Files
opm-simulators/opm/material/components/xylene.hh

331 lines
12 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*****************************************************************************
* Copyright (C) 2012 by Bernd Flemisch *
* Copyright (C) 2012 by Philipp Nuske *
* Copyright (C) 2012 by Andreas Lauser *
* *
* This program is free software: you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation, either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program. If not, see <http://www.gnu.org/licenses/>. *
*****************************************************************************/
/*!
* \file
* \copydoc Opm::Xylene
*/
#ifndef OPM_XYLENE_HH
#define OPM_XYLENE_HH
#include <cmath>
#include <opm/material/idealgas.hh>
#include <opm/material/components/component.hh>
#include <opm/material/constants.hh>
namespace Opm
{
/*!
* \ingroup Components
* \brief Component for Xylene
*
* \tparam Scalar The type used for scalar values
*/
template <class Scalar>
class Xylene : public Component<Scalar, Xylene<Scalar> >
{
typedef Constants<Scalar> Consts;
public:
/*!
* \brief A human readable name for the xylene
*/
static const char *name()
{ return "xylene"; }
/*!
* \brief The molar mass in \f$\mathrm{[kg/mol]}\f$ of xylene
*/
constexpr static Scalar molarMass()
{ return 0.106; }
/*!
* \brief Returns the critical temperature \f$\mathrm{[K]}\f$ of xylene
*/
constexpr static Scalar criticalTemperature()
{ return 617.1; }
/*!
* \brief Returns the critical pressure \f$\mathrm{[Pa]}\f$ of xylene
*/
constexpr static Scalar criticalPressure()
{ return 35.4e5; }
/*!
* \brief Returns the temperature \f$\mathrm{[K]}\f$ at xylene's boiling point (1 atm).
*/
constexpr static Scalar boilingTemperature()
{ return 412.3; }
/*!
* \brief Returns the temperature \f$\mathrm{[K]}\f$ at xylene's triple point.
*/
static const Scalar tripleTemperature()
{
DUNE_THROW(Dune::NotImplemented, "tripleTemperature for xylene");
}
/*!
* \brief Returns the pressure \f$\mathrm{[Pa]}\f$ at xylene's triple point.
*/
static const Scalar triplePressure()
{
DUNE_THROW(Dune::NotImplemented, "triplePressure for xylene");
}
/*!
* \brief The saturation vapor pressure in \f$\mathrm{[Pa]}\f$ of pure xylene
* at a given temperature according to Antoine after Betz 1997 -> Gmehling et al 1980
*
* \param temperature temperature of component in \f$\mathrm{[K]}\f$
*/
static Scalar vaporPressure(Scalar temperature)
{
const Scalar A = 7.00909;;
const Scalar B = 1462.266;;
const Scalar C = 215.110;;
Scalar T = temperature - 273.15;
Scalar psat = 1.334*std::pow(10.0, (A - (B/(T + C)))); // in [mbar]
psat *= 100.0; // in [Pa] (0.001*1.E5)
return psat;
}
/*!
* \brief Specific heat cap of liquid xylene \f$\mathrm{[J/kg]}\f$.
*
* source : Reid et al. (fourth edition): Missenard group contrib. method (chap 5-7, Table 5-11, s. example 5-8)
*
* \param temp temperature of component in \f$\mathrm{[K]}\f$
* \param pressure pressure of component in \f$\mathrm{[Pa]}\f$
*/
static Scalar spHeatCapLiquidPhase(Scalar temp, Scalar pressure)
{
Scalar CH3,C6H5,H;
// after Reid et al. : Missenard group contrib. method (s. example 5-8)
// Xylene: C9H12 : 3* CH3 ; 1* C6H5 (phenyl-ring) ; -2* H (this was too much!)
