opm-simulators/opm/simulators/timestepping/TimeStepControl.hpp
2023-02-13 22:03:58 +01:00

218 lines
9.2 KiB
C++

/*
Copyright 2014 IRIS AS
Copyright 2015 Dr. Blatt - HPC-Simulation-Software & Services
Copyright 2015 Statoil AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_TIMESTEPCONTROL_HEADER_INCLUDED
#define OPM_TIMESTEPCONTROL_HEADER_INCLUDED
#include <opm/simulators/timestepping/TimeStepControlInterface.hpp>
#include <string>
#include <vector>
namespace Opm
{
enum class TimeStepControlType {
SimpleIterationCount,
PID,
PIDAndIterationCount,
HardCodedTimeStep
};
///////////////////////////////////////////////////////////////////////////////////////////////////////////////
///
/// A simple iteration count based adaptive time step control.
//
///////////////////////////////////////////////////////////////////////////////////////////////////////////////
class SimpleIterationCountTimeStepControl : public TimeStepControlInterface
{
public:
static constexpr TimeStepControlType Type = TimeStepControlType::SimpleIterationCount;
SimpleIterationCountTimeStepControl() = default;
/// \brief constructor
/// \param target_iterations number of desired iterations (e.g. Newton iterations) per time step in one time step
// \param decayrate decayrate of time step when target iterations are not met (should be <= 1)
// \param growthrate growthrate of time step when target iterations are not met (should be >= 1)
/// \param verbose if true get some output (default = false)
SimpleIterationCountTimeStepControl( const int target_iterations,
const double decayrate,
const double growthrate,
const bool verbose = false);
static SimpleIterationCountTimeStepControl serializationTestObject();
/// \brief \copydoc TimeStepControlInterface::computeTimeStepSize
double computeTimeStepSize( const double dt, const int iterations, const RelativeChangeInterface& /* relativeChange */, const double /*simulationTimeElapsed */ ) const;
template<class Serializer>
void serializeOp(Serializer& serializer)
{
serializer(target_iterations_);
serializer(decayrate_);
serializer(growthrate_);
serializer(verbose_);
}
bool operator==(const SimpleIterationCountTimeStepControl&) const;
protected:
const int target_iterations_ = 0;
const double decayrate_ = 0.0;
const double growthrate_ = 0.0;
const bool verbose_ = false;
};
///////////////////////////////////////////////////////////////////////////////////////////////////////////////
///
/// PID controller based adaptive time step control as suggested in:
/// Turek and Kuzmin. Algebraic Flux Correction III. Incompressible Flow Problems. Uni Dortmund.
///
/// See also:
/// D. Kuzmin and S.Turek. Numerical simulation of turbulent bubbly flows. Techreport Uni Dortmund. 2004
///
/// and the original article:
/// Valli, Coutinho, and Carey. Adaptive Control for Time Step Selection in Finite Element
/// Simulation of Coupled Viscous Flow and Heat Transfer. Proc of the 10th
/// International Conference on Numerical Methods in Fluids. 1998.
///
///////////////////////////////////////////////////////////////////////////////////////////////////////////////
class PIDTimeStepControl : public TimeStepControlInterface
{
public:
static constexpr TimeStepControlType Type = TimeStepControlType::PID;
/// \brief constructor
/// \param tol tolerance for the relative changes of the numerical solution to be accepted
/// in one time step (default is 1e-3)
/// \param verbose if true get some output (default = false)
PIDTimeStepControl( const double tol = 1e-3,
const bool verbose = false );
static PIDTimeStepControl serializationTestObject();
/// \brief \copydoc TimeStepControlInterface::computeTimeStepSize
double computeTimeStepSize( const double dt, const int /* iterations */, const RelativeChangeInterface& relativeChange, const double /*simulationTimeElapsed */ ) const;
template<class Serializer>
void serializeOp(Serializer& serializer)
{
serializer(tol_);
serializer(errors_);
serializer(verbose_);
}
bool operator==(const PIDTimeStepControl&) const;
protected:
const double tol_ = 1e-3;
mutable std::vector< double > errors_{};
const bool verbose_ = false;
};
///////////////////////////////////////////////////////////////////////////////////////////////////////////////
///
/// PID controller based adaptive time step control as above that also takes
/// an target iteration into account.
//
///////////////////////////////////////////////////////////////////////////////////////////////////////////////
class PIDAndIterationCountTimeStepControl : public PIDTimeStepControl
{
typedef PIDTimeStepControl BaseType;
public:
static constexpr TimeStepControlType Type = TimeStepControlType::PIDAndIterationCount;
/// \brief constructor
/// \param target_iterations number of desired iterations per time step
/// \param tol tolerance for the relative changes of the numerical solution to be accepted
/// in one time step (default is 1e-3)
/// \param verbose if true get some output (default = false)
PIDAndIterationCountTimeStepControl( const int target_iterations = 20,
const double decayDampingFactor = 1.0,
const double growthDampingFactor = 1.0/1.2,
const double tol = 1e-3,
const double minTimeStepBasedOnIterations = 0.,
const bool verbose = false);
static PIDAndIterationCountTimeStepControl serializationTestObject();
/// \brief \copydoc TimeStepControlInterface::computeTimeStepSize
double computeTimeStepSize( const double dt, const int iterations, const RelativeChangeInterface& relativeChange, const double /*simulationTimeElapsed */ ) const;
template<class Serializer>
void serializeOp(Serializer& serializer)
{
serializer(static_cast<PIDTimeStepControl&>(*this));
serializer(target_iterations_);
serializer(decayDampingFactor_);
serializer(growthDampingFactor_);
serializer(minTimeStepBasedOnIterations_);
}
bool operator==(const PIDAndIterationCountTimeStepControl&) const;
protected:
const int target_iterations_;
const double decayDampingFactor_;
const double growthDampingFactor_;
const double minTimeStepBasedOnIterations_;
};
///////////////////////////////////////////////////////////////////////////////////////////////////////////////
///
/// HardcodedTimeStepControl
/// Input generated from summary file using the ert application:
///
/// ecl_summary DECK TIME > filename
///
/// Assumes time is given in days
///////////////////////////////////////////////////////////////////////////////////////////////////////////////
class HardcodedTimeStepControl : public TimeStepControlInterface
{
public:
static constexpr TimeStepControlType Type = TimeStepControlType::HardCodedTimeStep;
HardcodedTimeStepControl() = default;
/// \brief constructor
/// \param filename filename contaning the timesteps
explicit HardcodedTimeStepControl( const std::string& filename);
static HardcodedTimeStepControl serializationTestObject();
/// \brief \copydoc TimeStepControlInterface::computeTimeStepSize
double computeTimeStepSize( const double dt, const int /* iterations */, const RelativeChangeInterface& /*relativeChange */, const double simulationTimeElapsed) const;
template<class Serializer>
void serializeOp(Serializer& serializer)
{
serializer(subStepTime_);
}
bool operator==(const HardcodedTimeStepControl&) const;
protected:
// store the time (in days) of the substeps the simulator should use
std::vector<double> subStepTime_;
};
} // end namespace Opm
#endif