mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-19 16:22:57 -06:00
467 lines
19 KiB
C++
467 lines
19 KiB
C++
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
// vi: set et ts=4 sw=4 sts=4:
|
|
/*
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Consult the COPYING file in the top-level source directory of this
|
|
module for the precise wording of the license and the list of
|
|
copyright holders.
|
|
*/
|
|
/*!
|
|
* \file
|
|
*
|
|
* \copydoc Opm::BlackOilIntensiveQuantities
|
|
*/
|
|
#ifndef EWOMS_BLACK_OIL_INTENSIVE_QUANTITIES_HH
|
|
#define EWOMS_BLACK_OIL_INTENSIVE_QUANTITIES_HH
|
|
|
|
#include "blackoilproperties.hh"
|
|
#include "blackoilsolventmodules.hh"
|
|
#include "blackoilpolymermodules.hh"
|
|
#include "blackoilfoammodules.hh"
|
|
#include "blackoilenergymodules.hh"
|
|
#include <opm/material/fluidstates/BlackOilFluidState.hpp>
|
|
#include <opm/material/common/Valgrind.hpp>
|
|
|
|
#include <dune/common/fmatrix.hh>
|
|
|
|
#include <cstring>
|
|
#include <utility>
|
|
|
|
namespace Opm {
|
|
/*!
|
|
* \ingroup BlackOilModel
|
|
* \ingroup IntensiveQuantities
|
|
*
|
|
* \brief Contains the quantities which are are constant within a
|
|
* finite volume in the black-oil model.
|
|
*/
|
|
template <class TypeTag>
|
|
class BlackOilIntensiveQuantities
|
|
: public GET_PROP_TYPE(TypeTag, DiscIntensiveQuantities)
|
|
, public GET_PROP_TYPE(TypeTag, FluxModule)::FluxIntensiveQuantities
|
|
, public BlackOilSolventIntensiveQuantities<TypeTag>
|
|
, public BlackOilPolymerIntensiveQuantities<TypeTag>
|
|
, public BlackOilFoamIntensiveQuantities<TypeTag>
|
|
, public BlackOilEnergyIntensiveQuantities<TypeTag>
|
|
{
|
|
typedef typename GET_PROP_TYPE(TypeTag, DiscIntensiveQuantities) ParentType;
|
|
typedef typename GET_PROP_TYPE(TypeTag, IntensiveQuantities) Implementation;
|
|
|
|
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
|
typedef typename GET_PROP_TYPE(TypeTag, Evaluation) Evaluation;
|
|
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
|
|
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
|
|
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
|
|
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
|
|
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
|
|
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
|
|
typedef typename GET_PROP_TYPE(TypeTag, FluxModule) FluxModule;
|
|
|
|
enum { numEq = GET_PROP_VALUE(TypeTag, NumEq) };
|
|
enum { enableSolvent = GET_PROP_VALUE(TypeTag, EnableSolvent) };
|
|
enum { enablePolymer = GET_PROP_VALUE(TypeTag, EnablePolymer) };
|
|
enum { enableFoam = GET_PROP_VALUE(TypeTag, EnableFoam) };
|
|
enum { enableTemperature = GET_PROP_VALUE(TypeTag, EnableTemperature) };
|
|
enum { enableEnergy = GET_PROP_VALUE(TypeTag, EnableEnergy) };
