mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-12-28 18:21:00 -06:00
1043 lines
46 KiB
C++
1043 lines
46 KiB
C++
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
// vi: set et ts=4 sw=4 sts=4:
|
|
/*
|
|
This file is part of the Open Porous Media project (OPM).
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
Consult the COPYING file in the top-level source directory of this
|
|
module for the precise wording of the license and the list of
|
|
copyright holders.
|
|
*/
|
|
/*!
|
|
* \file
|
|
*
|
|
* \copydoc Opm::BlackOilPrimaryVariables
|
|
*/
|
|
#ifndef EWOMS_BLACK_OIL_PRIMARY_VARIABLES_HH
|
|
#define EWOMS_BLACK_OIL_PRIMARY_VARIABLES_HH
|
|
|
|
#include "blackoilproperties.hh"
|
|
#include "blackoilsolventmodules.hh"
|
|
#include "blackoilextbomodules.hh"
|
|
#include "blackoilpolymermodules.hh"
|
|
#include "blackoilenergymodules.hh"
|
|
#include "blackoilfoammodules.hh"
|
|
#include "blackoilbrinemodules.hh"
|
|
#include "blackoilmicpmodules.hh"
|
|
|
|
#include <opm/models/discretization/common/fvbaseprimaryvariables.hh>
|
|
|
|
#include <dune/common/fvector.hh>
|
|
|
|
#include <opm/material/constraintsolvers/NcpFlash.hpp>
|
|
#include <opm/material/fluidstates/CompositionalFluidState.hpp>
|
|
#include <opm/material/fluidstates/SimpleModularFluidState.hpp>
|
|
#include <opm/material/fluidsystems/BlackOilFluidSystem.hpp>
|
|
#include <opm/material/common/Valgrind.hpp>
|
|
|
|
namespace Opm {
|
|
template <class TypeTag, bool enableSolvent>
|
|
class BlackOilSolventModule;
|
|
|
|
template <class TypeTag, bool enableExtbo>
|
|
class BlackOilExtboModule;
|
|
|
|
template <class TypeTag, bool enablePolymer>
|
|
class BlackOilPolymerModule;
|
|
|
|
template <class TypeTag, bool enableBrine>
|
|
class BlackOilBrineModule;
|
|
|
|
/*!
|
|
* \ingroup BlackOilModel
|
|
*
|
|
* \brief Represents the primary variables used by the black-oil model.
|
|
*/
|
|
template <class TypeTag>
|
|
class BlackOilPrimaryVariables : public FvBasePrimaryVariables<TypeTag>
|
|
{
|
|
using ParentType = FvBasePrimaryVariables<TypeTag>;
|
|
using Implementation = GetPropType<TypeTag, Properties::PrimaryVariables>;
|
|
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
|
|
using Indices = GetPropType<TypeTag, Properties::Indices>;
|
|
using Problem = GetPropType<TypeTag, Properties::Problem>;
|
|
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
|
|
using MaterialLaw = GetPropType<TypeTag, Properties::MaterialLaw>;
|
|
using MaterialLawParams = GetPropType<TypeTag, Properties::MaterialLawParams>;
|
|
|
|
// number of equations
|
|
enum { numEq = getPropValue<TypeTag, Properties::NumEq>() };
|
|
|
|
// primary variable indices
|
|
enum { waterSwitchIdx = Indices::waterSwitchIdx };
|
|
enum { pressureSwitchIdx = Indices::pressureSwitchIdx };
|
|
enum { compositionSwitchIdx = Indices::compositionSwitchIdx };
|
|
enum { saltConcentrationIdx = Indices::saltConcentrationIdx };
|
|
|
|
static constexpr bool compositionSwitchEnabled = Indices::compositionSwitchIdx >= 0;
|
|
static constexpr bool waterEnabled = Indices::waterEnabled;
|
|
static constexpr bool gasEnabled = Indices::gasEnabled;
|
|
static constexpr bool oilEnabled = Indices::oilEnabled;
|
|
|
|
// phase indices from the fluid system
|
|
enum { numPhases = getPropValue<TypeTag, Properties::NumPhases>() };
|
|
enum { gasPhaseIdx = FluidSystem::gasPhaseIdx };
|
|
enum { waterPhaseIdx = FluidSystem::waterPhaseIdx };
|
|
enum { oilPhaseIdx = FluidSystem::oilPhaseIdx };
|
|
|
|
// component indices from the fluid system
|
|
enum { numComponents = getPropValue<TypeTag, Properties::NumComponents>() };
|
|
enum { enableSolvent = getPropValue<TypeTag, Properties::EnableSolvent>() };
|
|
enum { enableExtbo = getPropValue<TypeTag, Properties::EnableExtbo>() };
|
|
enum { enablePolymer = getPropValue<TypeTag, Properties::EnablePolymer>() };
|
|
enum { enableFoam = getPropValue<TypeTag, Properties::EnableFoam>() };
|
|
enum { enableBrine = getPropValue<TypeTag, Properties::EnableBrine>() };
|
|
enum { enableSaltPrecipitation = getPropValue<TypeTag, Properties::EnableSaltPrecipitation>() };
|
|
enum { enableEvaporation = getPropValue<TypeTag, Properties::EnableEvaporation>() };
|
|
enum { enableEnergy = getPropValue<TypeTag, Properties::EnableEnergy>() };
|
|
enum { enableTemperature = getPropValue<TypeTag, Properties::EnableTemperature>() };
|
|
enum { enableMICP = getPropValue<TypeTag, Properties::EnableMICP>() };
|
|
enum { gasCompIdx = FluidSystem::gasCompIdx };
|
|
enum { waterCompIdx = FluidSystem::waterCompIdx };
|
|
enum { oilCompIdx = FluidSystem::oilCompIdx };
|
|
|
|
using Toolbox = MathToolbox<Evaluation>;
|
|
using ComponentVector = Dune::FieldVector<Scalar, numComponents>;
|
|
using SolventModule = BlackOilSolventModule<TypeTag, enableSolvent>;
|
|
using ExtboModule = BlackOilExtboModule<TypeTag, enableExtbo>;
|
|
using PolymerModule = BlackOilPolymerModule<TypeTag, enablePolymer>;
|
|
using EnergyModule = BlackOilEnergyModule<TypeTag, enableEnergy>;
|
|
using FoamModule = BlackOilFoamModule<TypeTag, enableFoam>;
|
|
using BrineModule = BlackOilBrineModule<TypeTag, enableBrine>;
|
|
using MICPModule = BlackOilMICPModule<TypeTag, enableMICP>;
|
|
|
|
static_assert(numPhases == 3, "The black-oil model assumes three phases!");
|
|
static_assert(numComponents == 3, "The black-oil model assumes three components!");
|
|
|
|
public:
|
|
enum class WaterMeaning {
|
|
Sw, // water saturation
|
|
Rvw, // vaporized water
|
|
Rsw, // dissolved gas in water
|
|
Disabled, // The primary variable is not used
|
|
};
|
|
|
|
enum class PressureMeaning {
|
|
Po, // oil pressure
|
|
Pg, // gas pressure
|
|
Pw, // water pressure
|
|
};
|
|
enum class GasMeaning {
|
|
Sg, // gas saturation
|
|
Rs, // dissolved gas in oil
|
|
Rv, // vapporized oil
|
|
Disabled, // The primary variable is not used
|
|
};
|
|
|
|
enum class BrineMeaning {
|
|
Cs, // salt concentration
|
|
Sp, // (precipitated) salt saturation
|
|
Disabled, // The primary variable is not used
|
|
};
|
|
|
|
BlackOilPrimaryVariables()
|
|
: ParentType()
|
|
{
|
|
Valgrind::SetUndefined(*this);
|
|
pvtRegionIdx_ = 0;
|
|
}
|
|
|
|
/*!
