and rv factors.
calcPressSatRsRv(eqlmap, rec, materialLawManager, grid, grav);
// Modify oil pressure in no-oil regions so that the pressures of present phases can
// be recovered from the oil pressure and capillary relations.
}
typedef std::vector<double> Vec;
typedef std::vector<Vec> PVec; // One per phase.
const Vec& temperature() const { return temperature_; }
const Vec& saltConcentration() const { return saltConcentration_; }
const PVec& press() const { return pp_; }
const PVec& saturation() const { return sat_; }
const Vec& rs() const { return rs_; }
const Vec& rv() const { return rv_; }
private:
void updateInitialTemperature_(const Opm::EclipseState& eclState)
{
this->temperature_ = eclState.fieldProps().get_double("TEMPI");
}
template <class RMap>
void updateInitialSaltConcentration_(const Opm::EclipseState& eclState, const RMap& reg, const Grid& grid)
{
const int numEquilReg = rsFunc_.size();
saltVdTable_.resize(numEquilReg);
const auto& tables = eclState.getTableManager();
const Opm::TableContainer& saltvdTables = tables.getSaltvdTables();
// If no saltvd table is given, we create a trivial table for the density calculations
if (saltvdTables.empty()) {
std::vector<double> x = {0.0,1.0};
std::vector<double> y = {0.0,0.0};
for (auto& table : this->saltVdTable_) {
table.setXYContainers(x, y);
}
} else {
for (size_t i = 0; i < saltvdTables.size(); ++i) {
const Opm::SaltvdTable& saltvdTable = saltvdTables.getTable<Opm::SaltvdTable>(i);
saltVdTable_[i].setXYContainers(saltvdTable.getDepthColumn(), saltvdTable.getSaltColumn());
const auto& cells = reg.cells(i);
for (const auto& cell : cells) {
const double depth = UgGridHelpers::cellCenterDepth(grid, cell);
this->saltConcentration_[cell] = saltVdTable_[i].eval(depth);
}
}
}
}
std::vector< std::shared_ptr<Miscibility::RsFunction> > rsFunc_;
std::vector< std::shared_ptr<Miscibility::RsFunction> > rvFunc_;
using TabulatedFunction = Opm::Tabulated1DFunction<double>;
std::vector<TabulatedFunction> saltVdTable_;
std::vector<int> regionPvtIdx_;
Vec temperature_;
Vec saltConcentration_;
PVec pp_;
PVec sat_;
Vec rs_;
Vec rv_;
Vec swatInit_;
template<class RMap>
void setRegionPvtIdx(const Opm::EclipseState& eclState, const RMap& reg)
{
const auto& pvtnumData = eclState.fieldProps().get_int("PVTNUM");
for (const auto& r : reg.activeRegions()) {
const auto& cells = reg.cells(r);
regionPvtIdx_[r] = pvtnumData[*cells.begin()] - 1;
}
}
template <class RMap, class MaterialLawManager>
void calcPressSatRsRv(const RMap& reg,
const std::vector< Opm::EquilRecord >& rec,
MaterialLawManager& materialLawManager,
const Grid& grid,
const double grav)
{
using PhaseSat = Details::PhaseSaturations<
MaterialLawManager, FluidSystem, EquilReg, typename RMap::CellId
>;
auto ptable = Details::PressureTable<FluidSystem, EquilReg>{ grav };
auto psat = PhaseSat { materialLawManager, this->swatInit_ };
auto vspan = std::array<double, 2>{};
for (const auto& r : reg.activeRegions()) {
const auto& cells = reg.cells(r);
if (cells.empty()) {
Opm::OpmLog::warning("Equilibration region " + std::to_string(r + 1)
+ " has no active cells");
continue;
}
Details::verticalExtent(grid, cells, vspan);
const auto eqreg = EquilReg {
rec[r], this->rsFunc_[r], this->rvFunc_[r], this->saltVdTable_[r], this->regionPvtIdx_[r]
};
// Ensure gas/oil and oil/water contacts are within the span for the
// phase pressure calculation.
