opm-simulators/examples/problems/waterairproblem.hh
2023-02-27 09:47:39 +01:00

617 lines
21 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::WaterAirProblem
*/
#ifndef EWOMS_WATER_AIR_PROBLEM_HH
#define EWOMS_WATER_AIR_PROBLEM_HH
#include <opm/models/pvs/pvsproperties.hh>
#include <opm/simulators/linalg/parallelistlbackend.hh>
#include <opm/material/fluidsystems/H2OAirFluidSystem.hpp>
#include <opm/material/fluidstates/ImmiscibleFluidState.hpp>
#include <opm/material/fluidstates/CompositionalFluidState.hpp>
#include <opm/material/fluidmatrixinteractions/LinearMaterial.hpp>
#include <opm/material/fluidmatrixinteractions/RegularizedBrooksCorey.hpp>
#include <opm/material/fluidmatrixinteractions/EffToAbsLaw.hpp>
#include <opm/material/fluidmatrixinteractions/MaterialTraits.hpp>
#include <opm/material/thermal/ConstantSolidHeatCapLaw.hpp>
#include <opm/material/thermal/SomertonThermalConductionLaw.hpp>
#include <opm/material/constraintsolvers/ComputeFromReferencePhase.hpp>
#include <dune/grid/yaspgrid.hh>
#include <dune/grid/io/file/dgfparser/dgfyasp.hh>
#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>
#include <sstream>
#include <string>
namespace Opm {
template <class TypeTag>
class WaterAirProblem;
}
namespace Opm::Properties {
namespace TTag {
struct WaterAirBaseProblem {};
}
// Set the grid type
template<class TypeTag>
struct Grid<TypeTag, TTag::WaterAirBaseProblem> { using type = Dune::YaspGrid<2>; };
// Set the problem property
template<class TypeTag>
struct Problem<TypeTag, TTag::WaterAirBaseProblem> { using type = Opm::WaterAirProblem<TypeTag>; };
// Set the material Law
template<class TypeTag>
struct MaterialLaw<TypeTag, TTag::WaterAirBaseProblem>
{
private:
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using Traits = Opm::TwoPhaseMaterialTraits<Scalar,
/*wettingPhaseIdx=*/FluidSystem::liquidPhaseIdx,
/*nonWettingPhaseIdx=*/FluidSystem::gasPhaseIdx>;
// define the material law which is parameterized by effective
// saturations
using EffMaterialLaw = Opm::RegularizedBrooksCorey<Traits>;
public:
// define the material law parameterized by absolute saturations
// which uses the two-phase API
using type = Opm::EffToAbsLaw<EffMaterialLaw>;
};
// Set the thermal conduction law
template<class TypeTag>
struct ThermalConductionLaw<TypeTag, TTag::WaterAirBaseProblem>
{
private:
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
public:
// define the material law parameterized by absolute saturations
using type = Opm::SomertonThermalConductionLaw<FluidSystem, Scalar>;
};
// set the energy storage law for the solid phase
template<class TypeTag>
struct SolidEnergyLaw<TypeTag, TTag::WaterAirBaseProblem>
{ using type = Opm::ConstantSolidHeatCapLaw<GetPropType<TypeTag, Properties::Scalar>>; };
// Set the fluid system. in this case, we use the one which describes
// air and water
template<class TypeTag>
struct FluidSystem<TypeTag, TTag::WaterAirBaseProblem>
{ using type = Opm::H2OAirFluidSystem<GetPropType<TypeTag, Properties::Scalar>>; };
// Enable gravity
template<class TypeTag>
struct EnableGravity<TypeTag, TTag::WaterAirBaseProblem> { static constexpr bool value = true; };
// Use forward differences instead of central differences
template<class TypeTag>
struct NumericDifferenceMethod<TypeTag, TTag::WaterAirBaseProblem> { static constexpr int value = +1; };
// Write newton convergence
template<class TypeTag>
struct NewtonWriteConvergence<TypeTag, TTag::WaterAirBaseProblem> { static constexpr bool value = false; };
// The default for the end time of the simulation (1 year)
template<class TypeTag>
struct EndTime<TypeTag, TTag::WaterAirBaseProblem>
{
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 1.0 * 365 * 24 * 60 * 60;
};
// The default for the initial time step size of the simulation
template<class TypeTag>
struct InitialTimeStepSize<TypeTag, TTag::WaterAirBaseProblem>
{
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 250;
};
// The default DGF file to load
template<class TypeTag>