|
|
enum { enableExperiments = GET_PROP_VALUE(TypeTag, EnableExperiments) };
|
|
enum { numPhases = GET_PROP_VALUE(TypeTag, NumPhases) };
|
|
enum { numComponents = GET_PROP_VALUE(TypeTag, NumComponents) };
|
|
enum { waterCompIdx = FluidSystem::waterCompIdx };
|
|
enum { oilCompIdx = FluidSystem::oilCompIdx };
|
|
enum { gasCompIdx = FluidSystem::gasCompIdx };
|
|
enum { waterPhaseIdx = FluidSystem::waterPhaseIdx };
|
|
enum { oilPhaseIdx = FluidSystem::oilPhaseIdx };
|
|
enum { gasPhaseIdx = FluidSystem::gasPhaseIdx };
|
|
enum { dimWorld = GridView::dimensionworld };
|
|
enum { compositionSwitchIdx = Indices::compositionSwitchIdx };
|
|
|
|
static const bool compositionSwitchEnabled = Indices::gasEnabled;
|
|
static const bool waterEnabled = Indices::waterEnabled;
|
|
|
|
typedef Opm::MathToolbox<Evaluation> Toolbox;
|
|
typedef Dune::FieldMatrix<Scalar, dimWorld, dimWorld> DimMatrix;
|
|
typedef typename FluxModule::FluxIntensiveQuantities FluxIntensiveQuantities;
|
|
typedef Opm::BlackOilFluidState<Evaluation, FluidSystem, enableTemperature, enableEnergy, compositionSwitchEnabled, Indices::numPhases > FluidState;
|
|
|
|
public:
|
|
BlackOilIntensiveQuantities()
|
|
{
|
|
if (compositionSwitchEnabled) {
|
|
fluidState_.setRs(0.0);
|
|
fluidState_.setRv(0.0);
|
|
}
|
|
}
|
|
|
|
BlackOilIntensiveQuantities(const BlackOilIntensiveQuantities& other) = default;
|
|
|
|
BlackOilIntensiveQuantities& operator=(const BlackOilIntensiveQuantities& other) = default;
|
|
|
|
/*!
|
|
* \copydoc IntensiveQuantities::update
|
|
*/
|
|
void update(const ElementContext& elemCtx, unsigned dofIdx, unsigned timeIdx)
|
|
{
|
|
ParentType::update(elemCtx, dofIdx, timeIdx);
|
|
|
|
const auto& problem = elemCtx.problem();
|
|
const auto& priVars = elemCtx.primaryVars(dofIdx, timeIdx);
|
|
|
|
asImp_().updateTemperature_(elemCtx, dofIdx, timeIdx);
|
|
|
|
unsigned globalSpaceIdx = elemCtx.globalSpaceIndex(dofIdx, timeIdx);
|
|
unsigned pvtRegionIdx = priVars.pvtRegionIndex();
|
|
fluidState_.setPvtRegionIndex(pvtRegionIdx);
|
|
|
|
// extract the water and the gas saturations for convenience
|
|
Evaluation Sw = 0.0;
|
|
if (waterEnabled){
|
|
if(priVars.primaryVarsMeaning() == PrimaryVariables::px){
|
|
Sw = 1.0;
|
|
}else{
|
|
Sw = priVars.makeEvaluation(Indices::waterSaturationIdx, timeIdx);
|
|
}
|
|
}
|
|
Evaluation Sg = 0.0;
|
|
if (compositionSwitchEnabled)
|
|
{
|
|
if (priVars.primaryVarsMeaning() == PrimaryVariables::Sw_po_Sg)
|
|
// -> threephase case
|
|
Sg = priVars.makeEvaluation(Indices::compositionSwitchIdx, timeIdx);
|
|
else if (priVars.primaryVarsMeaning() == PrimaryVariables::Sw_pg_Rv) {
|
|
// -> gas-water case
|
|
Sg = 1.0 - Sw;
|
|
|
|
// deal with solvent
|
|
if (enableSolvent)
|
|
