opm-simulators/examples/problems/infiltrationproblem.hh

502 lines
16 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
* \copydoc Ewoms::InfiltrationProblem
*/
#ifndef EWOMS_INFILTRATION_PROBLEM_HH
#define EWOMS_INFILTRATION_PROBLEM_HH
#include <ewoms/models/pvs/pvsproperties.hh>
#include <opm/material/fluidstates/CompositionalFluidState.hpp>
#include <opm/material/fluidsystems/H2OAirMesityleneFluidSystem.hpp>
#include <opm/material/fluidmatrixinteractions/ThreePhaseParkerVanGenuchten.hpp>
#include <opm/material/fluidmatrixinteractions/MaterialTraits.hpp>
#include <opm/material/constraintsolvers/ComputeFromReferencePhase.hpp>
#include <opm/material/thermal/SomertonHeatConductionLaw.hpp>
#include <opm/common/Valgrind.hpp>
#include <opm/common/Unused.hpp>
#include <dune/grid/yaspgrid.hh>
#include <dune/grid/io/file/dgfparser/dgfyasp.hh>
#include <dune/common/version.hh>
#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>
#include <sstream>
#include <string>
namespace Ewoms {
template <class TypeTag>
class InfiltrationProblem;
}
namespace Ewoms {
namespace Properties {
NEW_TYPE_TAG(InfiltrationBaseProblem);
// Set the grid type
SET_TYPE_PROP(InfiltrationBaseProblem, Grid, Dune::YaspGrid<2>);
// Set the problem property
SET_TYPE_PROP(InfiltrationBaseProblem, Problem,
Ewoms::InfiltrationProblem<TypeTag>);
// Set the fluid system
SET_TYPE_PROP(
InfiltrationBaseProblem, FluidSystem,
Opm::FluidSystems::H2OAirMesitylene<typename GET_PROP_TYPE(TypeTag, Scalar)>);
// Enable gravity?
SET_BOOL_PROP(InfiltrationBaseProblem, EnableGravity, true);
// Write newton convergence?
SET_BOOL_PROP(InfiltrationBaseProblem, NewtonWriteConvergence, false);
// -1 backward differences, 0: central differences, +1: forward differences
SET_INT_PROP(InfiltrationBaseProblem, NumericDifferenceMethod, 1);
// Set the material Law
SET_PROP(InfiltrationBaseProblem, MaterialLaw)
{
private:
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef Opm::ThreePhaseMaterialTraits<
Scalar,
/*wettingPhaseIdx=*/FluidSystem::waterPhaseIdx,
/*nonWettingPhaseIdx=*/FluidSystem::naplPhaseIdx,
/*gasPhaseIdx=*/FluidSystem::gasPhaseIdx> Traits;
public:
typedef Opm::ThreePhaseParkerVanGenuchten<Traits> type;
};
// Set the heat conduction law
SET_PROP(InfiltrationBaseProblem, HeatConductionLaw)
{
private:
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
public:
// define the material law parameterized by absolute saturations
typedef Opm::SomertonHeatConductionLaw<FluidSystem, Scalar> type;
};
// The default for the end time of the simulation
SET_SCALAR_PROP(InfiltrationBaseProblem, EndTime, 6e3);
// The default for the initial time step size of the simulation
SET_SCALAR_PROP(InfiltrationBaseProblem, InitialTimeStepSize, 60);
// The default DGF file to load
SET_STRING_PROP(InfiltrationBaseProblem, GridFile,
"./data/infiltration_50x3.dgf");
} // namespace Properties
} // namespace Ewoms
namespace Ewoms {
/*!
* \ingroup TestProblems
* \brief Isothermal NAPL infiltration problem where LNAPL
* contaminates the unsaturated and the saturated groundwater
* zone.
*
* The 2D domain of this test problem is 500 m long and 10 m deep,
* where the lower part represents a slightly inclined groundwater
* table, and the upper part is the vadose zone. A LNAPL (Non-Aqueous
* Phase Liquid which is lighter than water) infiltrates (modelled
* with a Neumann boundary condition) into the vadose zone. Upon
* reaching the water table, it spreads (since lighter than water) and
* migrates on top of the water table in the direction of the slope.
* On its way through the vadose zone, it leaves a trace of residually
* trapped immobile NAPL, which can in the following dissolve and
* evaporate slowly, and eventually be transported by advection and
* diffusion.
*
* Left and right boundaries are constant hydraulic head boundaries
* (Dirichlet), Top and bottom are Neumann boundaries, all no-flow
* except for the small infiltration zone in the upper left part.