struct GridFile<TypeTag, TTag::WaterAirBaseProblem> { static constexpr auto value = "./data/waterair.dgf"; };
// Use the restarted GMRES linear solver with the ILU-2 preconditioner from dune-istl
template<class TypeTag>
struct LinearSolverSplice<TypeTag, TTag::WaterAirBaseProblem>
{ using type = TTag::ParallelIstlLinearSolver; };
template<class TypeTag>
struct LinearSolverWrapper<TypeTag, TTag::WaterAirBaseProblem>
{ using type = Opm::Linear::SolverWrapperRestartedGMRes<TypeTag>; };
template<class TypeTag>
struct PreconditionerWrapper<TypeTag, TTag::WaterAirBaseProblem>
{ using type = Opm::Linear::PreconditionerWrapperILU<TypeTag>; };
template<class TypeTag>
struct PreconditionerOrder<TypeTag, TTag::WaterAirBaseProblem> { static constexpr int value = 2; };
} // namespace Opm::Properties
namespace Opm {
/*!
* \ingroup TestProblems
* \brief Non-isothermal gas injection problem where a air
* is injected into a fully water saturated medium.
*
* During buoyancy driven upward migration, the gas passes a
* rectangular high temperature area. This decreases the temperature
* of the high-temperature area and accelerates gas infiltration due
* to the lower viscosity of the gas. (Be aware that the pressure of
* the gas is approximately constant within the lens, so the density
* of the gas is reduced. This more than off-sets the viscosity
* increase of the gas at constant density.)
*
* The domain is sized 40 m times 40 m. The rectangular area with
* increased temperature (380 K) starts at (20 m, 5 m) and ends at (30
* m, 35 m).
*
* For the mass conservation equation, no-flow boundary conditions are
* used on the top and on the bottom of the domain, while free-flow
* conditions apply on the left and the right boundary. Gas is
* injected at bottom from 15 m to 25 m at a rate of 0.001 kg/(s m^2)
* by means if a forced inflow boundary condition.
*
* At the free-flow boundaries, the initial condition for the bulk
* part of the domain is assumed, i. e. hydrostatic pressure, a gas
* saturation of zero and a geothermal temperature gradient of 0.03
* K/m.
*/
template <class TypeTag >
class WaterAirProblem : public GetPropType<TypeTag, Properties::BaseProblem>
{
using ParentType = GetPropType<TypeTag, Properties::BaseProblem>;
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using GridView = GetPropType<TypeTag, Properties::GridView>;
// copy some indices for convenience
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using Indices = GetPropType<TypeTag, Properties::Indices>;
enum {
numPhases = FluidSystem::numPhases,
// energy related indices
temperatureIdx = Indices::temperatureIdx,
energyEqIdx = Indices::energyEqIdx,
// component indices
H2OIdx = FluidSystem::H2OIdx,
AirIdx = FluidSystem::AirIdx,
// phase indices
liquidPhaseIdx = FluidSystem::liquidPhaseIdx,
gasPhaseIdx = FluidSystem::gasPhaseIdx,
// equation indices
conti0EqIdx = Indices::conti0EqIdx,
// Grid and world dimension
dim = GridView::dimension,
dimWorld = GridView::dimensionworld
};
static const bool enableEnergy = getPropValue<TypeTag, Properties::EnableEnergy>();
using EqVector = GetPropType<TypeTag, Properties::EqVector>;
using RateVector = GetPropType<TypeTag, Properties::RateVector>;
using BoundaryRateVector = GetPropType<TypeTag, Properties::BoundaryRateVector>;
using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
using Constraints = GetPropType<TypeTag, Properties::Constraints>;
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
using Model = GetPropType<TypeTag, Properties::Model>;
using MaterialLaw = GetPropType<TypeTag, Properties::MaterialLaw>;
using MaterialLawParams = GetPropType<TypeTag, Properties::MaterialLawParams>;
using ThermalConductionLawParams = GetPropType<TypeTag, Properties::ThermalConductionLawParams>;
using SolidEnergyLawParams = GetPropType<TypeTag, Properties::SolidEnergyLawParams>;
using CoordScalar = typename GridView::ctype;
using GlobalPosition = Dune::FieldVector<CoordScalar, dimWorld>;
using DimMatrix = Dune::FieldMatrix<Scalar, dimWorld, dimWorld>;
public:
/*!