// linear interpolation between table values [J/(mol K)]
if(temp < 298.0){ // take care: extrapolation for Temp<273
H = 13.4 + 1.2*(temp - 273.0)/25.0; // 13.4 + 1.2 = 14.6 = H(T=298K) i.e. interpolation of table values 273<T<298
CH3 = 40.0 + 1.6*(temp - 273.0)/25.0; // 40 + 1.6 = 41.6 = CH3(T=298K)
C6H5 = 113.0 + 4.2*(temp - 273.0)/25.0; // 113 + 4.2 = 117.2 = C6H5(T=298K)
}
else if(temp < 323.0){
H = 14.6 + 0.9*(temp - 298.0)/25.0; // i.e. interpolation of table values 298<T<323
CH3 = 41.6 + 1.9*(temp - 298.0)/25.0;
C6H5 = 117.2 + 6.2*(temp - 298.0)/25.0;
}
else if(temp < 348.0){
H = 15.5 + 1.2*(temp - 323.0)/25.0; // i.e. interpolation of table values 323<T<348
CH3 = 43.5 + 2.3*(temp - 323.0)/25.0;
C6H5 = 123.4 + 6.3*(temp - 323.0)/25.0;
}
else {
H = 16.7 + 2.1*(temp - 348.0)/25.0; // i.e. interpolation of table values 348<T<373
CH3 = 45.8 + 2.5*(temp - 348.0)/25.0; // take care: extrapolation for Temp>373
C6H5 = 129.7 + 6.3*(temp - 348.0)/25.0; // most likely leads to underestimation
}
return (C6H5 + 2*CH3 - H)/molarMass();// J/(mol K) -> J/(kg K)
}
/*!
* \copydoc Component::liquidEnthalpy
*/
static Scalar liquidEnthalpy(Scalar temperature, Scalar pressure)
{
// Gauss quadrature rule:
// Interval: [0K; temperature (K)]
// Gauss-Legendre-Integration with variable transformation:
// \int_a^b f(T) dT \approx (b-a)/2 \sum_i=1^n \alpha_i f( (b-a)/2 x_i + (a+b)/2 )
// with: n=2, legendre -> x_i = +/- \sqrt(1/3), \apha_i=1
// here: a=0, b=actual temperature in Kelvin
// \leadsto h(T) = \int_0^T c_p(T) dT
// \approx 0.5 T * (cp( (0.5-0.5*\sqrt(1/3)) T) + cp((0.5+0.5*\sqrt(1/3)) T))
// = 0.5 T * (cp(0.2113 T) + cp(0.7887 T) )
// enthalpy may have arbitrary reference state, but the empirical/fitted heatCapacity function needs Kelvin as input
return 0.5*temperature*(spHeatCapLiquidPhase(0.2113*temperature,pressure)
+ spHeatCapLiquidPhase(0.7887*temperature,pressure));
}
/*!
* \brief Latent heat of vaporization for xylene \f$\mathrm{[J/kg]}\f$.
*
* source : Reid et al. (fourth edition): Chen method (chap. 7-11, Delta H_v = Delta H_v (T) according to chap. 7-12)
*
* \param temperature temperature of component in \f$\mathrm{[K]}\f$
* \param pressure pressure of component in \f$\mathrm{[Pa]}\f$
*/
static Scalar heatVap(Scalar temperature,
Scalar pressure)
{
temperature = std::min(temperature, criticalTemperature()); // regularization
temperature = std::max(temperature, 0.0); // regularization
constexpr Scalar T_crit = criticalTemperature();
constexpr Scalar Tr1 = boilingTemperature()/criticalTemperature();
constexpr Scalar p_crit = criticalPressure();
// Chen method, eq. 7-11.4 (at boiling)
const Scalar DH_v_boil = Consts::R * T_crit * Tr1
* (3.978 * Tr1 - 3.958 + 1.555*std::log(p_crit * 1e-5 /*Pa->bar*/ ) )
/ (1.07 - Tr1); /* [J/mol] */
/* Variation with temp according to Watson relation eq 7-12.1*/
const Scalar Tr2 = temperature/criticalTemperature();
const Scalar n = 0.375;
const Scalar DH_vap = DH_v_boil * std::pow(((1.0 - Tr2)/(1.0 - Tr1)), n);
return (DH_vap/molarMass()); // we need [J/kg]
}
/*!