Sg -= priVars.makeEvaluation(Indices::solventSaturationIdx, timeIdx);
|
|
}
|
|
else
|
|
{
|
|
assert(priVars.primaryVarsMeaning() == PrimaryVariables::Sw_po_Rs);
|
|
// -> oil-water case
|
|
Sg = 0.0;
|
|
}
|
|
}
|
|
|
|
Opm::Valgrind::CheckDefined(Sg);
|
|
Opm::Valgrind::CheckDefined(Sw);
|
|
|
|
Evaluation So = 1.0 - Sw - Sg;
|
|
|
|
// deal with solvent
|
|
if (enableSolvent)
|
|
So -= priVars.makeEvaluation(Indices::solventSaturationIdx, timeIdx);
|
|
|
|
if (FluidSystem::phaseIsActive(waterPhaseIdx))
|
|
fluidState_.setSaturation(waterPhaseIdx, Sw);
|
|
|
|
if (FluidSystem::phaseIsActive(gasPhaseIdx))
|
|
fluidState_.setSaturation(gasPhaseIdx, Sg);
|
|
|
|
if (FluidSystem::phaseIsActive(oilPhaseIdx))
|
|
fluidState_.setSaturation(oilPhaseIdx, So);
|
|
|
|
asImp_().solventPreSatFuncUpdate_(elemCtx, dofIdx, timeIdx);
|
|
|
|
// now we compute all phase pressures
|
|
Evaluation pC[numPhases];
|
|
const auto& materialParams = problem.materialLawParams(elemCtx, dofIdx, timeIdx);
|
|
MaterialLaw::capillaryPressures(pC, materialParams, fluidState_);
|
|
|
|
//oil is the reference phase for pressure
|
|
if (priVars.primaryVarsMeaning() == PrimaryVariables::Sw_pg_Rv) {
|
|
const Evaluation& pg = priVars.makeEvaluation(Indices::pressureSwitchIdx, timeIdx);
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
|
|
if (FluidSystem::phaseIsActive(phaseIdx))
|
|
fluidState_.setPressure(phaseIdx, pg + (pC[phaseIdx] - pC[gasPhaseIdx]));
|
|
}
|
|
|
|
else {
|
|
const Evaluation& po = priVars.makeEvaluation(Indices::pressureSwitchIdx, timeIdx);
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
|
|
if (FluidSystem::phaseIsActive(phaseIdx))
|
|
fluidState_.setPressure(phaseIdx, po + (pC[phaseIdx] - pC[oilPhaseIdx]));
|
|
}
|
|
|
|
// calculate relative permeabilities. note that we store the result into the
|
|
// mobility_ class attribute. the division by the phase viscosity happens later.
|
|
MaterialLaw::relativePermeabilities(mobility_, materialParams, fluidState_);
|
|
Opm::Valgrind::CheckDefined(mobility_);
|
|
|
|
// update the Saturation functions for the blackoil solvent module.
|
|
asImp_().solventPostSatFuncUpdate_(elemCtx, dofIdx, timeIdx);
|
|
|
|
Evaluation SoMax=0;
|
|
//const Evaluation&
|
|
if(FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)){
|
|
SoMax =
|
|
Opm::max(fluidState_.saturation(oilPhaseIdx),
|
|
elemCtx.problem().maxOilSaturation(globalSpaceIdx));
|
|
}
|
|
|
|
// take the meaning of the switiching primary variable into account for the gas
|
|
// and oil phase compositions
|
|
if (priVars.primaryVarsMeaning() == PrimaryVariables::Sw_po_Sg) {
|
|
// in the threephase case, gas and oil phases are potentially present, i.e.,
|
|
// we use the compositions of the gas-saturated oil and oil-saturated gas.
