mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-02-25 18:55:30 -06:00
331 lines
12 KiB
C++
331 lines
12 KiB
C++
/*
|
|
Copyright 2024 SINTEF AS
|
|
Copyright 2024 Equinor ASA
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef OPM_HYPRE_PRECONDITIONER_HEADER_INCLUDED
|
|
#define OPM_HYPRE_PRECONDITIONER_HEADER_INCLUDED
|
|
|
|
#include <opm/common/ErrorMacros.hpp>
|
|
#include <opm/common/TimingMacros.hpp>
|
|
#include <opm/simulators/linalg/PreconditionerWithUpdate.hpp>
|
|
#include <opm/simulators/linalg/PropertyTree.hpp>
|
|
|
|
#include <dune/common/fmatrix.hh>
|
|
#include <dune/istl/bcrsmatrix.hh>
|
|
|
|
#include <HYPRE.h>
|
|
#include <HYPRE_parcsr_ls.h>
|
|
#include <HYPRE_krylov.h>
|
|
#include <_hypre_utilities.h>
|
|
|
|
#include <vector>
|
|
#include <numeric>
|
|
|
|
namespace Hypre {
|
|
|
|
/// Wrapper for Hypre's BoomerAMG preconditioner
|
|
template<class M, class X, class Y>
|
|
class HyprePreconditioner : public Dune::PreconditionerWithUpdate<X,Y> {
|
|
public:
|
|
//! \brief The matrix type the preconditioner is for
|
|
using matrix_type = M;
|
|
//! \brief The domain type of the preconditioner
|
|
using domain_type = X;
|
|
//! \brief The range type of the preconditioner
|
|
using range_type = Y;
|
|
//! \brief The field type of the preconditioner
|
|
using field_type = typename X::field_type;
|
|
|
|
// Constructor
|
|
HyprePreconditioner (const M& A, const Opm::PropertyTree prm)
|
|
: A_(A), prm_(prm)
|
|
{
|
|
OPM_TIMEBLOCK(prec_construct);
|
|
|
|
int size;
|
|
MPI_Comm_size(MPI_COMM_WORLD, &size);
|
|
if (size > 1) {
|
|
OPM_THROW(std::runtime_error, "HyprePreconditioner is currently only implemented for sequential runs");
|
|
}
|
|
|
|
use_gpu_ = prm_.get<bool>("use_gpu", false);
|
|
|
|
// Set memory location and execution policy
|
|
#if HYPRE_USING_CUDA || HYPRE_USING_HIP
|
|
if (use_gpu_) {
|
|
HYPRE_SetMemoryLocation(HYPRE_MEMORY_DEVICE);
|
|
HYPRE_SetExecutionPolicy(HYPRE_EXEC_DEVICE);
|
|
// use hypre's SpGEMM instead of vendor implementation
|
|
HYPRE_SetSpGemmUseVendor(false);
|
|
// use cuRand for PMIS
|
|
HYPRE_SetUseGpuRand(1);
|
|
HYPRE_DeviceInitialize();
|
|
HYPRE_PrintDeviceInfo();
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
HYPRE_SetMemoryLocation(HYPRE_MEMORY_HOST);
|
|
HYPRE_SetExecutionPolicy(HYPRE_EXEC_HOST);
|
|
}
|
|
|
|
// Create the solver (BoomerAMG)
|
|
HYPRE_BoomerAMGCreate(&solver_);
|
|
|
|
// Set parameters from property tree with defaults
|
|
HYPRE_BoomerAMGSetPrintLevel(solver_, prm_.get<int>("print_level", 0));
|
|
HYPRE_BoomerAMGSetMaxIter(solver_, prm_.get<int>("max_iter", 1));
|
|
HYPRE_BoomerAMGSetStrongThreshold(solver_, prm_.get<double>("strong_threshold", 0.5));
|
|
HYPRE_BoomerAMGSetAggTruncFactor(solver_, prm_.get<double>("agg_trunc_factor", 0.3));
|
|
HYPRE_BoomerAMGSetInterpType(solver_, prm_.get<int>("interp_type", 6));
|
|
HYPRE_BoomerAMGSetMaxLevels(solver_, prm_.get<int>("max_levels", 15));
|
|
HYPRE_BoomerAMGSetTol(solver_, prm_.get<double>("tolerance", 0.0));
|
|
|
|
if (use_gpu_) {
|
|
HYPRE_BoomerAMGSetRelaxType(solver_, 16);
|
|
HYPRE_BoomerAMGSetCoarsenType(solver_, 8);
|
|
HYPRE_BoomerAMGSetAggNumLevels(solver_, 0);