|
|
* \copydoc ImmisciblePrimaryVariables::ImmisciblePrimaryVariables(Scalar)
|
|
*/
|
|
BlackOilPrimaryVariables(Scalar value)
|
|
: ParentType(value)
|
|
{
|
|
Valgrind::SetUndefined(primaryVarsMeaningWater_);
|
|
Valgrind::SetUndefined(primaryVarsMeaningGas_);
|
|
Valgrind::SetUndefined(primaryVarsMeaningPressure_);
|
|
Valgrind::SetUndefined(primaryVarsMeaningBrine_);
|
|
|
|
pvtRegionIdx_ = 0;
|
|
}
|
|
|
|
/*!
|
|
* \copydoc ImmisciblePrimaryVariables::ImmisciblePrimaryVariables(const ImmisciblePrimaryVariables& )
|
|
*/
|
|
BlackOilPrimaryVariables(const BlackOilPrimaryVariables& value) = default;
|
|
|
|
static BlackOilPrimaryVariables serializationTestObject()
|
|
{
|
|
BlackOilPrimaryVariables result;
|
|
result.pvtRegionIdx_ = 1;
|
|
result.primaryVarsMeaningBrine_ = BrineMeaning::Sp;
|
|
result.primaryVarsMeaningGas_ = GasMeaning::Rv;
|
|
result.primaryVarsMeaningPressure_ = PressureMeaning::Pg;
|
|
result.primaryVarsMeaningWater_ = WaterMeaning::Rsw;
|
|
for (size_t i = 0; i < result.size(); ++i) {
|
|
result[i] = i+1;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/*!
|
|
* \brief Set the index of the region which should be used for PVT properties.
|
|
*
|
|
* PVT regions represent spatial variation of the composition decribed
|
|
* by the pseudo-components used by the black oil model (i.e., oil, gas
|
|
* and water). This introduce spatially varying pvt behaviour.
|
|
*/
|
|
void setPvtRegionIndex(unsigned value)
|
|
{ pvtRegionIdx_ = static_cast<unsigned short>(value); }
|
|
|
|
/*!
|
|
* \brief Return the index of the region which should be used for PVT properties.
|
|
*/
|
|
unsigned pvtRegionIndex() const
|
|
{ return pvtRegionIdx_; }
|
|
|
|
/*!
|
|
* \brief Return the interpretation which should be applied to the switching primary
|
|
* variables.
|
|
*/
|
|
WaterMeaning primaryVarsMeaningWater() const
|
|
{ return primaryVarsMeaningWater_; }
|
|
|
|
/*!
|
|
* \brief Set the interpretation which should be applied to the switching primary
|
|
* variables.
|
|
*/
|
|
void setPrimaryVarsMeaningWater(WaterMeaning newMeaning)
|
|
{ primaryVarsMeaningWater_ = newMeaning; }
|
|
|
|
/*!
|
|
* \brief Return the interpretation which should be applied to the switching primary
|
|
* variables.
|
|
*/
|
|
PressureMeaning primaryVarsMeaningPressure() const
|
|
{ return primaryVarsMeaningPressure_; }
|
|
|
|
/*!
|
|
* \brief Set the interpretation which should be applied to the switching primary
|
|
* variables.
|
|
*/
|
|
void setPrimaryVarsMeaningPressure(PressureMeaning newMeaning)
|
|
{ primaryVarsMeaningPressure_ = newMeaning; }
|
|
|
|
/*!
|
|
* \brief Return the interpretation which should be applied to the switching primary
|
|
* variables.
|
|
*/
|
|
GasMeaning primaryVarsMeaningGas() const
|
|
{ return primaryVarsMeaningGas_; }
|
|
|
|
/*!
|
|
* \brief Set the interpretation which should be applied to the switching primary
|
|
* variables.
|
|
*/
|
|
void setPrimaryVarsMeaningGas(GasMeaning newMeaning)
|
|
{ primaryVarsMeaningGas_ = newMeaning; }
|
|
|
|
BrineMeaning primaryVarsMeaningBrine() const
|
|
{ return primaryVarsMeaningBrine_; }
|
|
|
|
/*!
|
|
* \brief Set the interpretation which should be applied to the switching primary
|
|
* variables.
|
|
*/
|
|
|
|
void setPrimaryVarsMeaningBrine(BrineMeaning newMeaning)
|
|
{ primaryVarsMeaningBrine_ = newMeaning; }
|
|
|
|
/*!
|
|
* \copydoc ImmisciblePrimaryVariables::assignMassConservative
|
|
*/
|
|
template <class FluidState>
|
|
void assignMassConservative(const FluidState& fluidState,
|
|
const MaterialLawParams& matParams,
|
|
bool isInEquilibrium = false)
|
|
{
|
|
using ConstEvaluation = typename std::remove_reference<typename FluidState::Scalar>::type;
|
|
using FsEvaluation = typename std::remove_const<ConstEvaluation>::type;
|
|
using FsToolbox = MathToolbox<FsEvaluation>;
|
|
|
|
#ifndef NDEBUG
|
|
// make sure the temperature is the same in all fluid phases
|
|
for (unsigned phaseIdx = 1; phaseIdx < numPhases; ++phaseIdx) {
|
|
Valgrind::CheckDefined(fluidState.temperature(0));
|
|
Valgrind::CheckDefined(fluidState.temperature(phaseIdx));
|
|
|
|
assert(fluidState.temperature(0) == fluidState.temperature(phaseIdx));
|
|
}
|
|
#endif // NDEBUG
|
|
|
|
// for the equilibrium case, we don't need complicated
|
|
// computations.