|
|
if (FluidSystem::enableDissolvedGas()) {
|
|
Scalar RsMax = elemCtx.problem().maxGasDissolutionFactor(timeIdx, globalSpaceIdx);
|
|
const Evaluation& RsSat =
|
|
FluidSystem::saturatedDissolutionFactor(fluidState_,
|
|
oilPhaseIdx,
|
|
pvtRegionIdx,
|
|
SoMax);
|
|
fluidState_.setRs(Opm::min(RsMax, RsSat));
|
|
}
|
|
else if (compositionSwitchEnabled)
|
|
fluidState_.setRs(0.0);
|
|
|
|
if (FluidSystem::enableVaporizedOil()) {
|
|
Scalar RvMax = elemCtx.problem().maxOilVaporizationFactor(timeIdx, globalSpaceIdx);
|
|
const Evaluation& RvSat =
|
|
FluidSystem::saturatedDissolutionFactor(fluidState_,
|
|
gasPhaseIdx,
|
|
pvtRegionIdx,
|
|
SoMax);
|
|
fluidState_.setRv(Opm::min(RvMax, RvSat));
|
|
}
|
|
else if (compositionSwitchEnabled)
|
|
fluidState_.setRv(0.0);
|
|
}
|
|
else if (priVars.primaryVarsMeaning() == PrimaryVariables::Sw_po_Rs) {
|
|
// if the switching variable is the mole fraction of the gas component in the
|
|
Scalar RsMax = elemCtx.problem().maxGasDissolutionFactor(timeIdx, globalSpaceIdx);
|
|
|
|
// oil phase, we can directly set the composition of the oil phase
|
|
const auto& Rs = priVars.makeEvaluation(Indices::compositionSwitchIdx, timeIdx);
|
|
fluidState_.setRs(Opm::min(RsMax, Rs));
|
|
|
|
if (FluidSystem::enableVaporizedOil()) {
|
|
// the gas phase is not present, but we need to compute its "composition"
|
|
// for the gravity correction anyway
|
|
Scalar RvMax = elemCtx.problem().maxOilVaporizationFactor(timeIdx, globalSpaceIdx);
|
|
const auto& RvSat =
|
|
FluidSystem::saturatedDissolutionFactor(fluidState_,
|
|
gasPhaseIdx,
|
|
pvtRegionIdx,
|
|
SoMax);
|
|
|
|
fluidState_.setRv(Opm::min(RvMax, RvSat));
|
|
}
|
|
else
|
|
fluidState_.setRv(0.0);
|
|
}
|
|
else if (priVars.primaryVarsMeaning() == PrimaryVariables::Sw_pg_Rv) {
|
|
//assert(priVars.primaryVarsMeaning() == PrimaryVariables::Sw_pg_Rv);
|
|
|
|
const auto& Rv = priVars.makeEvaluation(Indices::compositionSwitchIdx, timeIdx);
|
|
fluidState_.setRv(Rv);
|
|
|
|
if (FluidSystem::enableDissolvedGas()) {
|
|
// the oil phase is not present, but we need to compute its "composition" for
|
|
// the gravity correction anyway
|
|
Scalar RsMax = elemCtx.problem().maxGasDissolutionFactor(timeIdx, globalSpaceIdx);
|
|
const auto& RsSat =
|
|
FluidSystem::saturatedDissolutionFactor(fluidState_,
|
|
oilPhaseIdx,
|
|
pvtRegionIdx,
|
|
SoMax);
|
|
|
|
fluidState_.setRs(Opm::min(RsMax, RsSat));
|
|
}
|
|
else
|
|
fluidState_.setRs(0.0);
|
|
}else{
|
|
assert(priVars.primaryVarsMeaning() == PrimaryVariables::px);
|
|
}
|
|
|
|
typename FluidSystem::template ParameterCache<Evaluation> paramCache;
|
|
paramCache.setRegionIndex(pvtRegionIdx);
|
|
if(FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)){
|
|
paramCache.setMaxOilSat(SoMax);
|
|
}
|
|
paramCache.updateAll(fluidState_);
|
|
|
|
// compute the phase densities and transform the phase permeabilities into mobilities
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
if (!FluidSystem::phaseIsActive(phaseIdx))
|
|
continue;
|
|
|
|
const auto& b = FluidSystem::inverseFormationVolumeFactor(fluidState_, phaseIdx, pvtRegionIdx);
|
|
fluidState_.setInvB(phaseIdx, b);
|
|
|
|
const auto& mu = FluidSystem::viscosity(fluidState_, paramCache, phaseIdx);
|
|
