opm-simulators/opm/simulators/linalg/HyprePreconditioner.hpp
2024-12-10 17:08:18 +01:00

331 lines
12 KiB
C++

/*
Copyright 2024 SINTEF AS
Copyright 2024 Equinor ASA
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_HYPRE_PRECONDITIONER_HEADER_INCLUDED
#define OPM_HYPRE_PRECONDITIONER_HEADER_INCLUDED
#include <opm/common/ErrorMacros.hpp>
#include <opm/common/TimingMacros.hpp>
#include <opm/simulators/linalg/PreconditionerWithUpdate.hpp>
#include <opm/simulators/linalg/PropertyTree.hpp>
#include <dune/common/fmatrix.hh>
#include <dune/istl/bcrsmatrix.hh>
#include <HYPRE.h>
#include <HYPRE_parcsr_ls.h>
#include <HYPRE_krylov.h>
#include <_hypre_utilities.h>
#include <vector>
#include <numeric>
namespace Hypre {
/// Wrapper for Hypre's BoomerAMG preconditioner
template<class M, class X, class Y>
class HyprePreconditioner : public Dune::PreconditionerWithUpdate<X,Y> {
public:
//! \brief The matrix type the preconditioner is for
using matrix_type = M;
//! \brief The domain type of the preconditioner
using domain_type = X;
//! \brief The range type of the preconditioner
using range_type = Y;
//! \brief The field type of the preconditioner
using field_type = typename X::field_type;
// Constructor
HyprePreconditioner (const M& A, const Opm::PropertyTree prm)
: A_(A), prm_(prm)
{
OPM_TIMEBLOCK(prec_construct);
int size;
MPI_Comm_size(MPI_COMM_WORLD, &size);
if (size > 1) {
OPM_THROW(std::runtime_error, "HyprePreconditioner is currently only implemented for sequential runs");
}
use_gpu_ = prm_.get<bool>("use_gpu", false);
// Set memory location and execution policy
#if HYPRE_USING_CUDA || HYPRE_USING_HIP
if (use_gpu_) {
HYPRE_SetMemoryLocation(HYPRE_MEMORY_DEVICE);
HYPRE_SetExecutionPolicy(HYPRE_EXEC_DEVICE);
// use hypre's SpGEMM instead of vendor implementation
HYPRE_SetSpGemmUseVendor(false);
// use cuRand for PMIS
HYPRE_SetUseGpuRand(1);
HYPRE_DeviceInitialize();
HYPRE_PrintDeviceInfo();
}
else
#endif
{
HYPRE_SetMemoryLocation(HYPRE_MEMORY_HOST);
HYPRE_SetExecutionPolicy(HYPRE_EXEC_HOST);
}
// Create the solver (BoomerAMG)
HYPRE_BoomerAMGCreate(&solver_);
// Set parameters from property tree with defaults
HYPRE_BoomerAMGSetPrintLevel(solver_, prm_.get<int>("print_level", 0));
HYPRE_BoomerAMGSetMaxIter(solver_, prm_.get<int>("max_iter", 1));
HYPRE_BoomerAMGSetStrongThreshold(solver_, prm_.get<double>("strong_threshold", 0.5));
HYPRE_BoomerAMGSetAggTruncFactor(solver_, prm_.get<double>("agg_trunc_factor", 0.3));
HYPRE_BoomerAMGSetInterpType(solver_, prm_.get<int>("interp_type", 6));
HYPRE_BoomerAMGSetMaxLevels(solver_, prm_.get<int>("max_levels", 15));
HYPRE_BoomerAMGSetTol(solver_, prm_.get<double>("tolerance", 0.0));
if (use_gpu_) {
HYPRE_BoomerAMGSetRelaxType(solver_, 16);
HYPRE_BoomerAMGSetCoarsenType(solver_, 8);
HYPRE_BoomerAMGSetAggNumLevels(solver_, 0);
HYPRE_BoomerAMGSetAggInterpType(solver_, 6);
