mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-11-22 09:16:27 -06:00
719 lines
26 KiB
C++
719 lines
26 KiB
C++
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
// vi: set et ts=4 sw=4 sts=4:
|
|
/*
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Consult the COPYING file in the top-level source directory of this
|
|
module for the precise wording of the license and the list of
|
|
copyright holders.
|
|
*/
|
|
/*!
|
|
* \file
|
|
*
|
|
* \copydoc Opm::Co2InjectionProblem
|
|
*/
|
|
#ifndef EWOMS_CO2_INJECTION_PROBLEM_HH
|
|
#define EWOMS_CO2_INJECTION_PROBLEM_HH
|
|
|
|
#include <opm/models/immiscible/immisciblemodel.hh>
|
|
#include <opm/simulators/linalg/parallelamgbackend.hh>
|
|
|
|
#include <opm/material/fluidsystems/H2ON2FluidSystem.hpp>
|
|
#include <opm/material/fluidsystems/BrineCO2FluidSystem.hpp>
|
|
#include <opm/material/fluidstates/CompositionalFluidState.hpp>
|
|
#include <opm/material/fluidstates/ImmiscibleFluidState.hpp>
|
|
#include <opm/material/constraintsolvers/ComputeFromReferencePhase.hpp>
|
|
#include <opm/material/fluidmatrixinteractions/LinearMaterial.hpp>
|
|
#include <opm/material/fluidmatrixinteractions/RegularizedBrooksCorey.hpp>
|
|
#include <opm/material/fluidmatrixinteractions/EffToAbsLaw.hpp>
|
|
#include <opm/material/fluidmatrixinteractions/MaterialTraits.hpp>
|
|
#include <opm/material/thermal/SomertonThermalConductionLaw.hpp>
|
|
#include <opm/material/thermal/ConstantSolidHeatCapLaw.hpp>
|
|
#include <opm/material/binarycoefficients/Brine_CO2.hpp>
|
|
#include <opm/material/common/UniformTabulated2DFunction.hpp>
|
|
#include <opm/material/common/Unused.hpp>
|
|
|
|
#include <dune/grid/yaspgrid.hh>
|
|
#include <dune/grid/io/file/dgfparser/dgfyasp.hh>
|
|
|
|
#include <dune/common/version.hh>
|
|
#include <dune/common/fvector.hh>
|
|
#include <dune/common/fmatrix.hh>
|
|
|
|
#include <sstream>
|
|
#include <iostream>
|
|
#include <string>
|
|
|
|
namespace Opm {
|
|
//! \cond SKIP_THIS
|
|
template <class TypeTag>
|
|
class Co2InjectionProblem;
|
|
|
|
namespace Co2Injection {
|
|
#include <opm/material/components/co2tables.inc>
|
|
}
|
|
//! \endcond
|
|
}
|
|
|
|
namespace Opm::Properties {
|
|
|
|
namespace TTag {
|
|
struct Co2InjectionBaseProblem {};
|
|
}
|
|
|
|
// declare the CO2 injection problem specific property tags
|
|
template<class TypeTag, class MyTypeTag>
|
|
struct FluidSystemPressureLow { using type = UndefinedProperty; };
|
|
template<class TypeTag, class MyTypeTag>
|
|
struct FluidSystemPressureHigh { using type = UndefinedProperty; };
|
|
template<class TypeTag, class MyTypeTag>
|
|
struct FluidSystemNumPressure { using type = UndefinedProperty; };
|
|
template<class TypeTag, class MyTypeTag>
|
|
struct FluidSystemTemperatureLow { using type = UndefinedProperty; };
|
|
template<class TypeTag, class MyTypeTag>
|
|
struct FluidSystemTemperatureHigh { using type = UndefinedProperty; };