* \copydoc Doxygen::defaultProblemConstructor
*/
WaterAirProblem(Simulator& simulator)
: ParentType(simulator)
{ }
/*!
* \copydoc FvBaseProblem::finishInit
*/
void finishInit()
{
ParentType::finishInit();
maxDepth_ = 1000.0; // [m]
eps_ = 1e-6;
FluidSystem::init(/*Tmin=*/275, /*Tmax=*/600, /*nT=*/100,
/*pmin=*/9.5e6, /*pmax=*/10.5e6, /*np=*/200);
layerBottom_ = 22.0;
// intrinsic permeabilities
fineK_ = this->toDimMatrix_(1e-13);
coarseK_ = this->toDimMatrix_(1e-12);
// porosities
finePorosity_ = 0.3;
coarsePorosity_ = 0.3;
// residual saturations
fineMaterialParams_.setResidualSaturation(liquidPhaseIdx, 0.2);
fineMaterialParams_.setResidualSaturation(gasPhaseIdx, 0.0);
coarseMaterialParams_.setResidualSaturation(liquidPhaseIdx, 0.2);
coarseMaterialParams_.setResidualSaturation(gasPhaseIdx, 0.0);
// parameters for the Brooks-Corey law
fineMaterialParams_.setEntryPressure(1e4);
coarseMaterialParams_.setEntryPressure(1e4);
fineMaterialParams_.setLambda(2.0);
coarseMaterialParams_.setLambda(2.0);
fineMaterialParams_.finalize();
coarseMaterialParams_.finalize();
// parameters for the somerton law of thermal conduction
computeThermalCondParams_(fineThermalCondParams_, finePorosity_);
computeThermalCondParams_(coarseThermalCondParams_, coarsePorosity_);
// assume constant volumetric heat capacity and granite
solidEnergyLawParams_.setSolidHeatCapacity(790.0 // specific heat capacity of granite [J / (kg K)]
* 2700.0); // density of granite [kg/m^3]
solidEnergyLawParams_.finalize();
}
/*!
* \name Problem parameters
*/
//! \{
/*!
* \copydoc FvBaseProblem::name
*/
std::string name() const
{
std::ostringstream oss;
oss << "waterair_" << Model::name();
if (getPropValue<TypeTag, Properties::EnableEnergy>())
oss << "_ni";
return oss.str();
}
/*!
* \copydoc FvBaseProblem::endTimeStep
*/
void endTimeStep()
{
#ifndef NDEBUG
// checkConservativeness() does not include the effect of constraints, so we
// disable it for this problem...
//this->model().checkConservativeness();
// Calculate storage terms
EqVector storage;
this->model().globalStorage(storage);
// Write mass balance information for rank 0
if (this->gridView().comm().rank() == 0) {
std::cout << "Storage: " << storage << std::endl << std::flush;
}
#endif // NDEBUG
}
/*!
* \copydoc FvBaseMultiPhaseProblem::intrinsicPermeability
*
* In this problem, the upper part of the domain is sightly less
* permeable than the lower one.
*/
template <class Context>
const DimMatrix& intrinsicPermeability(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{
const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
if (isFineMaterial_(pos))
return fineK_;
return coarseK_;
}
/*!
* \copydoc FvBaseMultiPhaseProblem::porosity
*/
template <class Context>
Scalar porosity(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{
const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
if (isFineMaterial_(pos))
return finePorosity_;
else
return coarsePorosity_;
}
/*!