mobility_[phaseIdx] /= mu;
|
|
}
|
|
Opm::Valgrind::CheckDefined(mobility_);
|
|
|
|
// calculate the phase densities
|
|
Evaluation rho;
|
|
if (FluidSystem::phaseIsActive(waterPhaseIdx)) {
|
|
rho = fluidState_.invB(waterPhaseIdx);
|
|
rho *= FluidSystem::referenceDensity(waterPhaseIdx, pvtRegionIdx);
|
|
fluidState_.setDensity(waterPhaseIdx, rho);
|
|
}
|
|
|
|
if (FluidSystem::phaseIsActive(gasPhaseIdx)) {
|
|
rho = fluidState_.invB(gasPhaseIdx);
|
|
rho *= FluidSystem::referenceDensity(gasPhaseIdx, pvtRegionIdx);
|
|
if (FluidSystem::enableVaporizedOil()) {
|
|
rho +=
|
|
fluidState_.invB(gasPhaseIdx) *
|
|
fluidState_.Rv() *
|
|
FluidSystem::referenceDensity(oilPhaseIdx, pvtRegionIdx);
|
|
}
|
|
fluidState_.setDensity(gasPhaseIdx, rho);
|
|
}
|
|
|
|
if (FluidSystem::phaseIsActive(oilPhaseIdx)) {
|
|
rho = fluidState_.invB(oilPhaseIdx);
|
|
rho *= FluidSystem::referenceDensity(oilPhaseIdx, pvtRegionIdx);
|
|
if (FluidSystem::enableDissolvedGas()) {
|
|
rho +=
|
|
fluidState_.invB(oilPhaseIdx) *
|
|
fluidState_.Rs() *
|
|
FluidSystem::referenceDensity(gasPhaseIdx, pvtRegionIdx);
|
|
}
|
|
fluidState_.setDensity(oilPhaseIdx, rho);
|
|
}
|
|
|
|
// retrieve the porosity from the problem
|
|
referencePorosity_ = problem.porosity(elemCtx, dofIdx, timeIdx);
|
|
porosity_ = referencePorosity_;
|
|
|
|
// the porosity must be modified by the compressibility of the
|
|
// rock...
|
|
Scalar rockCompressibility = problem.rockCompressibility(elemCtx, dofIdx, timeIdx);
|
|
if (rockCompressibility > 0.0) {
|
|
Scalar rockRefPressure = problem.rockReferencePressure(elemCtx, dofIdx, timeIdx);
|
|
Evaluation x;
|
|
if(FluidSystem::phaseIsActive(oilPhaseIdx)){
|
|
x = rockCompressibility*(fluidState_.pressure(oilPhaseIdx) - rockRefPressure);
|
|
}else{
|
|
if(FluidSystem::phaseIsActive(waterPhaseIdx)){
|
|
x = rockCompressibility*(fluidState_.pressure(waterPhaseIdx) - rockRefPressure);
|
|
}else{
|
|
x = rockCompressibility*(fluidState_.pressure(gasPhaseIdx) - rockRefPressure);
|
|
}
|
|
}
|
|
porosity_ *= 1.0 + x + 0.5*x*x;
|
|
}
|
|
|
|
if (enableExperiments)
|
|
// deal with water induced rock compaction
|
|
porosity_ *= problem.template rockCompPoroMultiplier<Evaluation>(*this, globalSpaceIdx);
|
|
|
|
asImp_().solventPvtUpdate_(elemCtx, dofIdx, timeIdx);
|
|
asImp_().polymerPropertiesUpdate_(elemCtx, dofIdx, timeIdx);
|
|
asImp_().updateEnergyQuantities_(elemCtx, dofIdx, timeIdx, paramCache);
|
|
asImp_().foamPropertiesUpdate_(elemCtx, dofIdx, timeIdx);
|
|
|
|
// update the quantities which are required by the chosen
|
|
// velocity model
|
|
FluxIntensiveQuantities::update_(elemCtx, dofIdx, timeIdx);
|
|
|
|
#ifndef NDEBUG
|
|
// some safety checks in debug mode
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
|
|
if (!FluidSystem::phaseIsActive(phaseIdx))
|
|
continue;
|
|
|
|
assert(Opm::isfinite(fluidState_.density(phaseIdx)));
|
|
assert(Opm::isfinite(fluidState_.saturation(phaseIdx)));
|
|
assert(Opm::isfinite(fluidState_.temperature(phaseIdx)));
|
|
assert(Opm::isfinite(fluidState_.pressure(phaseIdx)));
|
|
assert(Opm::isfinite(fluidState_.invB(phaseIdx)));
|
|
}
|
|
assert(Opm::isfinite(fluidState_.Rs()));
|
|
assert(Opm::isfinite(fluidState_.Rv()));
|
|
#endif
|
|
}
|
|
|
|
/*!