|
|
template<class TypeTag, class MyTypeTag>
|
|
struct FluidSystemNumTemperature { using type = UndefinedProperty; };
|
|
|
|
template<class TypeTag, class MyTypeTag>
|
|
struct MaxDepth { using type = UndefinedProperty; };
|
|
template<class TypeTag, class MyTypeTag>
|
|
struct Temperature { using type = UndefinedProperty; };
|
|
template<class TypeTag, class MyTypeTag>
|
|
struct SimulationName { using type = UndefinedProperty; };
|
|
|
|
// Set the grid type
|
|
template<class TypeTag>
|
|
struct Grid<TypeTag, TTag::Co2InjectionBaseProblem> { using type = Dune::YaspGrid<2>; };
|
|
|
|
// Set the problem property
|
|
template<class TypeTag>
|
|
struct Problem<TypeTag, TTag::Co2InjectionBaseProblem>
|
|
{ using type = Opm::Co2InjectionProblem<TypeTag>; };
|
|
|
|
// Set fluid configuration
|
|
template<class TypeTag>
|
|
struct FluidSystem<TypeTag, TTag::Co2InjectionBaseProblem>
|
|
{
|
|
private:
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
using CO2Tables = Opm::Co2Injection::CO2Tables;
|
|
|
|
public:
|
|
using type = Opm::BrineCO2FluidSystem<Scalar, CO2Tables>;
|
|
//using type = Opm::H2ON2FluidSystem<Scalar, /*useComplexRelations=*/false>;
|
|
};
|
|
|
|
// Set the material Law
|
|
template<class TypeTag>
|
|
struct MaterialLaw<TypeTag, TTag::Co2InjectionBaseProblem>
|
|
{
|
|
private:
|
|
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
|
|
enum { liquidPhaseIdx = FluidSystem::liquidPhaseIdx };
|
|
enum { gasPhaseIdx = FluidSystem::gasPhaseIdx };
|
|
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
using Traits = Opm::TwoPhaseMaterialTraits<Scalar,
|
|
/*wettingPhaseIdx=*/FluidSystem::liquidPhaseIdx,
|
|
/*nonWettingPhaseIdx=*/FluidSystem::gasPhaseIdx>;
|
|
|
|
// define the material law which is parameterized by effective
|
|
// saturations
|
|
using EffMaterialLaw = Opm::RegularizedBrooksCorey<Traits>;
|
|
|
|
public:
|
|
// define the material law parameterized by absolute saturations
|
|
using type = Opm::EffToAbsLaw<EffMaterialLaw>;
|
|
};
|
|
|
|
// Set the thermal conduction law
|
|
template<class TypeTag>
|
|
struct ThermalConductionLaw<TypeTag, TTag::Co2InjectionBaseProblem>
|
|
{
|
|
private:
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
|
|
|
|
public:
|
|
// define the material law parameterized by absolute saturations
|
|
using type = Opm::SomertonThermalConductionLaw<FluidSystem, Scalar>;
|
|
};
|
|
|
|
// set the energy storage law for the solid phase
|
|
template<class TypeTag>
|
|
struct SolidEnergyLaw<TypeTag, TTag::Co2InjectionBaseProblem>
|
|
{ using type = Opm::ConstantSolidHeatCapLaw<GetPropType<TypeTag, Properties::Scalar>>; };
|
|
|
|
// Use the algebraic multi-grid linear solver for this problem
|
|
template<class TypeTag>
|
|
struct LinearSolverSplice<TypeTag, TTag::Co2InjectionBaseProblem> { using type = TTag::ParallelAmgLinearSolver; };
|
|
|
|
// Write the Newton convergence behavior to disk?
