opm-simulators/opm/simulators/linalg/cuistl/CuDILU.cpp
Tobias Meyer Andersen 7a30aaa46e Add an OPM implementation of ILU0
improve file structure in cuistl
run clang-format
2024-08-09 15:52:42 +02:00

327 lines
14 KiB
C++

/*
Copyright 2022-2023 SINTEF AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <chrono>
#include <config.h>
#include <dune/common/fmatrix.hh>
#include <dune/istl/bcrsmatrix.hh>
#include <fmt/core.h>
#include <limits>
#include <opm/common/ErrorMacros.hpp>
#include <opm/common/TimingMacros.hpp>
#include <opm/simulators/linalg/GraphColoring.hpp>
#include <opm/simulators/linalg/cuistl/CuDILU.hpp>
#include <opm/simulators/linalg/cuistl/CuSparseMatrix.hpp>
#include <opm/simulators/linalg/cuistl/CuVector.hpp>
#include <opm/simulators/linalg/cuistl/detail/coloringAndReorderingUtils.hpp>
#include <opm/simulators/linalg/cuistl/detail/cusparse_matrix_operations.hpp>
#include <opm/simulators/linalg/cuistl/detail/preconditionerKernels/DILUKernels.hpp>
#include <opm/simulators/linalg/matrixblock.hh>
#include <tuple>
namespace Opm::cuistl
{
template <class M, class X, class Y, int l>
CuDILU<M, X, Y, l>::CuDILU(const M& A, bool splitMatrix, bool tuneKernels)
: m_cpuMatrix(A)
, m_levelSets(Opm::getMatrixRowColoring(m_cpuMatrix, Opm::ColoringType::LOWER))
, m_reorderedToNatural(detail::createReorderedToNatural(m_levelSets))
, m_naturalToReordered(detail::createNaturalToReordered(m_levelSets))
, m_gpuMatrix(CuSparseMatrix<field_type>::fromMatrix(m_cpuMatrix, true))
, m_gpuNaturalToReorder(m_naturalToReordered)
, m_gpuReorderToNatural(m_reorderedToNatural)
, m_gpuDInv(m_gpuMatrix.N() * m_gpuMatrix.blockSize() * m_gpuMatrix.blockSize())
, m_splitMatrix(splitMatrix)
, m_tuneThreadBlockSizes(tuneKernels)
{
// TODO: Should in some way verify that this matrix is symmetric, only do it debug mode?
// Some sanity check
OPM_ERROR_IF(A.N() != m_gpuMatrix.N(),
fmt::format("CuSparse matrix not same size as DUNE matrix. {} vs {}.", m_gpuMatrix.N(), A.N()));
OPM_ERROR_IF(A[0][0].N() != m_gpuMatrix.blockSize(),
fmt::format("CuSparse matrix not same blocksize as DUNE matrix. {} vs {}.",
m_gpuMatrix.blockSize(),
A[0][0].N()));
OPM_ERROR_IF(A.N() * A[0][0].N() != m_gpuMatrix.dim(),
fmt::format("CuSparse matrix not same dimension as DUNE matrix. {} vs {}.",
m_gpuMatrix.dim(),
A.N() * A[0][0].N()));
OPM_ERROR_IF(A.nonzeroes() != m_gpuMatrix.nonzeroes(),
fmt::format("CuSparse matrix not same number of non zeroes as DUNE matrix. {} vs {}. ",
m_gpuMatrix.nonzeroes(),
A.nonzeroes()));
if (m_splitMatrix) {
m_gpuMatrixReorderedDiag = std::make_unique<CuVector<field_type>>(blocksize_ * blocksize_ * m_cpuMatrix.N());
std::tie(m_gpuMatrixReorderedLower, m_gpuMatrixReorderedUpper)
= detail::extractLowerAndUpperMatrices<M, field_type, CuSparseMatrix<field_type>>(m_cpuMatrix,
m_reorderedToNatural);
m_gpuMatrixReordered = detail::createReorderedMatrix<M, field_type, CuSparseMatrix<field_type>>(
m_cpuMatrix, m_reorderedToNatural);
}
computeDiagAndMoveReorderedData();
// HIP does currently not support automtically picking thread block sizes as well as CUDA
// So only when tuning and using hip should we do our own manual tuning
#ifdef USE_HIP
if (m_tuneThreadBlockSizes) {
tuneThreadBlockSizes();
}
#endif
}
template <class M, class X, class Y, int l>
void
CuDILU<M, X, Y, l>::pre([[maybe_unused]] X& x, [[maybe_unused]] Y& b)
{
}
template <class M, class X, class Y, int l>
void
CuDILU<M, X, Y, l>::apply(X& v, const Y& d)
{
OPM_TIMEBLOCK(prec_apply);
{
int levelStartIdx = 0;
for (int level = 0; level < m_levelSets.size(); ++level) {