|
|
if (isInEquilibrium) {
|
|
assignNaive(fluidState);
|
|
return;
|
|
}
|
|
|
|
// If your compiler bails out here, you're probably not using a suitable black
|
|
// oil fluid system.
|
|
typename FluidSystem::template ParameterCache<Scalar> paramCache;
|
|
paramCache.setRegionIndex(pvtRegionIdx_);
|
|
paramCache.setMaxOilSat(FsToolbox::value(fluidState.saturation(oilPhaseIdx)));
|
|
|
|
// create a mutable fluid state with well defined densities based on the input
|
|
using NcpFlash = NcpFlash<Scalar, FluidSystem>;
|
|
using FlashFluidState = CompositionalFluidState<Scalar, FluidSystem>;
|
|
FlashFluidState fsFlash;
|
|
fsFlash.setTemperature(FsToolbox::value(fluidState.temperature(/*phaseIdx=*/0)));
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
fsFlash.setPressure(phaseIdx, FsToolbox::value(fluidState.pressure(phaseIdx)));
|
|
fsFlash.setSaturation(phaseIdx, FsToolbox::value(fluidState.saturation(phaseIdx)));
|
|
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx)
|
|
fsFlash.setMoleFraction(phaseIdx, compIdx, FsToolbox::value(fluidState.moleFraction(phaseIdx, compIdx)));
|
|
}
|
|
|
|
paramCache.updateAll(fsFlash);
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
if (!FluidSystem::phaseIsActive(phaseIdx))
|
|
continue;
|
|
|
|
Scalar rho = FluidSystem::template density<FlashFluidState, Scalar>(fsFlash, paramCache, phaseIdx);
|
|
fsFlash.setDensity(phaseIdx, rho);
|
|
}
|
|
|
|
// calculate the "global molarities"
|
|
ComponentVector globalMolarities(0.0);
|
|
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
if (!FluidSystem::phaseIsActive(phaseIdx))
|
|
continue;
|
|
|
|
globalMolarities[compIdx] +=
|
|
fsFlash.saturation(phaseIdx) * fsFlash.molarity(phaseIdx, compIdx);
|
|
}
|
|
}
|
|
|
|
// use a flash calculation to calculate a fluid state in
|
|
// thermodynamic equilibrium
|
|
|
|
// run the flash calculation
|
|
NcpFlash::template solve<MaterialLaw>(fsFlash, matParams, paramCache, globalMolarities);
|
|
|
|
// use the result to assign the primary variables
|
|
assignNaive(fsFlash);
|
|
}
|
|
|
|
/*!
|
|
* \copydoc ImmisciblePrimaryVariables::assignNaive
|
|
*/
|
|
template <class FluidState>
|
|
void assignNaive(const FluidState& fluidState)
|
|
{
|
|
using ConstEvaluation = typename std::remove_reference<typename FluidState::Scalar>::type;
|
|
using FsEvaluation = typename std::remove_const<ConstEvaluation>::type;
|
|
using FsToolbox = MathToolbox<FsEvaluation>;
|
|
|
|
bool gasPresent = FluidSystem::phaseIsActive(gasPhaseIdx)?(fluidState.saturation(gasPhaseIdx) > 0.0):false;
|
|
bool oilPresent = FluidSystem::phaseIsActive(oilPhaseIdx)?(fluidState.saturation(oilPhaseIdx) > 0.0):false;
|
|
bool waterPresent = FluidSystem::phaseIsActive(waterPhaseIdx)?(fluidState.saturation(waterPhaseIdx) > 0.0):false;
|
|
const auto& saltSaturation = BlackOil::getSaltSaturation_<FluidSystem, FluidState, Scalar>(fluidState, pvtRegionIdx_);
|
|
bool precipitatedSaltPresent = enableSaltPrecipitation?(saltSaturation > 0.0):false;
|
|
bool oneActivePhases = FluidSystem::numActivePhases() == 1;
|
|
// deal with the primary variables for the energy extension
|
|
EnergyModule::assignPrimaryVars(*this, fluidState);
|
|
|
|
// Determine the meaning of the pressure primary variables
|
|
// Depending on the phases present, this variable is either interpreted as the
|
|
// pressure of the oil phase, gas phase (if no oil) or water phase (if only water)
|
|
if (gasPresent && FluidSystem::enableVaporizedOil() && !oilPresent){
|
|
primaryVarsMeaningPressure_ = PressureMeaning::Pg;
|
|
} else if (FluidSystem::phaseIsActive(oilPhaseIdx)) {
|
|
primaryVarsMeaningPressure_ = PressureMeaning::Po;
|
|
} else if ( waterPresent && FluidSystem::enableDissolvedGasInWater() && !gasPresent){
|
|
primaryVarsMeaningPressure_ = PressureMeaning::Pw;
|
|
} else if (FluidSystem::phaseIsActive(gasPhaseIdx)) {
|
|
primaryVarsMeaningPressure_ = PressureMeaning::Pg;
|
|
} else {
|
|
assert(FluidSystem::phaseIsActive(waterPhaseIdx));
|
|
primaryVarsMeaningPressure_ = PressureMeaning::Pw;
|
|
}
|
|
|
|
// Determine the meaning of the water primary variables
|
|
// Depending on the phases present, this variable is either interpreted as
|
|
// water saturation or vapporized water in the gas phase
|
|
// For two-phase gas-oil models and one-phase case the variable is disabled.
|
|
if ( waterPresent && gasPresent ){
|
|
primaryVarsMeaningWater_ = WaterMeaning::Sw;
|
|
} else if (gasPresent && FluidSystem::enableVaporizedWater()) {
|
|
primaryVarsMeaningWater_ = WaterMeaning::Rvw;
|
|
} else if (waterPresent && FluidSystem::enableDissolvedGasInWater()) {
|
|
primaryVarsMeaningWater_ = WaterMeaning::Rsw;
|
|
} else if (FluidSystem::phaseIsActive(waterPhaseIdx) && !oneActivePhases) {
|
|
primaryVarsMeaningWater_ = WaterMeaning::Sw;
|
|
} else {
|
|
primaryVarsMeaningWater_ = WaterMeaning::Disabled;
|
|
}
|
|
|
|
// Determine the meaning of the gas primary variables
|
|
// Depending on the phases present, this variable is either interpreted as the
|
|
// saturation of the gas phase, as the fraction of the gas component in the oil
|
|
// phase (Rs) or as the fraction of the oil component (Rv) in the gas phase.