* \copydoc FvBaseMultiPhaseProblem::materialLawParams
*/
template <class Context>
const MaterialLawParams& materialLawParams(const Context& context,
unsigned spaceIdx,
unsigned timeIdx) const
{
const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
if (isFineMaterial_(pos))
return fineMaterialParams_;
else
return coarseMaterialParams_;
}
/*!
* \brief Return the parameters for the energy storage law of the rock
*
* In this case, we assume the rock-matrix to be granite.
*/
template <class Context>
const SolidEnergyLawParams&
solidEnergyLawParams(const Context& /*context*/,
unsigned /*spaceIdx*/,
unsigned /*timeIdx*/) const
{ return solidEnergyLawParams_; }
/*!
* \copydoc FvBaseMultiPhaseProblem::thermalConductionParams
*/
template <class Context>
const ThermalConductionLawParams&
thermalConductionLawParams(const Context& context,
unsigned spaceIdx,
unsigned timeIdx) const
{
const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
if (isFineMaterial_(pos))
return fineThermalCondParams_;
return coarseThermalCondParams_;
}
//! \}
/*!
* \name Boundary conditions
*/
//! \{
/*!
* \copydoc FvBaseProblem::boundary
*
* For this problem, we inject air at the inlet on the center of
* the lower domain boundary and use a no-flow condition on the
* top boundary and a and a free-flow condition on the left and
* right boundaries of the domain.
*/
template <class Context>
void boundary(BoundaryRateVector& values,
const Context& context,
unsigned spaceIdx, unsigned timeIdx) const
{
const auto& pos = context.cvCenter(spaceIdx, timeIdx);
assert(onLeftBoundary_(pos) ||
onLowerBoundary_(pos) ||
onRightBoundary_(pos) ||
onUpperBoundary_(pos));
if (onInlet_(pos)) {
RateVector massRate(0.0);
massRate[conti0EqIdx + AirIdx] = -1e-3; // [kg/(m^2 s)]
// impose an forced inflow boundary condition on the inlet
values.setMassRate(massRate);
if (enableEnergy) {
Opm::CompositionalFluidState<Scalar, FluidSystem> fs;
initialFluidState_(fs, context, spaceIdx, timeIdx);
Scalar hl = fs.enthalpy(liquidPhaseIdx);
Scalar hg = fs.enthalpy(gasPhaseIdx);
values.setEnthalpyRate(values[conti0EqIdx + AirIdx] * hg +
values[conti0EqIdx + H2OIdx] * hl);
}
}
else if (onLeftBoundary_(pos) || onRightBoundary_(pos)) {
Opm::CompositionalFluidState<Scalar, FluidSystem> fs;
initialFluidState_(fs, context, spaceIdx, timeIdx);
// impose an freeflow boundary condition
values.setFreeFlow(context, spaceIdx, timeIdx, fs);
}
else
// no flow on top and bottom
values.setNoFlow();
}
//! \}
/*!
* \name Volumetric terms
*/
//! \{
/*!
* \copydoc FvBaseProblem::initial
*
* For this problem, we set the medium to be fully saturated by
* liquid water and assume hydrostatic pressure.
*/
template <class Context>
void initial(PrimaryVariables& values,
const Context& context,
unsigned spaceIdx,
unsigned timeIdx) const
{
Opm::CompositionalFluidState<Scalar, FluidSystem> fs;
initialFluidState_(fs, context, spaceIdx, timeIdx);
const auto& matParams = materialLawParams(context, spaceIdx, timeIdx);
values.assignMassConservative(fs, matParams, /*inEquilibrium=*/true);
}
/*!
* \copydoc FvBaseProblem::source
*
* For this problem, the source term of all components is 0
* everywhere.