|
|
template<class TypeTag>
|
|
struct NewtonWriteConvergence<TypeTag, TTag::Co2InjectionBaseProblem> { static constexpr bool value = false; };
|
|
|
|
// Enable gravity
|
|
template<class TypeTag>
|
|
struct EnableGravity<TypeTag, TTag::Co2InjectionBaseProblem> { static constexpr bool value = true; };
|
|
|
|
// set the defaults for the problem specific properties
|
|
template<class TypeTag>
|
|
struct FluidSystemPressureLow<TypeTag, TTag::Co2InjectionBaseProblem>
|
|
{
|
|
using type = GetPropType<TypeTag, Scalar>;
|
|
static constexpr type value = 3e7;
|
|
};
|
|
template<class TypeTag>
|
|
struct FluidSystemPressureHigh<TypeTag, TTag::Co2InjectionBaseProblem>
|
|
{
|
|
using type = GetPropType<TypeTag, Scalar>;
|
|
static constexpr type value = 4e7;
|
|
};
|
|
template<class TypeTag>
|
|
struct FluidSystemNumPressure<TypeTag, TTag::Co2InjectionBaseProblem> { static constexpr int value = 100; };
|
|
template<class TypeTag>
|
|
struct FluidSystemTemperatureLow<TypeTag, TTag::Co2InjectionBaseProblem>
|
|
{
|
|
using type = GetPropType<TypeTag, Scalar>;
|
|
static constexpr type value = 290;
|
|
};
|
|
template<class TypeTag>
|
|
struct FluidSystemTemperatureHigh<TypeTag, TTag::Co2InjectionBaseProblem>
|
|
{
|
|
using type = GetPropType<TypeTag, Scalar>;
|
|
static constexpr type value = 500;
|
|
};
|
|
template<class TypeTag>
|
|
struct FluidSystemNumTemperature<TypeTag, TTag::Co2InjectionBaseProblem> { static constexpr int value = 100; };
|
|
|
|
template<class TypeTag>
|
|
struct MaxDepth<TypeTag, TTag::Co2InjectionBaseProblem>
|
|
{
|
|
using type = GetPropType<TypeTag, Scalar>;
|
|
static constexpr type value = 2500;
|
|
};
|
|
template<class TypeTag>
|
|
struct Temperature<TypeTag, TTag::Co2InjectionBaseProblem>
|
|
{
|
|
using type = GetPropType<TypeTag, Scalar>;
|
|
static constexpr type value = 293.15;
|
|
};
|
|
template<class TypeTag>
|
|
struct SimulationName<TypeTag, TTag::Co2InjectionBaseProblem> { static constexpr auto value = "co2injection"; };
|
|
|
|
// The default for the end time of the simulation
|
|
template<class TypeTag>
|
|
struct EndTime<TypeTag, TTag::Co2InjectionBaseProblem>
|
|
{
|
|
using type = GetPropType<TypeTag, Scalar>;
|
|
static constexpr type value = 1e4;
|
|
};
|
|
|
|
// The default for the initial time step size of the simulation
|
|
template<class TypeTag>
|
|
struct InitialTimeStepSize<TypeTag, TTag::Co2InjectionBaseProblem>
|
|
{
|
|
using type = GetPropType<TypeTag, Scalar>;
|
|
static constexpr type value = 250;
|
|
};
|
|
|
|
// The default DGF file to load
|
|
template<class TypeTag>
|
|
struct GridFile<TypeTag, TTag::Co2InjectionBaseProblem> { static constexpr auto value = "data/co2injection.dgf"; };
|
|
|
|
} // namespace Opm::Properties
|
|
|
|
namespace Opm {
|
|
/*!
|
|
* \ingroup TestProblems
|
|
*
|
|
* \brief Problem where \f$CO_2\f$ is injected under a low permeable
|
|
* layer at a depth of 2700m.
|
|
*
|
|
* The domain is sized 60m times 40m and consists of two layers, one
|
|
* which is moderately permeable (\f$K = 10^{-12}\;m^2\f$) for \f$ y >
|
|
* 22\; m\f$ and one with a lower intrinsic permeablility (\f$
|
|
* K=10^{-13}\;m^2\f$) in the rest of the domain.
|
|
*
|
|
* \f$CO_2\f$ gets injected by means of a forced-flow boundary
|
|
* condition into water-filled aquifer, which is situated 2700m below
|
|
* sea level, at the lower-right boundary (\f$5m<y<15m\f$) and
|
|
* migrates upwards due to buoyancy. It accumulates and eventually
|
|
* enters the lower permeable aquitard.