const int numOfRowsInLevel = m_levelSets[level].size();
if (m_splitMatrix) {
detail::DILU::solveLowerLevelSetSplit<field_type, blocksize_>(
m_gpuMatrixReorderedLower->getNonZeroValues().data(),
m_gpuMatrixReorderedLower->getRowIndices().data(),
m_gpuMatrixReorderedLower->getColumnIndices().data(),
m_gpuReorderToNatural.data(),
levelStartIdx,
numOfRowsInLevel,
m_gpuDInv.data(),
d.data(),
v.data(),
m_applyThreadBlockSize);
} else {
detail::DILU::solveLowerLevelSet<field_type, blocksize_>(
m_gpuMatrixReordered->getNonZeroValues().data(),
m_gpuMatrixReordered->getRowIndices().data(),
m_gpuMatrixReordered->getColumnIndices().data(),
m_gpuReorderToNatural.data(),
levelStartIdx,
numOfRowsInLevel,
m_gpuDInv.data(),
d.data(),
v.data(),
m_applyThreadBlockSize);
}
levelStartIdx += numOfRowsInLevel;
}
levelStartIdx = m_cpuMatrix.N();
// upper triangular solve: (D + U_A) v = Dy
for (int level = m_levelSets.size() - 1; level >= 0; --level) {
const int numOfRowsInLevel = m_levelSets[level].size();
levelStartIdx -= numOfRowsInLevel;
if (m_splitMatrix) {
detail::DILU::solveUpperLevelSetSplit<field_type, blocksize_>(
m_gpuMatrixReorderedUpper->getNonZeroValues().data(),
m_gpuMatrixReorderedUpper->getRowIndices().data(),
m_gpuMatrixReorderedUpper->getColumnIndices().data(),
m_gpuReorderToNatural.data(),
levelStartIdx,
numOfRowsInLevel,
m_gpuDInv.data(),
v.data(),
m_applyThreadBlockSize);
} else {
detail::DILU::solveUpperLevelSet<field_type, blocksize_>(
m_gpuMatrixReordered->getNonZeroValues().data(),
m_gpuMatrixReordered->getRowIndices().data(),
m_gpuMatrixReordered->getColumnIndices().data(),
m_gpuReorderToNatural.data(),
levelStartIdx,
numOfRowsInLevel,
m_gpuDInv.data(),
v.data(),
m_applyThreadBlockSize);
}
}
}
}
template <class M, class X, class Y, int l>
void
CuDILU<M, X, Y, l>::post([[maybe_unused]] X& x)
{
}
template <class M, class X, class Y, int l>
Dune::SolverCategory::Category
CuDILU<M, X, Y, l>::category() const
{
return Dune::SolverCategory::sequential;
}
template <class M, class X, class Y, int l>
void
CuDILU<M, X, Y, l>::update()
{
OPM_TIMEBLOCK(prec_update);
{
m_gpuMatrix.updateNonzeroValues(m_cpuMatrix, true); // send updated matrix to the gpu
computeDiagAndMoveReorderedData();
}
}
template <class M, class X, class Y, int l>
void
CuDILU<M, X, Y, l>::computeDiagAndMoveReorderedData()
{
OPM_TIMEBLOCK(prec_update);
{
if (m_splitMatrix) {
detail::copyMatDataToReorderedSplit<field_type, blocksize_>(
m_gpuMatrix.getNonZeroValues().data(),
m_gpuMatrix.getRowIndices().data(),
m_gpuMatrix.getColumnIndices().data(),
m_gpuMatrixReorderedLower->getNonZeroValues().data(),
m_gpuMatrixReorderedLower->getRowIndices().data(),
m_gpuMatrixReorderedUpper->getNonZeroValues().data(),
m_gpuMatrixReorderedUpper->getRowIndices().data(),
m_gpuMatrixReorderedDiag->data(),
m_gpuNaturalToReorder.data(),
m_gpuMatrixReorderedLower->N(),
m_updateThreadBlockSize);
} else {
detail::copyMatDataToReordered<field_type, blocksize_>(m_gpuMatrix.getNonZeroValues().data(),
m_gpuMatrix.getRowIndices().data(),
m_gpuMatrixReordered->getNonZeroValues().data(),
m_gpuMatrixReordered->getRowIndices().data(),
m_gpuNaturalToReorder.data(),
m_gpuMatrixReordered->N(),
m_updateThreadBlockSize);
}
int levelStartIdx = 0;
for (int level = 0; level < m_levelSets.size(); ++level) {
const int numOfRowsInLevel = m_levelSets[level].size();
if (m_splitMatrix) {
detail::DILU::computeDiluDiagonalSplit<field_type, blocksize_>(
m_gpuMatrixReorderedLower->getNonZeroValues().data(),
m_gpuMatrixReorderedLower->getRowIndices().data(),