*/
template <class TypeTag>
class InfiltrationProblem : public GET_PROP_TYPE(TypeTag, BaseProblem)
{
typedef typename GET_PROP_TYPE(TypeTag, BaseProblem) ParentType;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLawParams) MaterialLawParams;
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
typedef typename GET_PROP_TYPE(TypeTag, EqVector) EqVector;
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
typedef typename GET_PROP_TYPE(TypeTag, BoundaryRateVector) BoundaryRateVector;
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, Model) Model;
// copy some indices for convenience
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
enum {
// equation indices
conti0EqIdx = Indices::conti0EqIdx,
// number of phases/components
numPhases = FluidSystem::numPhases,
// component indices
NAPLIdx = FluidSystem::NAPLIdx,
H2OIdx = FluidSystem::H2OIdx,
airIdx = FluidSystem::airIdx,
// phase indices
waterPhaseIdx = FluidSystem::waterPhaseIdx,
gasPhaseIdx = FluidSystem::gasPhaseIdx,
naplPhaseIdx = FluidSystem::naplPhaseIdx,
// Grid and world dimension
dim = GridView::dimension,
dimWorld = GridView::dimensionworld
};
typedef typename GridView::ctype CoordScalar;
typedef Dune::FieldVector<CoordScalar, dimWorld> GlobalPosition;
typedef Dune::FieldMatrix<Scalar, dimWorld, dimWorld> DimMatrix;
public:
/*!
* \copydoc Doxygen::defaultProblemConstructor
*/
InfiltrationProblem(Simulator& simulator)
: ParentType(simulator)
, eps_(1e-6)
{ }
/*!
* \copydoc FvBaseProblem::finishInit
*/
void finishInit()
{
ParentType::finishInit();
temperature_ = 273.15 + 10.0; // -> 10 degrees Celsius
FluidSystem::init(/*tempMin=*/temperature_ - 1,
/*tempMax=*/temperature_ + 1,
/*nTemp=*/3,
/*pressMin=*/0.8 * 1e5,
/*pressMax=*/3 * 1e5,
/*nPress=*/200);
// intrinsic permeabilities
fineK_ = this->toDimMatrix_(1e-11);
coarseK_ = this->toDimMatrix_(1e-11);
// porosities
porosity_ = 0.40;
// residual saturations
materialParams_.setSwr(0.12);
materialParams_.setSwrx(0.12);
materialParams_.setSnr(0.07);
materialParams_.setSgr(0.03);
// parameters for the three-phase van Genuchten law
materialParams_.setVgAlpha(0.0005);
materialParams_.setVgN(4.);
materialParams_.setkrRegardsSnr(false);
materialParams_.finalize();
materialParams_.checkDefined();
}
/*!
* \name Problem parameters
*/
//! \{
/*!
* \copydoc FvBaseProblem::shouldWriteRestartFile
*
* This problem writes a restart file after every time step.
*/
bool shouldWriteRestartFile() const
{ return true; }
/*!
* \copydoc FvBaseProblem::name
*/
std::string name() const
{
std::ostringstream oss;
oss << "infiltration_" << Model::name();
return oss.str();
}
/*!
* \copydoc FvBaseProblem::endTimeStep
*/
void endTimeStep()
{
#ifndef NDEBUG
this->model().checkConservativeness();
// Calculate storage terms
EqVector storage;
this->model().globalStorage(storage);
// Write mass balance information for rank 0
if (this->gridView().comm().rank() == 0) {
std::cout << "Storage: " << storage << std::endl << std::flush;
}
#endif // NDEBUG
}
/*!
* \copydoc FvBaseMultiPhaseProblem::temperature
*/
template <class Context>
Scalar temperature(const Context& context OPM_UNUSED,
unsigned spaceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED) const
{ return temperature_; }
/*!
* \copydoc FvBaseMultiPhaseProblem::intrinsicPermeability
*/
template <class Context>
const DimMatrix&
intrinsicPermeability(const Context& context,
unsigned spaceIdx,
unsigned timeIdx) const
{
const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
if (isFineMaterial_(pos))
return fineK_;
return coarseK_;
}
/*!
* \copydoc FvBaseMultiPhaseProblem::porosity
*/
template <class Context>
Scalar porosity(const Context& context OPM_UNUSED,
unsigned spaceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED) const
{ return porosity_; }
/*!
* \copydoc FvBaseMultiPhaseProblem::materialLawParams
*/
template <class Context>
const MaterialLawParams&
materialLawParams(const Context& context OPM_UNUSED,
unsigned spaceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED) const
{ return materialParams_; }
/*!
* \copydoc FvBaseMultiPhaseProblem::heatCapacitySolid
*
* In this case, we assume the rock-matrix to be quartz.
*/
template <class Context>
Scalar heatCapacitySolid(const Context& context OPM_UNUSED,
unsigned spaceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED) const
{
return 850. // specific heat capacity [J / (kg K)]
* 2650.; // density of sand [kg/m^3]
}
//! \}
/*!
* \name Boundary conditions
*/
//! \{
/*!