|
|
*
|
|
* The boundary conditions applied by this problem are no-flow
|
|
* conditions on the top bottom and right boundaries and a free-flow
|
|
* boundary condition on the left. For the free-flow condition,
|
|
* hydrostatic pressure is assumed.
|
|
*/
|
|
template <class TypeTag>
|
|
class Co2InjectionProblem : public GetPropType<TypeTag, Properties::BaseProblem>
|
|
{
|
|
using ParentType = GetPropType<TypeTag, Properties::BaseProblem>;
|
|
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
|
|
using GridView = GetPropType<TypeTag, Properties::GridView>;
|
|
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
|
|
|
|
enum { dim = GridView::dimension };
|
|
enum { dimWorld = GridView::dimensionworld };
|
|
|
|
// copy some indices for convenience
|
|
using Indices = GetPropType<TypeTag, Properties::Indices>;
|
|
enum { numPhases = FluidSystem::numPhases };
|
|
enum { gasPhaseIdx = FluidSystem::gasPhaseIdx };
|
|
enum { liquidPhaseIdx = FluidSystem::liquidPhaseIdx };
|
|
enum { CO2Idx = FluidSystem::CO2Idx };
|
|
enum { BrineIdx = FluidSystem::BrineIdx };
|
|
enum { conti0EqIdx = Indices::conti0EqIdx };
|
|
enum { contiCO2EqIdx = conti0EqIdx + CO2Idx };
|
|
|
|
using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
|
|
using RateVector = GetPropType<TypeTag, Properties::RateVector>;
|
|
using BoundaryRateVector = GetPropType<TypeTag, Properties::BoundaryRateVector>;
|
|
using MaterialLaw = GetPropType<TypeTag, Properties::MaterialLaw>;
|
|
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
|
|
using Model = GetPropType<TypeTag, Properties::Model>;
|
|
using MaterialLawParams = GetPropType<TypeTag, Properties::MaterialLawParams>;
|
|
using ThermalConductionLaw = GetPropType<TypeTag, Properties::ThermalConductionLaw>;
|
|
using SolidEnergyLawParams = GetPropType<TypeTag, Properties::SolidEnergyLawParams>;
|
|
using ThermalConductionLawParams = typename ThermalConductionLaw::Params;
|
|
|
|
using Toolbox = Opm::MathToolbox<Evaluation>;
|
|
using CoordScalar = typename GridView::ctype;
|
|
using GlobalPosition = Dune::FieldVector<CoordScalar, dimWorld>;
|
|
using DimMatrix = Dune::FieldMatrix<Scalar, dimWorld, dimWorld>;
|
|
|
|
public:
|
|
/*!
|
|
* \copydoc Doxygen::defaultProblemConstructor
|
|
*/
|
|
Co2InjectionProblem(Simulator& simulator)
|
|
: ParentType(simulator)
|
|
{ }
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::finishInit
|
|
*/
|
|
void finishInit()
|
|
{
|
|
ParentType::finishInit();
|
|
|
|
eps_ = 1e-6;
|
|
|
|
temperatureLow_ = EWOMS_GET_PARAM(TypeTag, Scalar, FluidSystemTemperatureLow);
|
|
temperatureHigh_ = EWOMS_GET_PARAM(TypeTag, Scalar, FluidSystemTemperatureHigh);
|
|
nTemperature_ = EWOMS_GET_PARAM(TypeTag, unsigned, FluidSystemNumTemperature);
|
|
|
|
pressureLow_ = EWOMS_GET_PARAM(TypeTag, Scalar, FluidSystemPressureLow);
|
|
pressureHigh_ = EWOMS_GET_PARAM(TypeTag, Scalar, FluidSystemPressureHigh);
|
|
nPressure_ = EWOMS_GET_PARAM(TypeTag, unsigned, FluidSystemNumPressure);
|
|
|
|
maxDepth_ = EWOMS_GET_PARAM(TypeTag, Scalar, MaxDepth);