m_gpuMatrixReorderedLower->getColumnIndices().data(),
m_gpuMatrixReorderedUpper->getNonZeroValues().data(),
m_gpuMatrixReorderedUpper->getRowIndices().data(),
m_gpuMatrixReorderedUpper->getColumnIndices().data(),
m_gpuMatrixReorderedDiag->data(),
m_gpuReorderToNatural.data(),
m_gpuNaturalToReorder.data(),
levelStartIdx,
numOfRowsInLevel,
m_gpuDInv.data(),
m_updateThreadBlockSize);
} else {
detail::DILU::computeDiluDiagonal<field_type, blocksize_>(
m_gpuMatrixReordered->getNonZeroValues().data(),
m_gpuMatrixReordered->getRowIndices().data(),
m_gpuMatrixReordered->getColumnIndices().data(),
m_gpuReorderToNatural.data(),
m_gpuNaturalToReorder.data(),
levelStartIdx,
numOfRowsInLevel,
m_gpuDInv.data(),
m_updateThreadBlockSize);
}
levelStartIdx += numOfRowsInLevel;
}
}
}
template <class M, class X, class Y, int l>
void
CuDILU<M, X, Y, l>::tuneThreadBlockSizes()
{
// TODO: generalize this code and put it somewhere outside of this class
long long bestApplyTime = std::numeric_limits<long long>::max();
long long bestUpdateTime = std::numeric_limits<long long>::max();
int bestApplyBlockSize = -1;
int bestUpdateBlockSize = -1;
int interval = 64;
// temporary buffers for the apply
CuVector<field_type> tmpV(m_gpuMatrix.N() * m_gpuMatrix.blockSize());
CuVector<field_type> tmpD(m_gpuMatrix.N() * m_gpuMatrix.blockSize());
tmpD = 1;
for (int thrBlockSize = interval; thrBlockSize <= 1024; thrBlockSize += interval) {
// sometimes the first kernel launch kan be slower, so take the time twice
for (int i = 0; i < 2; ++i) {
auto beforeUpdate = std::chrono::high_resolution_clock::now();
m_updateThreadBlockSize = thrBlockSize;
update();
std::ignore = cudaDeviceSynchronize();
auto afterUpdate = std::chrono::high_resolution_clock::now();
if (cudaSuccess == cudaGetLastError()) { // kernel launch was valid
long long durationInMicroSec
= std::chrono::duration_cast<std::chrono::microseconds>(afterUpdate - beforeUpdate).count();
if (durationInMicroSec < bestUpdateTime) {
bestUpdateTime = durationInMicroSec;
bestUpdateBlockSize = thrBlockSize;
}
}
auto beforeApply = std::chrono::high_resolution_clock::now();
m_applyThreadBlockSize = thrBlockSize;
apply(tmpV, tmpD);
std::ignore = cudaDeviceSynchronize();
auto afterApply = std::chrono::high_resolution_clock::now();
if (cudaSuccess == cudaGetLastError()) { // kernel launch was valid
long long durationInMicroSec
= std::chrono::duration_cast<std::chrono::microseconds>(afterApply - beforeApply).count();
if (durationInMicroSec < bestApplyTime) {
bestApplyTime = durationInMicroSec;
bestApplyBlockSize = thrBlockSize;
}
}
}
}
m_applyThreadBlockSize = bestApplyBlockSize;
m_updateThreadBlockSize = bestUpdateBlockSize;
}
} // namespace Opm::cuistl
#define INSTANTIATE_CUDILU_DUNE(realtype, blockdim) \
template class ::Opm::cuistl::CuDILU<Dune::BCRSMatrix<Dune::FieldMatrix<realtype, blockdim, blockdim>>, \
::Opm::cuistl::CuVector<realtype>, \
::Opm::cuistl::CuVector<realtype>>; \
template class ::Opm::cuistl::CuDILU<Dune::BCRSMatrix<Opm::MatrixBlock<realtype, blockdim, blockdim>>, \
::Opm::cuistl::CuVector<realtype>, \
::Opm::cuistl::CuVector<realtype>>
INSTANTIATE_CUDILU_DUNE(double, 1);
INSTANTIATE_CUDILU_DUNE(double, 2);
INSTANTIATE_CUDILU_DUNE(double, 3);
INSTANTIATE_CUDILU_DUNE(double, 4);
INSTANTIATE_CUDILU_DUNE(double, 5);
INSTANTIATE_CUDILU_DUNE(double, 6);
INSTANTIATE_CUDILU_DUNE(float, 1);
INSTANTIATE_CUDILU_DUNE(float, 2);
INSTANTIATE_CUDILU_DUNE(float, 3);
INSTANTIATE_CUDILU_DUNE(float, 4);
INSTANTIATE_CUDILU_DUNE(float, 5);
INSTANTIATE_CUDILU_DUNE(float, 6);