|
|
// For two-phase water-oil and water-gas models and one-phase case the variable is disabled.
|
|
if ( gasPresent && oilPresent ) {
|
|
primaryVarsMeaningGas_ = GasMeaning::Sg;
|
|
} else if (oilPresent && FluidSystem::enableDissolvedGas()) {
|
|
primaryVarsMeaningGas_ = GasMeaning::Rs;
|
|
} else if (gasPresent && FluidSystem::enableVaporizedOil()){
|
|
primaryVarsMeaningGas_ = GasMeaning::Rv;
|
|
} else if (FluidSystem::phaseIsActive(gasPhaseIdx) && FluidSystem::phaseIsActive(oilPhaseIdx)) {
|
|
primaryVarsMeaningGas_ = GasMeaning::Sg;
|
|
} else {
|
|
primaryVarsMeaningGas_ = GasMeaning::Disabled;
|
|
}
|
|
|
|
// Determine the meaning of the brine primary variables
|
|
if constexpr (enableSaltPrecipitation){
|
|
if (precipitatedSaltPresent)
|
|
primaryVarsMeaningBrine_ = BrineMeaning::Sp;
|
|
else
|
|
primaryVarsMeaningBrine_ = BrineMeaning::Cs;
|
|
} else {
|
|
primaryVarsMeaningBrine_ = BrineMeaning::Disabled;
|
|
}
|
|
|
|
// assign the actual primary variables
|
|
switch(primaryVarsMeaningPressure()) {
|
|
case PressureMeaning::Po:
|
|
(*this)[pressureSwitchIdx] = FsToolbox::value(fluidState.pressure(oilPhaseIdx));
|
|
break;
|
|
case PressureMeaning::Pg:
|
|
(*this)[pressureSwitchIdx] = FsToolbox::value(fluidState.pressure(gasPhaseIdx));
|
|
break;
|
|
case PressureMeaning::Pw:
|
|
(*this)[pressureSwitchIdx] = FsToolbox::value(fluidState.pressure(waterPhaseIdx));
|
|
break;
|
|
default:
|
|
throw std::logic_error("No valid primary variable selected for pressure");
|
|
}
|
|
switch(primaryVarsMeaningWater()) {
|
|
case WaterMeaning::Sw:
|
|
{
|
|
(*this)[waterSwitchIdx] = FsToolbox::value(fluidState.saturation(waterPhaseIdx));
|
|
break;
|
|
}
|
|
case WaterMeaning::Rvw:
|
|
{
|
|
const auto& rvw = BlackOil::getRvw_<FluidSystem, FluidState, Scalar>(fluidState, pvtRegionIdx_);
|
|
(*this)[waterSwitchIdx] = rvw;
|
|
break;
|
|
}
|
|
case WaterMeaning::Rsw:
|
|
{
|
|
const auto& Rsw = BlackOil::getRsw_<FluidSystem, FluidState, Scalar>(fluidState, pvtRegionIdx_);
|
|
(*this)[waterSwitchIdx] = Rsw;
|
|
break;
|
|
}
|
|
case WaterMeaning::Disabled:
|
|
{
|
|
break;
|
|
}
|
|
default:
|
|
throw std::logic_error("No valid primary variable selected for water");
|
|
}
|
|
switch(primaryVarsMeaningGas()) {
|
|
case GasMeaning::Sg:
|
|
{
|
|
(*this)[compositionSwitchIdx] = FsToolbox::value(fluidState.saturation(gasPhaseIdx));
|
|
break;
|
|
}
|
|
case GasMeaning::Rs:
|
|
{
|
|
const auto& rs = BlackOil::getRs_<FluidSystem, FluidState, Scalar>(fluidState, pvtRegionIdx_);
|
|
(*this)[compositionSwitchIdx] = rs;
|
|
break;
|
|
}
|
|
case GasMeaning::Rv:
|
|
{
|
|
const auto& rv = BlackOil::getRv_<FluidSystem, FluidState, Scalar>(fluidState, pvtRegionIdx_);
|
|
(*this)[compositionSwitchIdx] = rv;
|
|
break;
|
|
}
|
|
case GasMeaning::Disabled:
|
|
{
|
|
break;
|
|
}
|
|
default:
|
|
throw std::logic_error("No valid primary variable selected for composision");
|
|
}
|
|
checkDefined();
|
|
}
|
|
|
|
/*!
|
|
* \brief Adapt the interpretation of the switching variables to be physically
|
|
* meaningful.
|
|
*
|
|
* If the meaning of the primary variables changes, their values are also adapted in a
|
|
* meaningful manner.
|
|
* A Scalar eps can be passed to make the switching condition more strict.
|
|
* Useful for avoiding ocsilation in the primaryVarsMeaning.
|
|
*
|
|
* \return true Iff the interpretation of one of the switching variables was changed
|
|
*/
|
|
bool adaptPrimaryVariables(const Problem& problem, unsigned globalDofIdx, Scalar swMaximum, Scalar thresholdWaterFilledCell, Scalar eps = 0.0)
|
|
{
|
|
// this function accesses quite a few black-oil specific low-level functions
|
|
// directly for better performance (instead of going the canonical way through
|
|
// the IntensiveQuantities). The reason is that most intensive quantities are not
|
|
// required to be able to decide if the primary variables needs to be switched or
|
|
// not, so it would be a waste to compute them.
|
|
|
|
// Both the primary variable meaning of water and gas are disabled i.e.
|
|
// It is a one-phase case and we no variable meaning switch is needed.