|
|
temperature_ = EWOMS_GET_PARAM(TypeTag, Scalar, Temperature);
|
|
|
|
// initialize the tables of the fluid system
|
|
// FluidSystem::init();
|
|
FluidSystem::init(/*Tmin=*/temperatureLow_,
|
|
/*Tmax=*/temperatureHigh_,
|
|
/*nT=*/nTemperature_,
|
|
/*pmin=*/pressureLow_,
|
|
/*pmax=*/pressureHigh_,
|
|
/*np=*/nPressure_);
|
|
|
|
fineLayerBottom_ = 22.0;
|
|
|
|
// intrinsic permeabilities
|
|
fineK_ = this->toDimMatrix_(1e-13);
|
|
coarseK_ = this->toDimMatrix_(1e-12);
|
|
|
|
// porosities
|
|
finePorosity_ = 0.3;
|
|
coarsePorosity_ = 0.3;
|
|
|
|
// residual saturations
|
|
fineMaterialParams_.setResidualSaturation(liquidPhaseIdx, 0.2);
|
|
fineMaterialParams_.setResidualSaturation(gasPhaseIdx, 0.0);
|
|
coarseMaterialParams_.setResidualSaturation(liquidPhaseIdx, 0.2);
|
|
coarseMaterialParams_.setResidualSaturation(gasPhaseIdx, 0.0);
|
|
|
|
// parameters for the Brooks-Corey law
|
|
fineMaterialParams_.setEntryPressure(1e4);
|
|
coarseMaterialParams_.setEntryPressure(5e3);
|
|
fineMaterialParams_.setLambda(2.0);
|
|
coarseMaterialParams_.setLambda(2.0);
|
|
|
|
fineMaterialParams_.finalize();
|
|
coarseMaterialParams_.finalize();
|
|
|
|
// parameters for the somerton law thermal conduction
|
|
computeThermalCondParams_(fineThermalCondParams_, finePorosity_);
|
|
computeThermalCondParams_(coarseThermalCondParams_, coarsePorosity_);
|
|
|
|
// assume constant heat capacity and granite
|
|
solidEnergyLawParams_.setSolidHeatCapacity(790.0 // specific heat capacity of granite [J / (kg K)]
|
|
* 2700.0); // density of granite [kg/m^3]
|
|
solidEnergyLawParams_.finalize();
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::registerParameters
|
|
*/
|
|
static void registerParameters()
|
|
{
|
|
ParentType::registerParameters();
|
|
|
|
EWOMS_REGISTER_PARAM(TypeTag, Scalar, FluidSystemTemperatureLow,
|
|
"The lower temperature [K] for tabulation of the "
|
|
"fluid system");
|
|
EWOMS_REGISTER_PARAM(TypeTag, Scalar, FluidSystemTemperatureHigh,
|
|
"The upper temperature [K] for tabulation of the "
|
|
"fluid system");
|
|
EWOMS_REGISTER_PARAM(TypeTag, unsigned, FluidSystemNumTemperature,
|
|
"The number of intervals between the lower and "
|
|
"upper temperature");
|
|
|
|
EWOMS_REGISTER_PARAM(TypeTag, Scalar, FluidSystemPressureLow,
|
|
"The lower pressure [Pa] for tabulation of the "
|
|
"fluid system");
|
|
EWOMS_REGISTER_PARAM(TypeTag, Scalar, FluidSystemPressureHigh,
|
|
"The upper pressure [Pa] for tabulation of the "
|
|
"fluid system");
|
|
EWOMS_REGISTER_PARAM(TypeTag, unsigned, FluidSystemNumPressure,
|
|
"The number of intervals between the lower and "
|
|
"upper pressure");
|
|
|
|
EWOMS_REGISTER_PARAM(TypeTag, Scalar, Temperature,
|
|
"The temperature [K] in the reservoir");
|
|
EWOMS_REGISTER_PARAM(TypeTag, Scalar, MaxDepth,
|
|
"The maximum depth [m] of the reservoir");
|
|
EWOMS_REGISTER_PARAM(TypeTag, std::string, SimulationName,
|
|
"The name of the simulation used for the output "
|
|
"files");
|
|
}
|
|
|
|
/*!