*/
template <class Context>
void source(RateVector& rate,
const Context& /*context*/,
unsigned /*spaceIdx*/,
unsigned /*timeIdx*/) const
{ rate = 0; }
//! \}
private:
bool onLeftBoundary_(const GlobalPosition& pos) const
{ return pos[0] < eps_; }
bool onRightBoundary_(const GlobalPosition& pos) const
{ return pos[0] > this->boundingBoxMax()[0] - eps_; }
bool onLowerBoundary_(const GlobalPosition& pos) const
{ return pos[1] < eps_; }
bool onUpperBoundary_(const GlobalPosition& pos) const
{ return pos[1] > this->boundingBoxMax()[1] - eps_; }
bool onInlet_(const GlobalPosition& pos) const
{ return onLowerBoundary_(pos) && (15.0 < pos[0]) && (pos[0] < 25.0); }
bool inHighTemperatureRegion_(const GlobalPosition& pos) const
{ return (20 < pos[0]) && (pos[0] < 30) && (pos[1] < 30); }
template <class Context, class FluidState>
void initialFluidState_(FluidState& fs,
const Context& context,
unsigned spaceIdx,
unsigned timeIdx) const
{
const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
Scalar densityW = 1000.0;
fs.setPressure(liquidPhaseIdx, 1e5 + (maxDepth_ - pos[1])*densityW*9.81);
fs.setSaturation(liquidPhaseIdx, 1.0);
fs.setMoleFraction(liquidPhaseIdx, H2OIdx, 1.0);
fs.setMoleFraction(liquidPhaseIdx, AirIdx, 0.0);
if (inHighTemperatureRegion_(pos))
fs.setTemperature(380);
else
fs.setTemperature(283.0 + (maxDepth_ - pos[1])*0.03);
// set the gas saturation and pressure
fs.setSaturation(gasPhaseIdx, 0);
Scalar pc[numPhases];
const auto& matParams = materialLawParams(context, spaceIdx, timeIdx);
MaterialLaw::capillaryPressures(pc, matParams, fs);
fs.setPressure(gasPhaseIdx, fs.pressure(liquidPhaseIdx) + (pc[gasPhaseIdx] - pc[liquidPhaseIdx]));
typename FluidSystem::template ParameterCache<Scalar> paramCache;
using CFRP = Opm::ComputeFromReferencePhase<Scalar, FluidSystem>;
CFRP::solve(fs, paramCache, liquidPhaseIdx, /*setViscosity=*/true, /*setEnthalpy=*/true);
}
void computeThermalCondParams_(ThermalConductionLawParams& params, Scalar poro)
{
Scalar lambdaGranite = 2.8; // [W / (K m)]
// create a Fluid state which has all phases present
Opm::ImmiscibleFluidState<Scalar, FluidSystem> fs;
fs.setTemperature(293.15);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
fs.setPressure(phaseIdx, 1.0135e5);
}
typename FluidSystem::template ParameterCache<Scalar> paramCache;
paramCache.updateAll(fs);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
Scalar rho = FluidSystem::density(fs, paramCache, phaseIdx);
fs.setDensity(phaseIdx, rho);
}
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
Scalar lambdaSaturated;
if (FluidSystem::isLiquid(phaseIdx)) {
Scalar lambdaFluid =
FluidSystem::thermalConductivity(fs, paramCache, phaseIdx);
lambdaSaturated = std::pow(lambdaGranite, (1-poro)) + std::pow(lambdaFluid, poro);
}
else
lambdaSaturated = std::pow(lambdaGranite, (1-poro));
params.setFullySaturatedLambda(phaseIdx, lambdaSaturated);
if (!FluidSystem::isLiquid(phaseIdx))
params.setVacuumLambda(lambdaSaturated);
}
}
bool isFineMaterial_(const GlobalPosition& pos) const
{ return pos[dim-1] > layerBottom_; }
DimMatrix fineK_;
DimMatrix coarseK_;
Scalar layerBottom_;
Scalar finePorosity_;
Scalar coarsePorosity_;
MaterialLawParams fineMaterialParams_;
MaterialLawParams coarseMaterialParams_;
ThermalConductionLawParams fineThermalCondParams_;
ThermalConductionLawParams coarseThermalCondParams_;
SolidEnergyLawParams solidEnergyLawParams_;
Scalar maxDepth_;
Scalar eps_;
};
} // namespace Opm
#endif