// Keep transpose to avoid SpMTV
HYPRE_BoomerAMGSetKeepTranspose(solver_, true);
}
else {
HYPRE_BoomerAMGSetRelaxType(solver_, prm_.get<int>("relax_type", 13));
HYPRE_BoomerAMGSetCoarsenType(solver_, prm_.get<int>("coarsen_type", 10));
HYPRE_BoomerAMGSetAggNumLevels(solver_, prm_.get<int>("agg_num_levels", 1));
HYPRE_BoomerAMGSetAggInterpType(solver_, prm_.get<int>("agg_interp_type", 4));
}
// Create Hypre vectors
N_ = A_.N();
nnz_ = A_.nonzeroes();
HYPRE_IJVectorCreate(MPI_COMM_SELF, 0, N_-1, &x_hypre_);
HYPRE_IJVectorCreate(MPI_COMM_SELF, 0, N_-1, &b_hypre_);
HYPRE_IJVectorSetObjectType(x_hypre_, HYPRE_PARCSR);
HYPRE_IJVectorSetObjectType(b_hypre_, HYPRE_PARCSR);
HYPRE_IJVectorInitialize(x_hypre_);
HYPRE_IJVectorInitialize(b_hypre_);
// Create indices vector
indices_.resize(N_);
std::iota(indices_.begin(), indices_.end(), 0);
if (use_gpu_) {
indices_device_ = hypre_CTAlloc(HYPRE_BigInt, N_, HYPRE_MEMORY_DEVICE);
hypre_TMemcpy(indices_device_, indices_.data(), HYPRE_BigInt, N_, HYPRE_MEMORY_DEVICE, HYPRE_MEMORY_HOST);
// Allocate device vectors
x_values_device_ = hypre_CTAlloc(HYPRE_Real, N_, HYPRE_MEMORY_DEVICE);
b_values_device_ = hypre_CTAlloc(HYPRE_Real, N_, HYPRE_MEMORY_DEVICE);
}
// Create Hypre matrix
HYPRE_IJMatrixCreate(MPI_COMM_SELF, 0, N_-1, 0, N_-1, &A_hypre_);
HYPRE_IJMatrixSetObjectType(A_hypre_, HYPRE_PARCSR);
HYPRE_IJMatrixInitialize(A_hypre_);
setupSparsityPattern();
update();
}
// Destructor
~HyprePreconditioner() {
if (solver_) {
HYPRE_BoomerAMGDestroy(solver_);
}
if (A_hypre_) {
HYPRE_IJMatrixDestroy(A_hypre_);
}
if (x_hypre_) {
HYPRE_IJVectorDestroy(x_hypre_);
}
if (b_hypre_) {
HYPRE_IJVectorDestroy(b_hypre_);
}
if (values_device_) {
hypre_TFree(values_device_, HYPRE_MEMORY_DEVICE);
}
if (x_values_device_) {
hypre_TFree(x_values_device_, HYPRE_MEMORY_DEVICE);
}
if (b_values_device_) {
hypre_TFree(b_values_device_, HYPRE_MEMORY_DEVICE);
}
if (indices_device_) {
hypre_TFree(indices_device_, HYPRE_MEMORY_DEVICE);
}
}
void update() override {
OPM_TIMEBLOCK(prec_update);
copyMatrixToHypre();
HYPRE_BoomerAMGSetup(solver_, parcsr_A_, par_b_, par_x_);
}
void pre(X& /*x*/, Y& /*b*/) override {
}
void apply(X& v, const Y& d) override {
OPM_TIMEBLOCK(prec_apply);
// Copy vectors to Hypre format
copyVectorsToHypre(v, d);
// Apply the preconditioner (one AMG V-cycle)
HYPRE_BoomerAMGSolve(solver_, parcsr_A_, par_b_, par_x_);
// Copy result back
copyVectorFromHypre(v);
}
void post(X& /*x*/) override {
}
Dune::SolverCategory::Category category() const override {
return Dune::SolverCategory::sequential;
}
bool hasPerfectUpdate() const override
{
// The Hypre preconditioner can depend on the values of the matrix so it does not have perfect update.
// However, copying the matrix to Hypre requires to setup the solver again, so this is handled internally.
// So for ISTLSolver, we can return true.