|
|
* \copydoc ImmiscibleIntensiveQuantities::fluidState
|
|
*/
|
|
const FluidState& fluidState() const
|
|
{ return fluidState_; }
|
|
|
|
/*!
|
|
* \copydoc ImmiscibleIntensiveQuantities::mobility
|
|
*/
|
|
const Evaluation& mobility(unsigned phaseIdx) const
|
|
{ return mobility_[phaseIdx]; }
|
|
|
|
/*!
|
|
* \copydoc ImmiscibleIntensiveQuantities::porosity
|
|
*/
|
|
const Evaluation& porosity() const
|
|
{ return porosity_; }
|
|
|
|
/*!
|
|
* \brief Returns the index of the PVT region used to calculate the thermodynamic
|
|
* quantities.
|
|
*
|
|
* This allows to specify different Pressure-Volume-Temperature (PVT) relations in
|
|
* different parts of the spatial domain. Note that this concept should be seen as a
|
|
* work-around of the fact that the black-oil model does not capture the
|
|
* thermodynamics well enough. (Because there is, err, only a single real world with
|
|
* in which all substances follow the same physical laws and hence the same
|
|
* thermodynamics.) Anyway: Since the ECL file format uses multiple PVT regions, we
|
|
* support it as well in our black-oil model. (Note that, if it is not explicitly
|
|
* specified, the PVT region index is 0.)
|
|
*/
|
|
auto pvtRegionIndex() const
|
|
-> decltype(std::declval<FluidState>().pvtRegionIndex())
|
|
{ return fluidState_.pvtRegionIndex(); }
|
|
|
|
/*!
|
|
* \copydoc ImmiscibleIntensiveQuantities::relativePermeability
|
|
*/
|
|
Evaluation relativePermeability(unsigned phaseIdx) const
|
|
{
|
|
// warning: slow
|
|
return fluidState_.viscosity(phaseIdx)*mobility(phaseIdx);
|
|
}
|
|
|
|
/*!
|
|
* \brief Returns the porosity of the rock at reference conditions.
|
|
*
|
|
* I.e., the porosity of rock which is not perturbed by pressure and temperature
|
|
* changes.
|
|
*/
|
|
Scalar referencePorosity() const
|
|
{ return referencePorosity_; }
|
|
|
|
private:
|
|
friend BlackOilSolventIntensiveQuantities<TypeTag>;
|
|
friend BlackOilPolymerIntensiveQuantities<TypeTag>;
|
|
friend BlackOilEnergyIntensiveQuantities<TypeTag>;
|
|
friend BlackOilFoamIntensiveQuantities<TypeTag>;
|
|
|
|
Implementation& asImp_()
|
|
{ return *static_cast<Implementation*>(this); }
|
|
|
|
FluidState fluidState_;
|
|
Scalar referencePorosity_;
|
|
Evaluation porosity_;
|
|
Evaluation mobility_[numPhases];
|
|
};
|
|
|
|
} // namespace Opm
|
|
|
|
#endif
|