|
|
if (primaryVarsMeaningWater() == WaterMeaning::Disabled && primaryVarsMeaningGas() == GasMeaning::Disabled){
|
|
return false;
|
|
}
|
|
|
|
// Read the current saturation from the primary variables
|
|
Scalar sw = 0.0;
|
|
Scalar sg = 0.0;
|
|
Scalar saltConcentration = 0.0;
|
|
const Scalar& T = asImp_().temperature_(problem, globalDofIdx);
|
|
if (primaryVarsMeaningWater() == WaterMeaning::Sw)
|
|
sw = (*this)[waterSwitchIdx];
|
|
if (primaryVarsMeaningGas() == GasMeaning::Sg)
|
|
sg = (*this)[compositionSwitchIdx];
|
|
|
|
if (primaryVarsMeaningGas() == GasMeaning::Disabled && gasEnabled)
|
|
sg = 1.0 - sw; // water + gas case
|
|
|
|
// if solid phase disappeares: Sp (Solid salt saturation) -> Cs (salt concentration)
|
|
// if solid phase appears: Cs (salt concentration) -> Sp (Solid salt saturation)
|
|
if constexpr (enableSaltPrecipitation) {
|
|
Scalar saltSolubility = BrineModule::saltSol(pvtRegionIndex());
|
|
if (primaryVarsMeaningBrine() == BrineMeaning::Sp) {
|
|
saltConcentration = saltSolubility;
|
|
Scalar saltSat = (*this)[saltConcentrationIdx];
|
|
if (saltSat < -eps){ //precipitated salt dissappears
|
|
setPrimaryVarsMeaningBrine(BrineMeaning::Cs);
|
|
(*this)[saltConcentrationIdx] = saltSolubility; //set salt concentration to solubility limit
|
|
}
|
|
}
|
|
else if (primaryVarsMeaningBrine() == BrineMeaning::Cs) {
|
|
saltConcentration = (*this)[saltConcentrationIdx];
|
|
if (saltConcentration > saltSolubility + eps){ //salt concentration exceeds solubility limit
|
|
setPrimaryVarsMeaningBrine(BrineMeaning::Sp);
|
|
(*this)[saltConcentrationIdx] = 0.0;
|
|
}
|
|
}
|
|
}
|
|
|
|
// keep track if any meaning has changed
|
|
bool changed = false;
|
|
|
|
// Special case for cells with almost only water
|
|
// for these cells both saturations (if the phase is enabled) is used
|
|
// to avoid singular systems.
|
|
// If dissolved gas in water is enabled we shouldn't enter
|
|
// here but instead switch to Rsw as primary variable
|
|
// as sw >= 1.0 -> gas <= 0 (i.e. gas phase disappears)
|
|
if (sw >= thresholdWaterFilledCell && !FluidSystem::enableDissolvedGasInWater()) {
|
|
|
|
// make sure water saturations does not exceed sw_maximum. Default to 1.0
|
|
if constexpr (waterEnabled) {
|
|
(*this)[Indices::waterSwitchIdx] = std::min(swMaximum, sw);
|
|
assert(primaryVarsMeaningWater() == WaterMeaning::Sw);
|
|
}
|
|
// the hydrocarbon gas saturation is set to 0.0
|
|
if constexpr (compositionSwitchEnabled)
|
|
(*this)[Indices::compositionSwitchIdx] = 0.0;
|
|
|
|
changed = primaryVarsMeaningGas() != GasMeaning::Sg;
|
|
if(changed) {
|
|
if constexpr (compositionSwitchEnabled)
|
|
setPrimaryVarsMeaningGas(GasMeaning::Sg);
|
|
|
|
// use water pressure?
|
|
}
|
|
return changed;
|
|
}
|
|
|
|
switch(primaryVarsMeaningWater()) {
|
|
case WaterMeaning::Sw:
|
|
{
|
|
// if water phase disappeares: Sw (water saturation) -> Rvw (fraction of water in gas phase)
|
|
if(sw < -eps && sg > eps && FluidSystem::enableVaporizedWater()) {
|
|
Scalar p = (*this)[pressureSwitchIdx];
|
|
if(primaryVarsMeaningPressure() == PressureMeaning::Po) {
|
|
std::array<Scalar, numPhases> pC = { 0.0 };
|
|
const MaterialLawParams& matParams = problem.materialLawParams(globalDofIdx);
|
|
Scalar so = 1.0 - sg - solventSaturation_();
|
|
computeCapillaryPressures_(pC, so, sg + solventSaturation_(), /*sw=*/ 0.0, matParams);
|
|
p += (pC[gasPhaseIdx] - pC[oilPhaseIdx]);
|
|
}
|
|
Scalar rvwSat = FluidSystem::gasPvt().saturatedWaterVaporizationFactor(pvtRegionIdx_,
|
|
T,
|
|
p,
|
|
saltConcentration);
|
|
setPrimaryVarsMeaningWater(WaterMeaning::Rvw);
|
|
(*this)[Indices::waterSwitchIdx] = rvwSat; //primary variable becomes Rvw
|
|
changed = true;
|
|
break;
|
|
}
|
|
// if gas phase disappeares: Sw (water saturation) -> Rsw (fraction of gas in water phase)
|
|
// and Pg (gas pressure) -> Pw ( water pressure)
|
|
if(sg < -eps && sw > eps && FluidSystem::enableDissolvedGasInWater()) {
|
|
const Scalar& pg = (*this)[pressureSwitchIdx];
|
|
assert(primaryVarsMeaningPressure() == PressureMeaning::Pg);
|
|
std::array<Scalar, numPhases> pC = { 0.0 };
|
|
const MaterialLawParams& matParams = problem.materialLawParams(globalDofIdx);
|
|
Scalar so = 1.0 - sw - solventSaturation_();
|
|
computeCapillaryPressures_(pC, so, /*sg=*/ 0.0, sw, matParams);
|
|
Scalar pw = pg + (pC[waterPhaseIdx] - pC[gasPhaseIdx]);
|
|
Scalar rswSat = FluidSystem::waterPvt().saturatedGasDissolutionFactor(pvtRegionIdx_,
|
|
T,
|
|
pw,
|
|
saltConcentration);
|
|
setPrimaryVarsMeaningWater(WaterMeaning::Rsw);
|
|
(*this)[Indices::waterSwitchIdx] = rswSat; //primary variable becomes Rsw
|
|
setPrimaryVarsMeaningPressure(PressureMeaning::Pw);
|
|
(*this)[Indices::pressureSwitchIdx] = pw;
|
|
changed = true;
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
case WaterMeaning::Rvw:
|
|
{
|
|
const Scalar& rvw = (*this)[waterSwitchIdx];
|
|
Scalar p = (*this)[pressureSwitchIdx];
|
|
if(primaryVarsMeaningPressure() == PressureMeaning::Po) {
|
|
std::array<Scalar, numPhases> pC = { 0.0 };
|
|
const MaterialLawParams& matParams = problem.materialLawParams(globalDofIdx);
|
|
Scalar so = 1.0 - sg - solventSaturation_();
|
|
computeCapillaryPressures_(pC, so, sg + solventSaturation_(), /*sw=*/ 0.0, matParams);
|
|
p += (pC[gasPhaseIdx] - pC[oilPhaseIdx]);
|
|
}
|
|
Scalar rvwSat = FluidSystem::gasPvt().saturatedWaterVaporizationFactor(pvtRegionIdx_,
|
|
T,
|
|
p,
|
|
saltConcentration);
|
|
// if water phase appears: Rvw (fraction of water in gas phase) -> Sw (water saturation)
|
|
if (rvw > rvwSat*(1.0 + eps)) {
|
|
setPrimaryVarsMeaningWater(WaterMeaning::Sw);
|
|
(*this)[Indices::waterSwitchIdx] = 0.0; // water saturation
|
|
changed = true;
|
|
}
|
|
break;
|
|
}
|
|
case WaterMeaning::Rsw:
|
|
{
|
|
// Gas phase not present. The hydrocarbon gas phase
|
|
// appears as soon as more of the gas component is present in the water phase
|
|
// than what saturated water can hold.