|
|
* \name Problem parameters
|
|
*/
|
|
//! \{
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::name
|
|
*/
|
|
std::string name() const
|
|
{
|
|
std::ostringstream oss;
|
|
oss << EWOMS_GET_PARAM(TypeTag, std::string, SimulationName)
|
|
<< "_" << Model::name();
|
|
if (getPropValue<TypeTag, Properties::EnableEnergy>())
|
|
oss << "_ni";
|
|
oss << "_" << Model::discretizationName();
|
|
return oss.str();
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::endTimeStep
|
|
*/
|
|
void endTimeStep()
|
|
{
|
|
#ifndef NDEBUG
|
|
Scalar tol = this->model().newtonMethod().tolerance()*1e5;
|
|
this->model().checkConservativeness(tol);
|
|
|
|
// Calculate storage terms
|
|
PrimaryVariables storageL, storageG;
|
|
this->model().globalPhaseStorage(storageL, /*phaseIdx=*/0);
|
|
this->model().globalPhaseStorage(storageG, /*phaseIdx=*/1);
|
|
|
|
// Write mass balance information for rank 0
|
|
if (this->gridView().comm().rank() == 0) {
|
|
std::cout << "Storage: liquid=[" << storageL << "]"
|
|
<< " gas=[" << storageG << "]\n" << std::flush;
|
|
}
|
|
#endif // NDEBUG
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::temperature
|
|
*/
|
|
template <class Context>
|
|
Scalar temperature(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
|
|
{
|
|
const auto& pos = context.pos(spaceIdx, timeIdx);
|
|
if (inHighTemperatureRegion_(pos))
|
|
return temperature_ + 100;
|
|
return temperature_;
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::intrinsicPermeability
|
|
*/
|
|
template <class Context>
|
|
const DimMatrix& intrinsicPermeability(const Context& context, unsigned spaceIdx,
|
|
unsigned timeIdx) const
|
|
{
|
|
const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
|
|
if (isFineMaterial_(pos))
|
|
return fineK_;
|
|
return coarseK_;
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::porosity
|
|
*/
|
|
template <class Context>
|
|
Scalar porosity(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
|
|
{
|
|
const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
|
|
if (isFineMaterial_(pos))
|
|
return finePorosity_;
|
|
return coarsePorosity_;
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::materialLawParams
|
|
*/
|
|
template <class Context>
|
|
const MaterialLawParams& materialLawParams(const Context& context,
|
|
unsigned spaceIdx, unsigned timeIdx) const
|
|
{
|
|
const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
|
|
if (isFineMaterial_(pos))
|
|
return fineMaterialParams_;
|
|
return coarseMaterialParams_;
|
|
}
|
|
|
|
/*!
|
|
* \brief Return the parameters for the heat storage law of the rock
|
|
*
|
|
* In this case, we assume the rock-matrix to be granite.
|
|
*/
|
|
template <class Context>
|
|
const SolidEnergyLawParams&
|
|
solidEnergyLawParams(const Context& context OPM_UNUSED,
|
|
unsigned spaceIdx OPM_UNUSED,
|
|
unsigned timeIdx OPM_UNUSED) const
|
|
{ return solidEnergyLawParams_; }
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::thermalConductionParams
|
|
*/
|
|
template <class Context>
|
|
const ThermalConductionLawParams &
|
|
thermalConductionLawParams(const Context& context,
|
|
unsigned spaceIdx,
|
|
unsigned timeIdx) const
|
|
{
|
|
const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
|
|
if (isFineMaterial_(pos))
|
|
return fineThermalCondParams_;
|
|
return coarseThermalCondParams_;
|
|
}
|
|
|
|
//! \}
|
|
|
|
/*!