* \copydoc FvBaseProblem::boundary
*/
template <class Context>
void boundary(BoundaryRateVector& values,
const Context& context,
unsigned spaceIdx,
unsigned timeIdx) const
{
const auto& pos = context.pos(spaceIdx, timeIdx);
if (onLeftBoundary_(pos) || onRightBoundary_(pos)) {
Opm::CompositionalFluidState<Scalar, FluidSystem> fs;
initialFluidState_(fs, context, spaceIdx, timeIdx);
values.setFreeFlow(context, spaceIdx, timeIdx, fs);
}
else if (onInlet_(pos)) {
RateVector molarRate(0.0);
molarRate[conti0EqIdx + NAPLIdx] = -0.001;
values.setMolarRate(molarRate);
Opm::Valgrind::CheckDefined(values);
}
else
values.setNoFlow();
}
//! \}
/*!
* \name Volumetric terms
*/
//! \{
/*!
* \copydoc FvBaseProblem::initial
*/
template <class Context>
void initial(PrimaryVariables& values,
const Context& context,
unsigned spaceIdx,
unsigned timeIdx) const
{
Opm::CompositionalFluidState<Scalar, FluidSystem> fs;
initialFluidState_(fs, context, spaceIdx, timeIdx);
const auto& matParams = materialLawParams(context, spaceIdx, timeIdx);
values.assignMassConservative(fs, matParams, /*inEquilibrium=*/true);
Opm::Valgrind::CheckDefined(values);
}
/*!
* \copydoc FvBaseProblem::source
*
* For this problem, the source term of all components is 0
* everywhere.
*/
template <class Context>
void source(RateVector& rate,
const Context& context OPM_UNUSED,
unsigned spaceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED) const
{ rate = Scalar(0.0); }
//! \}
private:
bool onLeftBoundary_(const GlobalPosition& pos) const
{ return pos[0] < eps_; }
bool onRightBoundary_(const GlobalPosition& pos) const
{ return pos[0] > this->boundingBoxMax()[0] - eps_; }
bool onLowerBoundary_(const GlobalPosition& pos) const
{ return pos[1] < eps_; }
bool onUpperBoundary_(const GlobalPosition& pos) const
{ return pos[1] > this->boundingBoxMax()[1] - eps_; }
bool onInlet_(const GlobalPosition& pos) const
{ return onUpperBoundary_(pos) && 50 < pos[0] && pos[0] < 75; }
template <class FluidState, class Context>
void initialFluidState_(FluidState& fs, const Context& context,
unsigned spaceIdx, unsigned timeIdx) const
{
const GlobalPosition pos = context.pos(spaceIdx, timeIdx);
Scalar y = pos[1];
Scalar x = pos[0];
Scalar densityW = 1000.0;
Scalar pc = 9.81 * densityW * (y - (5 - 5e-4 * x));
if (pc < 0.0)
pc = 0.0;
// set pressures
const auto& matParams = materialLawParams(context, spaceIdx, timeIdx);
Scalar Sw = matParams.Swr();
Scalar Swr = matParams.Swr();
Scalar Sgr = matParams.Sgr();
if (Sw < Swr)
Sw = Swr;
if (Sw > 1 - Sgr)
Sw = 1 - Sgr;
Scalar Sg = 1 - Sw;
Opm::Valgrind::CheckDefined(Sw);
Opm::Valgrind::CheckDefined(Sg);
fs.setSaturation(waterPhaseIdx, Sw);
fs.setSaturation(gasPhaseIdx, Sg);
fs.setSaturation(naplPhaseIdx, 0);
// set temperature of all phases
fs.setTemperature(temperature_);
// compute pressures
Scalar pcAll[numPhases];
Scalar pg = 1e5;
if (onLeftBoundary_(pos))
pg += 10e3;
MaterialLaw::capillaryPressures(pcAll, matParams, fs);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
fs.setPressure(phaseIdx, pg + (pcAll[phaseIdx] - pcAll[gasPhaseIdx]));
// set composition of gas phase
fs.setMoleFraction(gasPhaseIdx, H2OIdx, 1e-6);
fs.setMoleFraction(gasPhaseIdx, airIdx,
1 - fs.moleFraction(gasPhaseIdx, H2OIdx));
fs.setMoleFraction(gasPhaseIdx, NAPLIdx, 0);
typedef Opm::ComputeFromReferencePhase<Scalar, FluidSystem> CFRP;
typename FluidSystem::template ParameterCache<Scalar> paramCache;
CFRP::solve(fs, paramCache, gasPhaseIdx,
/*setViscosity=*/false,
/*setEnthalpy=*/false);
fs.setMoleFraction(waterPhaseIdx, H2OIdx,
1 - fs.moleFraction(waterPhaseIdx, H2OIdx));
}
bool isFineMaterial_(const GlobalPosition& pos) const
{ return 70. <= pos[0] && pos[0] <= 85. && 7.0 <= pos[1] && pos[1] <= 7.50; }
DimMatrix fineK_;
DimMatrix coarseK_;
Scalar porosity_;
MaterialLawParams materialParams_;
Scalar temperature_;
Scalar eps_;
};
} // namespace Ewoms
#endif