|
|
const Scalar& pw = (*this)[pressureSwitchIdx];
|
|
assert(primaryVarsMeaningPressure() == PressureMeaning::Pw);
|
|
Scalar rswSat = FluidSystem::waterPvt().saturatedGasDissolutionFactor(pvtRegionIdx_,
|
|
T,
|
|
pw,
|
|
saltConcentration);
|
|
|
|
Scalar rsw = (*this)[Indices::waterSwitchIdx];
|
|
if (rsw > rswSat) {
|
|
// the gas phase appears, i.e., switch the primary variables to WaterMeaning::Sw
|
|
setPrimaryVarsMeaningWater(WaterMeaning::Sw);
|
|
(*this)[Indices::waterSwitchIdx] = 1.0; // hydrocarbon water saturation
|
|
setPrimaryVarsMeaningPressure(PressureMeaning::Pg);
|
|
std::array<Scalar, numPhases> pC = { 0.0 };
|
|
const MaterialLawParams& matParams = problem.materialLawParams(globalDofIdx);
|
|
computeCapillaryPressures_(pC, /*so=*/ 0.0, /*sg=*/ 0.0, /*sw=*/ 1.0, matParams);
|
|
Scalar pg = pw + (pC[gasPhaseIdx] - pC[waterPhaseIdx]);
|
|
(*this)[Indices::pressureSwitchIdx] = pg;
|
|
changed = true;
|
|
}
|
|
break;
|
|
}
|
|
case WaterMeaning::Disabled:
|
|
{
|
|
break;
|
|
}
|
|
default:
|
|
throw std::logic_error("No valid primary variable selected for water");
|
|
}
|
|
|
|
|
|
// if gas phase disappeares: Sg (gas saturation) -> Rs (fraction of gas in oil phase)
|
|
// if oil phase disappeares: Sg (gas saturation) -> Rv (fraction of oil in gas phase)
|
|
// Po (oil pressure ) -> Pg (gas pressure)
|
|
|
|
// if gas phase appears: Rs (fraction of gas in oil phase) -> Sg (gas saturation)
|
|
// if oil phase appears: Rv (fraction of oil in gas phase) -> Sg (gas saturation)
|
|
// Pg (gas pressure ) -> Po (oil pressure)
|
|
switch(primaryVarsMeaningGas()) {
|
|
case GasMeaning::Sg:
|
|
{
|
|
Scalar s = 1.0 - sw - solventSaturation_();
|
|
if (sg < -eps && s > 0.0 && FluidSystem::enableDissolvedGas()) {
|
|
const Scalar& po = (*this)[pressureSwitchIdx];
|
|
setPrimaryVarsMeaningGas(GasMeaning::Rs);
|
|
Scalar soMax = std::max(s, problem.maxOilSaturation(globalDofIdx));
|
|
Scalar rsMax = problem.maxGasDissolutionFactor(/*timeIdx=*/0, globalDofIdx);
|
|
Scalar rsSat = enableExtbo ? ExtboModule::rs(pvtRegionIndex(),
|
|
po,
|
|
zFraction_())
|
|
: FluidSystem::oilPvt().saturatedGasDissolutionFactor(pvtRegionIdx_,
|
|
T,
|
|
po,
|
|
s,
|
|
soMax);
|
|
(*this)[Indices::compositionSwitchIdx] = std::min(rsMax, rsSat);
|
|
changed = true;
|
|
}
|
|
Scalar so = 1.0 - sw - solventSaturation_() - sg;
|
|
if (so < -eps && sg > 0.0 && FluidSystem::enableVaporizedOil()) {
|
|
// the oil phase disappeared and some hydrocarbon gas phase is still
|
|
// present, i.e., switch the primary variables to GasMeaning::Rv.
|
|
// we only have the oil pressure readily available, but we need the gas
|
|
// pressure, i.e. we must determine capillary pressure
|
|
const Scalar& po = (*this)[pressureSwitchIdx];
|
|
std::array<Scalar, numPhases> pC = { 0.0 };
|
|
const MaterialLawParams& matParams = problem.materialLawParams(globalDofIdx);
|
|
computeCapillaryPressures_(pC, /*so=*/0.0, sg + solventSaturation_(), sw, matParams);
|
|
Scalar pg = po + (pC[gasPhaseIdx] - pC[oilPhaseIdx]);
|
|
|
|
// we start at the GasMeaning::Rv value that corresponds to that of oil-saturated
|
|
// hydrocarbon gas
|
|
setPrimaryVarsMeaningPressure(PressureMeaning::Pg);
|
|
(*this)[Indices::pressureSwitchIdx] = pg;
|
|
Scalar soMax = problem.maxOilSaturation(globalDofIdx);
|
|
Scalar rvMax = problem.maxOilVaporizationFactor(/*timeIdx=*/0, globalDofIdx);
|
|
Scalar rvSat = enableExtbo ? ExtboModule::rv(pvtRegionIndex(),
|
|
pg,
|
|
zFraction_())
|
|
: FluidSystem::gasPvt().saturatedOilVaporizationFactor(pvtRegionIdx_,
|
|
T,
|
|
pg,
|
|
Scalar(0),
|
|
soMax);
|
|
setPrimaryVarsMeaningGas(GasMeaning::Rv);
|
|
(*this)[Indices::compositionSwitchIdx] = std::min(rvMax, rvSat);
|
|
changed = true;
|
|
}
|
|
break;
|
|
}
|
|
case GasMeaning::Rs:
|
|
{
|
|
// Gas phase not present. The hydrocarbon gas phase
|
|
// appears as soon as more of the gas component is present in the oil phase
|
|
// than what saturated oil can hold.