|
|
* \name Boundary conditions
|
|
*/
|
|
//! \{
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::boundary
|
|
*/
|
|
template <class Context>
|
|
void boundary(BoundaryRateVector& values, const Context& context,
|
|
unsigned spaceIdx, unsigned timeIdx) const
|
|
{
|
|
const auto& pos = context.pos(spaceIdx, timeIdx);
|
|
if (onLeftBoundary_(pos)) {
|
|
Opm::CompositionalFluidState<Scalar, FluidSystem> fs;
|
|
initialFluidState_(fs, context, spaceIdx, timeIdx);
|
|
fs.checkDefined();
|
|
|
|
// impose an freeflow boundary condition
|
|
values.setFreeFlow(context, spaceIdx, timeIdx, fs);
|
|
}
|
|
else if (onInlet_(pos)) {
|
|
RateVector massRate(0.0);
|
|
massRate[contiCO2EqIdx] = -1e-3; // [kg/(m^3 s)]
|
|
|
|
using FluidState = Opm::ImmiscibleFluidState<Scalar, FluidSystem>;
|
|
FluidState fs;
|
|
fs.setSaturation(gasPhaseIdx, 1.0);
|
|
const auto& pg =
|
|
context.intensiveQuantities(spaceIdx, timeIdx).fluidState().pressure(gasPhaseIdx);
|
|
fs.setPressure(gasPhaseIdx, Toolbox::value(pg));
|
|
fs.setTemperature(temperature(context, spaceIdx, timeIdx));
|
|
|
|
typename FluidSystem::template ParameterCache<Scalar> paramCache;
|
|
paramCache.updatePhase(fs, gasPhaseIdx);
|
|
Scalar h = FluidSystem::template enthalpy<FluidState, Scalar>(fs, paramCache, gasPhaseIdx);
|
|
|
|
// impose an forced inflow boundary condition for pure CO2
|
|
values.setMassRate(massRate);
|
|
values.setEnthalpyRate(massRate[contiCO2EqIdx] * h);
|
|
}
|
|
else
|
|
// no flow on top and bottom
|
|
values.setNoFlow();
|
|
}
|
|
|
|
// \}
|
|
|
|
/*!
|
|
* \name Volumetric terms
|
|
*/
|
|
//! \{
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::initial
|
|
*/
|
|
template <class Context>
|
|
void initial(PrimaryVariables& values, const Context& context, unsigned spaceIdx,
|
|
unsigned timeIdx) const
|
|
{
|
|
Opm::CompositionalFluidState<Scalar, FluidSystem> fs;
|
|
initialFluidState_(fs, context, spaceIdx, timeIdx);
|
|
|
|
// const auto& matParams = this->materialLawParams(context, spaceIdx,
|
|
// timeIdx);
|
|
// values.assignMassConservative(fs, matParams, /*inEquilibrium=*/true);
|
|
values.assignNaive(fs);
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::source
|
|
*
|
|
* For this problem, the source term of all components is 0
|
|
* everywhere.
|
|
*/
|
|
template <class Context>
|
|
void source(RateVector& rate,
|
|
const Context& context OPM_UNUSED,
|
|
unsigned spaceIdx OPM_UNUSED,
|
|
unsigned timeIdx OPM_UNUSED) const
|
|
{ rate = Scalar(0.0); }
|
|
|
|
//! \}
|
|
|
|
private:
|
|
template <class Context, class FluidState>
|
|
void initialFluidState_(FluidState& fs,
|
|
const Context& context,
|
|
unsigned spaceIdx,
|
|
unsigned timeIdx) const
|
|
{
|
|
const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
|
|
|
|
//////
|
|
// set temperature
|
|
//////
|
|
fs.setTemperature(temperature(context, spaceIdx, timeIdx));
|
|
|
|
//////
|
|
// set saturations
|
|
//////