vspan[0] = std::min(vspan[0], std::min(eqreg.zgoc(), eqreg.zwoc()));
vspan[1] = std::max(vspan[1], std::max(eqreg.zgoc(), eqreg.zwoc()));
ptable.equilibrate(eqreg, vspan);
const auto acc = eqreg.equilibrationAccuracy();
if (acc == 0) {
// Centre-point method
this->equilibrateCellCentres(cells, eqreg, grid, ptable, psat);
}
else if (acc < 0) {
// Horizontal subdivision
this->equilibrateHorizontal(cells, eqreg, -acc,
grid, ptable, psat);
}
}
}
template <class CellRange, class EquilibrationMethod>
void cellLoop(const CellRange& cells,
EquilibrationMethod&& eqmethod)
{
const auto oilPos = FluidSystem::oilPhaseIdx;
const auto gasPos = FluidSystem::gasPhaseIdx;
const auto watPos = FluidSystem::waterPhaseIdx;
const auto oilActive = FluidSystem::phaseIsActive(oilPos);
const auto gasActive = FluidSystem::phaseIsActive(gasPos);
const auto watActive = FluidSystem::phaseIsActive(watPos);
auto pressures = Details::PhaseQuantityValue{};
auto saturations = Details::PhaseQuantityValue{};
auto Rs = 0.0;
auto Rv = 0.0;
for (const auto& cell : cells) {
eqmethod(cell, pressures, saturations, Rs, Rv);
if (oilActive) {
this->pp_ [oilPos][cell] = pressures.oil;
this->sat_[oilPos][cell] = saturations.oil;
}
if (gasActive) {
this->pp_ [gasPos][cell] = pressures.gas;
this->sat_[gasPos][cell] = saturations.gas;
}
if (watActive) {
this->pp_ [watPos][cell] = pressures.water;
this->sat_[watPos][cell] = saturations.water;
}
if (oilActive && gasActive) {
this->rs_[cell] = Rs;
this->rv_[cell] = Rv;
}
}
}
template <class CellRange, class Grid, class PressTable, class PhaseSat>
void equilibrateCellCentres(const CellRange& cells,
const EquilReg& eqreg,
const Grid& grid,
const PressTable& ptable,
PhaseSat& psat)
{
using CellPos = typename PhaseSat::Position;
using CellID = std::remove_cv_t<std::remove_reference_t<
decltype(std::declval<CellPos>().cell)>>;
this->cellLoop(cells, [this, &eqreg, &grid, &ptable, &psat]
(const CellID cell,
Details::PhaseQuantityValue& pressures,
Details::PhaseQuantityValue& saturations,
double& Rs,
double& Rv) -> void
{
const auto pos = CellPos {
cell, UgGridHelpers::cellCenterDepth(grid, cell)
};
saturations = psat.deriveSaturations(pos, eqreg, ptable);
pressures = psat.correctedPhasePressures();
const auto temp = this->temperature_[cell];
Rs = eqreg.dissolutionCalculator()
(pos.depth, pressures.oil, temp, saturations.gas);
Rv = eqreg.evaporationCalculator()
(pos.depth, pressures.gas, temp, saturations.oil);
});
}
template <class CellRange, class Grid, class PressTable, class PhaseSat>
void equilibrateHorizontal(const CellRange& cells,
const EquilReg& eqreg,
const int acc,
const Grid& grid,
const PressTable& ptable,
PhaseSat& psat)
{
using CellPos = typename PhaseSat::Position;
using CellID = std::remove_cv_t<std::remove_reference_t<
decltype(std::declval<CellPos>().cell)>>;
this->cellLoop(cells, [this, acc, &eqreg, &grid, &ptable, &psat]
(const CellID cell,
Details::PhaseQuantityValue& pressures,
Details::PhaseQuantityValue& saturations,
double& Rs,
double& Rv) -> void
{
pressures .reset();
saturations.reset();
auto totfrac = 0.0;
for (const auto& [depth, frac] : Details::horizontalSubdivision(grid, cell, acc)) {
const auto pos = CellPos { cell, depth };
saturations.axpy(psat.deriveSaturations(pos, eqreg, ptable), frac);
pressures .axpy(psat.correctedPhasePressures(), frac);
totfrac += frac;
}
saturations /= totfrac;
pressures /= totfrac;
const auto temp = this->temperature_[cell];
const auto cz = UgGridHelpers::cellCenterDepth(grid, cell);
Rs = eqreg.dissolutionCalculator()
(cz, pressures.oil, temp, saturations.gas);
Rv = eqreg.evaporationCalculator()
(cz, pressures.gas, temp, saturations.oil);
});
}
};
} // namespace DeckDependent
} // namespace EQUIL
} // namespace Opm
#endif // OPM_INITSTATEEQUIL_HEADER_INCLUDED