return true;
}
private:
void setupSparsityPattern() {
// Allocate arrays required by Hypre
ncols_.resize(N_);
rows_.resize(N_);
cols_.resize(nnz_);
// Setup arrays and fill column indices
int pos = 0;
for (auto row = A_.begin(); row != A_.end(); ++row) {
const int rowIdx = row.index();
rows_[rowIdx] = rowIdx;
ncols_[rowIdx] = row->size();
for (auto col = row->begin(); col != row->end(); ++col) {
cols_[pos++] = col.index();
}
}
if (use_gpu_) {
// Allocate device arrays
ncols_device_ = hypre_CTAlloc(HYPRE_Int, N_, HYPRE_MEMORY_DEVICE);
rows_device_ = hypre_CTAlloc(HYPRE_BigInt, N_, HYPRE_MEMORY_DEVICE);
cols_device_ = hypre_CTAlloc(HYPRE_BigInt, nnz_, HYPRE_MEMORY_DEVICE);
values_device_ = hypre_CTAlloc(HYPRE_Real, nnz_, HYPRE_MEMORY_DEVICE);
// Copy to device
hypre_TMemcpy(ncols_device_, ncols_.data(), HYPRE_Int, N_, HYPRE_MEMORY_DEVICE, HYPRE_MEMORY_HOST);
hypre_TMemcpy(rows_device_, rows_.data(), HYPRE_BigInt, N_, HYPRE_MEMORY_DEVICE, HYPRE_MEMORY_HOST);
hypre_TMemcpy(cols_device_, cols_.data(), HYPRE_BigInt, nnz_, HYPRE_MEMORY_DEVICE, HYPRE_MEMORY_HOST);
}
}
void copyMatrixToHypre() {
OPM_TIMEBLOCK(prec_copy_matrix);
// Get pointer to matrix values array
const HYPRE_Real* values = &(A_[0][0][0][0]);
// Indexing explanation:
// A_[row] - First row of the matrix
// [0] - First block in that row
// [0] - First row within the 1x1 block
// [0] - First column within the 1x1 block
if (use_gpu_) {
hypre_TMemcpy(values_device_, values, HYPRE_Real, nnz_, HYPRE_MEMORY_DEVICE, HYPRE_MEMORY_HOST);
HYPRE_IJMatrixSetValues(A_hypre_, N_, ncols_device_, rows_device_, cols_device_, values_device_);
}
else {
HYPRE_IJMatrixSetValues(A_hypre_, N_, ncols_.data(), rows_.data(), cols_.data(), values);
}
HYPRE_IJMatrixAssemble(A_hypre_);
HYPRE_IJMatrixGetObject(A_hypre_, (void**)&parcsr_A_);
}
void copyVectorsToHypre(const X& v, const Y& d) {
OPM_TIMEBLOCK(prec_copy_vectors_to_hypre);
const HYPRE_Real* x_vals = &(v[0][0]);
const HYPRE_Real* b_vals = &(d[0][0]);
if (use_gpu_) {
hypre_TMemcpy(x_values_device_, x_vals, HYPRE_Real, N_, HYPRE_MEMORY_DEVICE, HYPRE_MEMORY_HOST);
hypre_TMemcpy(b_values_device_, b_vals, HYPRE_Real, N_, HYPRE_MEMORY_DEVICE, HYPRE_MEMORY_HOST);
HYPRE_IJVectorSetValues(x_hypre_, N_, indices_device_, x_values_device_);
HYPRE_IJVectorSetValues(b_hypre_, N_, indices_device_, b_values_device_);
}
else {
HYPRE_IJVectorSetValues(x_hypre_, N_, indices_.data(), x_vals);
HYPRE_IJVectorSetValues(b_hypre_, N_, indices_.data(), b_vals);
}
HYPRE_IJVectorAssemble(x_hypre_);
HYPRE_IJVectorAssemble(b_hypre_);
HYPRE_IJVectorGetObject(x_hypre_, (void**)&par_x_);
HYPRE_IJVectorGetObject(b_hypre_, (void**)&par_b_);
}
void copyVectorFromHypre(X& v) {
OPM_TIMEBLOCK(prec_copy_vector_from_hypre);
HYPRE_Real* values = &(v[0][0]);
if (use_gpu_) {
HYPRE_IJVectorGetValues(x_hypre_, N_, indices_device_, x_values_device_);
hypre_TMemcpy(values, x_values_device_, HYPRE_Real, N_, HYPRE_MEMORY_HOST, HYPRE_MEMORY_DEVICE);
}
else {
HYPRE_IJVectorGetValues(x_hypre_, N_, indices_.data(), values);
}
}
const M& A_;
const Opm::PropertyTree& prm_;
bool use_gpu_ = false;
HYPRE_Solver solver_ = nullptr;
HYPRE_IJMatrix A_hypre_ = nullptr;
HYPRE_ParCSRMatrix parcsr_A_ = nullptr;
HYPRE_IJVector x_hypre_ = nullptr;
HYPRE_IJVector b_hypre_ = nullptr;
HYPRE_ParVector par_x_ = nullptr;
HYPRE_ParVector par_b_ = nullptr;
// Store sparsity pattern
std::vector<HYPRE_Int> ncols_;
std::vector<HYPRE_BigInt> rows_;
std::vector<HYPRE_BigInt> cols_;
HYPRE_Int* ncols_device_ = nullptr;
HYPRE_BigInt* rows_device_ = nullptr;
HYPRE_BigInt* cols_device_ = nullptr;
HYPRE_Real* values_device_ = nullptr;
// Store indices vector
std::vector<int> indices_;
HYPRE_BigInt* indices_device_ = nullptr;
HYPRE_Int N_ = -1;
HYPRE_Int nnz_ = -1;
HYPRE_Real* x_values_device_ = nullptr;
HYPRE_Real* b_values_device_ = nullptr;
};
} // namespace Hypre
#endif