|
|
fs.setSaturation(FluidSystem::liquidPhaseIdx, 1.0);
|
|
fs.setSaturation(FluidSystem::gasPhaseIdx, 0.0);
|
|
|
|
//////
|
|
// set pressures
|
|
//////
|
|
Scalar densityL = FluidSystem::Brine::liquidDensity(temperature_, Scalar(1e5));
|
|
Scalar depth = maxDepth_ - pos[dim - 1];
|
|
Scalar pl = 1e5 - densityL * this->gravity()[dim - 1] * depth;
|
|
|
|
Scalar pC[numPhases];
|
|
const auto& matParams = this->materialLawParams(context, spaceIdx, timeIdx);
|
|
MaterialLaw::capillaryPressures(pC, matParams, fs);
|
|
|
|
fs.setPressure(liquidPhaseIdx, pl + (pC[liquidPhaseIdx] - pC[liquidPhaseIdx]));
|
|
fs.setPressure(gasPhaseIdx, pl + (pC[gasPhaseIdx] - pC[liquidPhaseIdx]));
|
|
|
|
//////
|
|
// set composition of the liquid phase
|
|
//////
|
|
fs.setMoleFraction(liquidPhaseIdx, CO2Idx, 0.005);
|
|
fs.setMoleFraction(liquidPhaseIdx, BrineIdx,
|
|
1.0 - fs.moleFraction(liquidPhaseIdx, CO2Idx));
|
|
|
|
typename FluidSystem::template ParameterCache<Scalar> paramCache;
|
|
using CFRP = Opm::ComputeFromReferencePhase<Scalar, FluidSystem>;
|
|
CFRP::solve(fs, paramCache,
|
|
/*refPhaseIdx=*/liquidPhaseIdx,
|
|
/*setViscosity=*/true,
|
|
/*setEnthalpy=*/true);
|
|
}
|
|
|
|
bool onLeftBoundary_(const GlobalPosition& pos) const
|
|
{ return pos[0] < eps_; }
|
|
|
|
bool onRightBoundary_(const GlobalPosition& pos) const
|
|
{ return pos[0] > this->boundingBoxMax()[0] - eps_; }
|
|
|
|
bool onInlet_(const GlobalPosition& pos) const
|
|
{ return onRightBoundary_(pos) && (5 < pos[1]) && (pos[1] < 15); }
|
|
|
|
bool inHighTemperatureRegion_(const GlobalPosition& pos) const
|
|
{ return (pos[0] > 20) && (pos[0] < 30) && (pos[1] > 5) && (pos[1] < 35); }
|
|
|
|
void computeThermalCondParams_(ThermalConductionLawParams& params, Scalar poro)
|
|
{
|
|
Scalar lambdaWater = 0.6;
|
|
Scalar lambdaGranite = 2.8;
|
|
|
|
Scalar lambdaWet = std::pow(lambdaGranite, (1 - poro))
|
|
* std::pow(lambdaWater, poro);
|
|
Scalar lambdaDry = std::pow(lambdaGranite, (1 - poro));
|
|
|
|
params.setFullySaturatedLambda(gasPhaseIdx, lambdaDry);
|
|
params.setFullySaturatedLambda(liquidPhaseIdx, lambdaWet);
|
|
params.setVacuumLambda(lambdaDry);
|
|
}
|
|
|
|
bool isFineMaterial_(const GlobalPosition& pos) const
|
|
{ return pos[dim - 1] > fineLayerBottom_; }
|
|
|
|
DimMatrix fineK_;
|
|
DimMatrix coarseK_;
|
|
Scalar fineLayerBottom_;
|
|
|
|
Scalar finePorosity_;
|
|
Scalar coarsePorosity_;
|
|
|
|
MaterialLawParams fineMaterialParams_;
|
|
MaterialLawParams coarseMaterialParams_;
|
|
|
|
ThermalConductionLawParams fineThermalCondParams_;
|
|
ThermalConductionLawParams coarseThermalCondParams_;
|
|
SolidEnergyLawParams solidEnergyLawParams_;
|
|
|
|
Scalar temperature_;
|
|
Scalar maxDepth_;
|
|
Scalar eps_;
|
|
|
|
unsigned nTemperature_;
|
|
unsigned nPressure_;
|
|
|
|
Scalar pressureLow_, pressureHigh_;
|
|
Scalar temperatureLow_, temperatureHigh_;
|
|
};
|
|
} // namespace Opm
|
|
|
|
#endif
|