|
|
const Scalar& po = (*this)[pressureSwitchIdx];
|
|
Scalar so = 1.0 - sw - solventSaturation_();
|
|
Scalar soMax = std::max(so, problem.maxOilSaturation(globalDofIdx));
|
|
Scalar rsMax = problem.maxGasDissolutionFactor(/*timeIdx=*/0, globalDofIdx);
|
|
Scalar rsSat = enableExtbo ? ExtboModule::rs(pvtRegionIndex(),
|
|
po,
|
|
zFraction_())
|
|
: FluidSystem::oilPvt().saturatedGasDissolutionFactor(pvtRegionIdx_,
|
|
T,
|
|
po,
|
|
so,
|
|
soMax);
|
|
|
|
Scalar rs = (*this)[Indices::compositionSwitchIdx];
|
|
if (rs > std::min(rsMax, rsSat*(1.0 + eps))) {
|
|
// the gas phase appears, i.e., switch the primary variables to GasMeaning::Sg
|
|
setPrimaryVarsMeaningGas(GasMeaning::Sg);
|
|
(*this)[Indices::compositionSwitchIdx] = 0.0; // hydrocarbon gas saturation
|
|
changed = true;
|
|
}
|
|
break;
|
|
}
|
|
case GasMeaning::Rv:
|
|
{
|
|
// The oil phase appears as
|
|
// soon as more of the oil component is present in the hydrocarbon gas phase
|
|
// than what saturated gas contains. Note that we use the blackoil specific
|
|
// low-level PVT objects here for performance reasons.
|
|
const Scalar& pg = (*this)[pressureSwitchIdx];
|
|
Scalar soMax = problem.maxOilSaturation(globalDofIdx);
|
|
Scalar rvMax = problem.maxOilVaporizationFactor(/*timeIdx=*/0, globalDofIdx);
|
|
Scalar rvSat = enableExtbo ? ExtboModule::rv(pvtRegionIndex(),
|
|
pg,
|
|
zFraction_())
|
|
: FluidSystem::gasPvt().saturatedOilVaporizationFactor(pvtRegionIdx_,
|
|
T,
|
|
pg,
|
|
/*so=*/Scalar(0.0),
|
|
soMax);
|
|
|
|
Scalar rv = (*this)[Indices::compositionSwitchIdx];
|
|
if (rv > std::min(rvMax, rvSat*(1.0 + eps))) {
|
|
// switch to phase equilibrium mode because the oil phase appears. here
|
|
// we also need the capillary pressures to calculate the oil phase
|
|
// pressure using the gas phase pressure
|
|
Scalar sg2 = 1.0 - sw - solventSaturation_();
|
|
std::array<Scalar, numPhases> pC = { 0.0 };
|
|
const MaterialLawParams& matParams = problem.materialLawParams(globalDofIdx);
|
|
computeCapillaryPressures_(pC,
|
|
/*so=*/0.0,
|
|
/*sg=*/sg2 + solventSaturation_(),
|
|
sw,
|
|
matParams);
|
|
Scalar po = pg + (pC[oilPhaseIdx] - pC[gasPhaseIdx]);
|
|
|
|
setPrimaryVarsMeaningGas(GasMeaning::Sg);
|
|
setPrimaryVarsMeaningPressure(PressureMeaning::Po);
|
|
(*this)[Indices::pressureSwitchIdx] = po;
|
|
(*this)[Indices::compositionSwitchIdx] = sg2; // hydrocarbon gas saturation
|
|
changed = true;
|
|
}
|
|
break;
|
|
}
|
|
case GasMeaning::Disabled:
|
|
{
|
|
break;
|
|
}
|
|
default:
|
|
throw std::logic_error("No valid primary variable selected for water");
|
|
}
|
|
return changed;
|
|
}
|
|
|
|
bool chopAndNormalizeSaturations(){
|
|
if (primaryVarsMeaningWater() == WaterMeaning::Disabled &&
|
|
primaryVarsMeaningGas() == GasMeaning::Disabled){
|
|
return false;
|
|
}
|
|
Scalar sw = 0.0;
|
|
if (primaryVarsMeaningWater() == WaterMeaning::Sw)
|
|
sw = (*this)[Indices::waterSwitchIdx];
|
|
Scalar sg = 0.0;
|
|
if (primaryVarsMeaningGas() == GasMeaning::Sg)
|
|
sg = (*this)[Indices::compositionSwitchIdx];
|
|
|
|
Scalar ssol = 0.0;
|
|
if constexpr (enableSolvent)
|
|
ssol =(*this) [Indices::solventSaturationIdx];
|
|
|
|
Scalar so = 1.0 - sw - sg - ssol;
|
|
sw = std::min(std::max(sw,0.0),1.0);
|
|
so = std::min(std::max(so,0.0),1.0);
|
|
sg = std::min(std::max(sg,0.0),1.0);
|
|
ssol = std::min(std::max(ssol,0.0),1.0);
|
|
Scalar st = sw + so + sg + ssol;
|
|
sw = sw/st;
|
|
sg = sg/st;
|
|
ssol = ssol/st;
|
|
assert(st>0.5);
|
|
if (primaryVarsMeaningWater() == WaterMeaning::Sw)
|
|
(*this)[Indices::waterSwitchIdx] = sw;
|
|
if (primaryVarsMeaningGas() == GasMeaning::Sg)
|
|
(*this)[Indices::compositionSwitchIdx] = sg;
|
|
if constexpr (enableSolvent)
|
|
(*this) [Indices::solventSaturationIdx] = ssol;
|
|
|
|
return !(st==1);
|
|
}
|
|
|
|
BlackOilPrimaryVariables& operator=(const BlackOilPrimaryVariables& other) = default;
|
|
BlackOilPrimaryVariables& operator=(Scalar value)
|
|
{
|
|
for (unsigned i = 0; i < numEq; ++i)
|
|
(*this)[i] = value;
|
|
|
|
return *this;
|
|
}
|
|
|
|
/*!
|
|
* \brief Instruct valgrind to check the definedness of all attributes of this class.
|
|
*
|
|
* We cannot simply check the definedness of the whole object because there might be
|
|
* "alignedness holes" in the memory layout which are caused by the pseudo primary
|
|
* variables.