* \copydoc Component::gasEnthalpy
*
* The relation used here is true on the vapor pressure curve, i.e. as long
* as there is a liquid phase present.
*/
static Scalar gasEnthalpy(Scalar temperature, Scalar pressure)
{
return liquidEnthalpy(temperature, pressure) + heatVap(temperature, pressure);
}
/*!
* \copydoc Component::gasDensity
*/
static Scalar gasDensity(Scalar temperature, Scalar pressure)
{
return IdealGas<Scalar>::density(molarMass(),
temperature,
pressure);
}
/*!
* \brief The density \f$\mathrm{[mol/m^3]}\f$ of xylene gas at a given pressure and temperature.
*
* \param temperature temperature of component in \f$\mathrm{[K]}\f$
* \param pressure pressure of component in \f$\mathrm{[Pa]}\f$
*/
static Scalar molarGasDensity(Scalar temperature, Scalar pressure)
{
return gasDensity(temperature, pressure) / molarMass();
}
/*!
* \brief The molar density of pure xylene at a given pressure and temperature
* \f$\mathrm{[mol/m^3]}\f$.
*
* source : Reid et al. (fourth edition): Modified Racket technique (chap. 3-11, eq. 3-11.9)
*
* \param temp temperature of component in \f$\mathrm{[K]}\f$
* \param pressure pressure of component in \f$\mathrm{[Pa]}\f$
*/
static Scalar molarLiquidDensity(Scalar temp, Scalar pressure)
{
// saturated molar volume according to Lide, CRC Handbook of
// Thermophysical and Thermochemical Data, CRC Press, 1994
// valid for 245 < Temp < 600
temp = std::min(temp, 500.0); // regularization
temp = std::max(temp, 250.0); // regularization
const Scalar A1 = 0.25919; // from table
const Scalar A2 = 0.0014569; // from table
const Scalar expo = 1.0 + std::pow((1.0 - temp/criticalTemperature()), (2.0/7.0));
const Scalar V = A2*std::pow(A1, expo); // liquid molar volume [m^3/mol]
return 1.0/V; // molar density [mol/m^3]
}
/*!
* \copydoc Component::liquidDensity
*/
static Scalar liquidDensity(Scalar temperature, Scalar pressure)
{
return molarLiquidDensity(temperature, pressure)*molarMass(); // [kg/m^3]
}
/*!
* \copydoc Component::gasIsCompressible
*/
static constexpr bool gasIsCompressible()
{ return true; }
/*!
* \copydoc Component::gasIsIdeal
*/
static constexpr bool gasIsIdeal()
{ return true; }
/*!
* \copydoc Component::liquidIsCompressible
*/
static constexpr bool liquidIsCompressible()
{ return false; }
/*!
* \copydoc Component::gasViscosity
*/
static Scalar gasViscosity(Scalar temperature, Scalar pressure)
{
temperature = std::min(temperature, 500.0); // regularization
temperature = std::max(temperature, 250.0); // regularization
const Scalar Tr = std::max(temperature/criticalTemperature(), 1e-10);
const Scalar Fp0 = 1.0;
const Scalar xi = 0.004623;
const Scalar eta_xi = Fp0*(0.807*std::pow(Tr, 0.618)
- 0.357*std::exp(-0.449*Tr)
+ 0.34*std::exp(-4.058*Tr)
+ 0.018);
Scalar r = eta_xi/xi; // [1e-6 P]
r /= 1.0e7; // [Pa s]
return r;
}
/*!
* \copydoc Component::liquidViscosity
*/
static Scalar liquidViscosity(Scalar temperature, Scalar pressure)
{
temperature = std::min(temperature, 500.0); // regularization
temperature = std::max(temperature, 250.0); // regularization
const Scalar A = -3.82;
const Scalar B = 1027.0;
const Scalar C = -6.38e-4;
const Scalar D = 4.52e-7;
Scalar r = std::exp(A + B/temperature + C*temperature + D*temperature*temperature); // in [cP]
r *= 1.0e-3; // in [Pa s]
return r; // [Pa s]
}
};
} // end namespace
#endif