|
|
HYPRE_BoomerAMGSetAggInterpType(solver_, 6);
|
|
// Keep transpose to avoid SpMTV
|
|
HYPRE_BoomerAMGSetKeepTranspose(solver_, true);
|
|
}
|
|
else {
|
|
HYPRE_BoomerAMGSetRelaxType(solver_, prm_.get<int>("relax_type", 13));
|
|
HYPRE_BoomerAMGSetCoarsenType(solver_, prm_.get<int>("coarsen_type", 10));
|
|
HYPRE_BoomerAMGSetAggNumLevels(solver_, prm_.get<int>("agg_num_levels", 1));
|
|
HYPRE_BoomerAMGSetAggInterpType(solver_, prm_.get<int>("agg_interp_type", 4));
|
|
}
|
|
|
|
// Create Hypre vectors
|
|
N_ = A_.N();
|
|
nnz_ = A_.nonzeroes();
|
|
HYPRE_IJVectorCreate(MPI_COMM_SELF, 0, N_-1, &x_hypre_);
|
|
HYPRE_IJVectorCreate(MPI_COMM_SELF, 0, N_-1, &b_hypre_);
|
|
HYPRE_IJVectorSetObjectType(x_hypre_, HYPRE_PARCSR);
|
|
HYPRE_IJVectorSetObjectType(b_hypre_, HYPRE_PARCSR);
|
|
HYPRE_IJVectorInitialize(x_hypre_);
|
|
HYPRE_IJVectorInitialize(b_hypre_);
|
|
// Create indices vector
|
|
indices_.resize(N_);
|
|
std::iota(indices_.begin(), indices_.end(), 0);
|
|
if (use_gpu_) {
|
|
indices_device_ = hypre_CTAlloc(HYPRE_BigInt, N_, HYPRE_MEMORY_DEVICE);
|
|
hypre_TMemcpy(indices_device_, indices_.data(), HYPRE_BigInt, N_, HYPRE_MEMORY_DEVICE, HYPRE_MEMORY_HOST);
|
|
// Allocate device vectors
|
|
x_values_device_ = hypre_CTAlloc(HYPRE_Real, N_, HYPRE_MEMORY_DEVICE);
|
|
b_values_device_ = hypre_CTAlloc(HYPRE_Real, N_, HYPRE_MEMORY_DEVICE);
|
|
}
|
|
|
|
// Create Hypre matrix
|
|
HYPRE_IJMatrixCreate(MPI_COMM_SELF, 0, N_-1, 0, N_-1, &A_hypre_);
|
|
HYPRE_IJMatrixSetObjectType(A_hypre_, HYPRE_PARCSR);
|
|
HYPRE_IJMatrixInitialize(A_hypre_);
|
|
|
|
setupSparsityPattern();
|
|
update();
|
|
}
|
|
|
|
// Destructor
|
|
~HyprePreconditioner() {
|
|
if (solver_) {
|
|
HYPRE_BoomerAMGDestroy(solver_);
|
|
}
|
|
if (A_hypre_) {
|
|
HYPRE_IJMatrixDestroy(A_hypre_);
|
|
}
|
|
if (x_hypre_) {
|
|
HYPRE_IJVectorDestroy(x_hypre_);
|
|
}
|
|
if (b_hypre_) {
|
|
HYPRE_IJVectorDestroy(b_hypre_);
|
|
}
|
|
if (values_device_) {
|
|
hypre_TFree(values_device_, HYPRE_MEMORY_DEVICE);
|
|
}
|
|
if (x_values_device_) {
|
|
hypre_TFree(x_values_device_, HYPRE_MEMORY_DEVICE);
|
|
}
|
|
if (b_values_device_) {
|
|
hypre_TFree(b_values_device_, HYPRE_MEMORY_DEVICE);
|
|
}
|
|
if (indices_device_) {
|
|
hypre_TFree(indices_device_, HYPRE_MEMORY_DEVICE);
|
|
}
|
|
}
|
|
|
|
void update() override {
|
|
OPM_TIMEBLOCK(prec_update);
|
|
copyMatrixToHypre();
|
|
HYPRE_BoomerAMGSetup(solver_, parcsr_A_, par_b_, par_x_);
|
|
}
|
|
|
|
void pre(X& /*x*/, Y& /*b*/) override {
|
|
}
|
|
|
|
void apply(X& v, const Y& d) override {
|
|
OPM_TIMEBLOCK(prec_apply);
|
|
|
|
// Copy vectors to Hypre format
|
|
copyVectorsToHypre(v, d);
|
|
|
|
// Apply the preconditioner (one AMG V-cycle)
|
|
HYPRE_BoomerAMGSolve(solver_, parcsr_A_, par_b_, par_x_);
|
|
|
|
// Copy result back
|
|
copyVectorFromHypre(v);
|
|
}
|
|
|
|
void post(X& /*x*/) override {
|
|
}
|
|
|
|
Dune::SolverCategory::Category category() const override {
|
|
return Dune::SolverCategory::sequential;
|
|
}
|
|
|
|
bool hasPerfectUpdate() const override
|
|
{
|
|
// The Hypre preconditioner can depend on the values of the matrix so it does not have perfect update.