|
|
*/
|
|
void checkDefined() const
|
|
{
|
|
#ifndef NDEBUG
|
|
// check the "real" primary variables
|
|
for (unsigned i = 0; i < this->size(); ++i)
|
|
Valgrind::CheckDefined((*this)[i]);
|
|
|
|
// check the "pseudo" primary variables
|
|
Valgrind::CheckDefined(primaryVarsMeaningWater_);
|
|
Valgrind::CheckDefined(primaryVarsMeaningGas_);
|
|
Valgrind::CheckDefined(primaryVarsMeaningPressure_);
|
|
Valgrind::CheckDefined(primaryVarsMeaningBrine_);
|
|
|
|
Valgrind::CheckDefined(pvtRegionIdx_);
|
|
#endif // NDEBUG
|
|
}
|
|
|
|
template<class Serializer>
|
|
void serializeOp(Serializer& serializer)
|
|
{
|
|
using FV = Dune::FieldVector<double,getPropValue<TypeTag, Properties::NumEq>()>;
|
|
serializer(static_cast<FV&>(*this));
|
|
serializer(primaryVarsMeaningWater_);
|
|
serializer(primaryVarsMeaningPressure_);
|
|
serializer(primaryVarsMeaningGas_);
|
|
serializer(primaryVarsMeaningBrine_);
|
|
serializer(pvtRegionIdx_);
|
|
}
|
|
|
|
bool operator==(const BlackOilPrimaryVariables& rhs) const
|
|
{
|
|
return static_cast<const FvBasePrimaryVariables<TypeTag>&>(*this) == rhs &&
|
|
this->primaryVarsMeaningWater_ == rhs.primaryVarsMeaningWater_ &&
|
|
this->primaryVarsMeaningPressure_ == rhs.primaryVarsMeaningPressure_ &&
|
|
this->primaryVarsMeaningGas_ == rhs.primaryVarsMeaningGas_ &&
|
|
this->primaryVarsMeaningBrine_ == rhs.primaryVarsMeaningBrine_ &&
|
|
this->pvtRegionIdx_ == rhs.pvtRegionIdx_;
|
|
}
|
|
|
|
private:
|
|
Implementation& asImp_()
|
|
{ return *static_cast<Implementation*>(this); }
|
|
|
|
const Implementation& asImp_() const
|
|
{ return *static_cast<const Implementation*>(this); }
|
|
|
|
Scalar solventSaturation_() const
|
|
{
|
|
if constexpr (enableSolvent)
|
|
return (*this)[Indices::solventSaturationIdx];
|
|
else
|
|
return 0.0;
|
|
}
|
|
|
|
Scalar zFraction_() const
|
|
{
|
|
if constexpr (enableExtbo)
|
|
return (*this)[Indices::zFractionIdx];
|
|
else
|
|
return 0.0;
|
|
}
|
|
|
|
Scalar polymerConcentration_() const
|
|
{
|
|
if constexpr (enablePolymer)
|
|
return (*this)[Indices::polymerConcentrationIdx];
|
|
else
|
|
return 0.0;
|
|
}
|
|
|
|
Scalar foamConcentration_() const
|
|
{
|
|
if constexpr (enableFoam)
|
|
return (*this)[Indices::foamConcentrationIdx];
|
|
else
|
|
return 0.0;
|
|
}
|
|
|
|
Scalar saltConcentration_() const
|
|
{
|
|
if constexpr (enableBrine)
|
|
return (*this)[Indices::saltConcentrationIdx];
|
|
else
|
|
return 0.0;
|
|
}
|
|
|
|
Scalar temperature_(const Problem& problem, unsigned globalDofIdx) const
|
|
{
|
|
if constexpr (enableEnergy)
|
|
return (*this)[Indices::temperatureIdx];
|
|
else if constexpr( enableTemperature)
|
|
return problem.temperature(globalDofIdx, /*timeIdx*/ 0);
|
|
|
|
else
|
|
return FluidSystem::reservoirTemperature();
|
|
}
|
|
|
|
Scalar microbialConcentration_() const
|
|
{
|
|
if constexpr (enableMICP)
|
|
return (*this)[Indices::microbialConcentrationIdx];
|
|
else
|
|
return 0.0;
|
|
}
|
|
|
|
Scalar oxygenConcentration_() const
|
|
{
|
|
if constexpr (enableMICP)
|
|
return (*this)[Indices::oxygenConcentrationIdx];
|
|
else
|
|
return 0.0;
|
|
}
|
|
|
|
Scalar ureaConcentration_() const
|
|
{
|
|
if constexpr (enableMICP)
|
|
return (*this)[Indices::ureaConcentrationIdx];
|
|
else
|
|
return 0.0;
|
|
}
|
|
|
|
Scalar biofilmConcentration_() const
|
|
{
|
|
if constexpr (enableMICP)
|
|
return (*this)[Indices::biofilmConcentrationIdx];
|
|
else
|
|
return 0.0;
|
|
}
|
|
|
|
Scalar calciteConcentration_() const
|
|
{
|
|
if constexpr (enableMICP)
|
|
return (*this)[Indices::calciteConcentrationIdx];
|
|
else
|
|
return 0.0;
|
|
}
|
|
|
|
template <class Container>
|
|
void computeCapillaryPressures_(Container& result,
|
|
Scalar so,
|
|
Scalar sg,
|
|
Scalar sw,
|
|
const MaterialLawParams& matParams) const
|
|
{
|
|
using SatOnlyFluidState = SimpleModularFluidState<Scalar,
|
|
numPhases,
|
|
numComponents,
|
|
FluidSystem,
|
|
/*storePressure=*/false,
|
|
/*storeTemperature=*/false,
|
|
/*storeComposition=*/false,
|
|
/*storeFugacity=*/false,
|
|
/*storeSaturation=*/true,
|
|
/*storeDensity=*/false,
|
|
/*storeViscosity=*/false,
|
|
/*storeEnthalpy=*/false>;
|
|
SatOnlyFluidState fluidState;
|
|
fluidState.setSaturation(waterPhaseIdx, sw);
|
|
fluidState.setSaturation(oilPhaseIdx, so);
|
|
fluidState.setSaturation(gasPhaseIdx, sg);
|
|
|
|
MaterialLaw::capillaryPressures(result, matParams, fluidState);
|
|
}
|
|
|
|
WaterMeaning primaryVarsMeaningWater_;
|
|
PressureMeaning primaryVarsMeaningPressure_;
|
|
GasMeaning primaryVarsMeaningGas_;
|
|
BrineMeaning primaryVarsMeaningBrine_;
|
|
unsigned short pvtRegionIdx_;
|
|
};
|
|
|
|
|
|
} // namespace Opm
|
|
|
|
#endif
|