|
|
// However, copying the matrix to Hypre requires to setup the solver again, so this is handled internally.
|
|
// So for ISTLSolver, we can return true.
|
|
return true;
|
|
}
|
|
|
|
private:
|
|
void setupSparsityPattern() {
|
|
// Allocate arrays required by Hypre
|
|
ncols_.resize(N_);
|
|
rows_.resize(N_);
|
|
cols_.resize(nnz_);
|
|
|
|
// Setup arrays and fill column indices
|
|
int pos = 0;
|
|
for (auto row = A_.begin(); row != A_.end(); ++row) {
|
|
const int rowIdx = row.index();
|
|
rows_[rowIdx] = rowIdx;
|
|
ncols_[rowIdx] = row->size();
|
|
|
|
for (auto col = row->begin(); col != row->end(); ++col) {
|
|
cols_[pos++] = col.index();
|
|
}
|
|
}
|
|
if (use_gpu_) {
|
|
// Allocate device arrays
|
|
ncols_device_ = hypre_CTAlloc(HYPRE_Int, N_, HYPRE_MEMORY_DEVICE);
|
|
rows_device_ = hypre_CTAlloc(HYPRE_BigInt, N_, HYPRE_MEMORY_DEVICE);
|
|
cols_device_ = hypre_CTAlloc(HYPRE_BigInt, nnz_, HYPRE_MEMORY_DEVICE);
|
|
values_device_ = hypre_CTAlloc(HYPRE_Real, nnz_, HYPRE_MEMORY_DEVICE);
|
|
|
|
// Copy to device
|
|
hypre_TMemcpy(ncols_device_, ncols_.data(), HYPRE_Int, N_, HYPRE_MEMORY_DEVICE, HYPRE_MEMORY_HOST);
|
|
hypre_TMemcpy(rows_device_, rows_.data(), HYPRE_BigInt, N_, HYPRE_MEMORY_DEVICE, HYPRE_MEMORY_HOST);
|
|
hypre_TMemcpy(cols_device_, cols_.data(), HYPRE_BigInt, nnz_, HYPRE_MEMORY_DEVICE, HYPRE_MEMORY_HOST);
|
|
}
|
|
}
|
|
|
|
void copyMatrixToHypre() {
|
|
OPM_TIMEBLOCK(prec_copy_matrix);
|
|
// Get pointer to matrix values array
|
|
const HYPRE_Real* values = &(A_[0][0][0][0]);
|
|
// Indexing explanation:
|
|
// A_[row] - First row of the matrix
|
|
// [0] - First block in that row
|
|
// [0] - First row within the 1x1 block
|
|
// [0] - First column within the 1x1 block
|
|
|
|
if (use_gpu_) {
|
|
hypre_TMemcpy(values_device_, values, HYPRE_Real, nnz_, HYPRE_MEMORY_DEVICE, HYPRE_MEMORY_HOST);
|
|
HYPRE_IJMatrixSetValues(A_hypre_, N_, ncols_device_, rows_device_, cols_device_, values_device_);
|
|
}
|
|
else {
|
|
HYPRE_IJMatrixSetValues(A_hypre_, N_, ncols_.data(), rows_.data(), cols_.data(), values);
|
|
}
|
|
|
|
HYPRE_IJMatrixAssemble(A_hypre_);
|
|
HYPRE_IJMatrixGetObject(A_hypre_, (void**)&parcsr_A_);
|
|
}
|
|
|
|
void copyVectorsToHypre(const X& v, const Y& d) {
|
|
OPM_TIMEBLOCK(prec_copy_vectors_to_hypre);
|
|
const HYPRE_Real* x_vals = &(v[0][0]);
|
|
const HYPRE_Real* b_vals = &(d[0][0]);
|
|
|
|
if (use_gpu_) {
|
|
hypre_TMemcpy(x_values_device_, x_vals, HYPRE_Real, N_, HYPRE_MEMORY_DEVICE, HYPRE_MEMORY_HOST);
|
|
hypre_TMemcpy(b_values_device_, b_vals, HYPRE_Real, N_, HYPRE_MEMORY_DEVICE, HYPRE_MEMORY_HOST);
|
|
|
|
HYPRE_IJVectorSetValues(x_hypre_, N_, indices_device_, x_values_device_);
|
|
HYPRE_IJVectorSetValues(b_hypre_, N_, indices_device_, b_values_device_);
|
|
}
|
|
else {
|
|
HYPRE_IJVectorSetValues(x_hypre_, N_, indices_.data(), x_vals);
|
|
HYPRE_IJVectorSetValues(b_hypre_, N_, indices_.data(), b_vals);
|
|
}
|
|
|
|
HYPRE_IJVectorAssemble(x_hypre_);
|
|
HYPRE_IJVectorAssemble(b_hypre_);
|
|
HYPRE_IJVectorGetObject(x_hypre_, (void**)&par_x_);
|
|
HYPRE_IJVectorGetObject(b_hypre_, (void**)&par_b_);
|
|
}
|
|
|
|
void copyVectorFromHypre(X& v) {
|
|
OPM_TIMEBLOCK(prec_copy_vector_from_hypre);
|
|
HYPRE_Real* values = &(v[0][0]);
|
|
if (use_gpu_) {
|
|
HYPRE_IJVectorGetValues(x_hypre_, N_, indices_device_, x_values_device_);
|
|
hypre_TMemcpy(values, x_values_device_, HYPRE_Real, N_, HYPRE_MEMORY_HOST, HYPRE_MEMORY_DEVICE);
|
|
}
|
|
else {
|
|
HYPRE_IJVectorGetValues(x_hypre_, N_, indices_.data(), values);
|
|
}
|
|
}
|
|
|
|
const M& A_;
|
|
const Opm::PropertyTree& prm_;
|
|
bool use_gpu_ = false;
|
|
|
|
HYPRE_Solver solver_ = nullptr;
|
|
HYPRE_IJMatrix A_hypre_ = nullptr;
|
|
HYPRE_ParCSRMatrix parcsr_A_ = nullptr;
|
|
HYPRE_IJVector x_hypre_ = nullptr;
|
|
HYPRE_IJVector b_hypre_ = nullptr;
|
|
HYPRE_ParVector par_x_ = nullptr;
|
|
HYPRE_ParVector par_b_ = nullptr;
|
|
|
|
// Store sparsity pattern
|
|
std::vector<HYPRE_Int> ncols_;
|
|
std::vector<HYPRE_BigInt> rows_;
|
|
std::vector<HYPRE_BigInt> cols_;
|
|
HYPRE_Int* ncols_device_ = nullptr;
|
|
HYPRE_BigInt* rows_device_ = nullptr;
|
|
HYPRE_BigInt* cols_device_ = nullptr;
|
|
HYPRE_Real* values_device_ = nullptr;
|
|
// Store indices vector
|
|
std::vector<int> indices_;
|
|
HYPRE_BigInt* indices_device_ = nullptr;
|
|
HYPRE_Int N_ = -1;
|
|
HYPRE_Int nnz_ = -1;
|
|
|
|
HYPRE_Real* x_values_device_ = nullptr;
|
|
HYPRE_Real* b_values_device_ = nullptr;
|
|
};
|
|
|
|
} // namespace Hypre
|
|
|
|
#endif
|