opm-simulators/opm/simulators/wells/MultisegmentWell.hpp

493 lines
23 KiB
C++

/*
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2017 Statoil ASA.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_MULTISEGMENTWELL_HEADER_INCLUDED
#define OPM_MULTISEGMENTWELL_HEADER_INCLUDED
#include <opm/simulators/wells/WellInterface.hpp>
namespace Opm
{
template<typename TypeTag>
class MultisegmentWell: public WellInterface<TypeTag>
{
public:
typedef WellInterface<TypeTag> Base;
using typename Base::WellState;
using typename Base::Simulator;
using typename Base::IntensiveQuantities;
using typename Base::FluidSystem;
using typename Base::ModelParameters;
using typename Base::MaterialLaw;
using typename Base::Indices;
using typename Base::RateConverterType;
using typename Base::SparseMatrixAdapter;
/// the number of reservior equations
using Base::numEq;
using Base::has_solvent;
using Base::has_polymer;
using Base::Water;
using Base::Oil;
using Base::Gas;
// TODO: for now, not considering the polymer, solvent and so on to simplify the development process.
// TODO: we need to have order for the primary variables and also the order for the well equations.
// sometimes, they are similar, while sometimes, they can have very different forms.
// TODO: the following system looks not rather flexible. Looking into all kinds of possibilities
// TODO: gas is always there? how about oil water case?
// Is it gas oil two phase case?
static const bool gasoil = numEq == 2 && (Indices::compositionSwitchIdx >= 0);
static const int GTotal = 0;
static const int WFrac = gasoil? -1000: 1;
static const int GFrac = gasoil? 1 : 2;
static const int SPres = gasoil? 2 : 3;
/// the number of well equations // TODO: it should have a more general strategy for it
static const int numWellEq = GET_PROP_VALUE(TypeTag, EnablePolymer)? numEq : numEq + 1;
using typename Base::Scalar;
/// the matrix and vector types for the reservoir
using typename Base::BVector;
using typename Base::Eval;
// sparsity pattern for the matrices
// [A C^T [x = [ res
// B D ] x_well] res_well]
// the vector type for the res_well and x_well
typedef Dune::FieldVector<Scalar, numWellEq> VectorBlockWellType;
typedef Dune::BlockVector<VectorBlockWellType> BVectorWell;
// the matrix type for the diagonal matrix D
typedef Dune::FieldMatrix<Scalar, numWellEq, numWellEq > DiagMatrixBlockWellType;
typedef Dune::BCRSMatrix <DiagMatrixBlockWellType> DiagMatWell;
// the matrix type for the non-diagonal matrix B and C^T
typedef Dune::FieldMatrix<Scalar, numWellEq, numEq> OffDiagMatrixBlockWellType;
typedef Dune::BCRSMatrix<OffDiagMatrixBlockWellType> OffDiagMatWell;
// TODO: for more efficient implementation, we should have EvalReservoir, EvalWell, and EvalRerservoirAndWell
// EvalR (Eval), EvalW, EvalRW
// TODO: for now, we only use one type to save some implementation efforts, while improve later.
typedef DenseAd::Evaluation<double, /*size=*/numEq + numWellEq> EvalWell;
MultisegmentWell(const Well& well, const int time_step,
const ModelParameters& param,
const RateConverterType& rate_converter,
const int pvtRegionIdx,
const int num_components,
const int num_phases,
const int index_of_well,
const int first_perf_index,
const std::vector<PerforationData>& perf_data);
virtual void init(const PhaseUsage* phase_usage_arg,
const std::vector<double>& depth_arg,
const double gravity_arg,
const int num_cells) override;
virtual void initPrimaryVariablesEvaluation() const override;
virtual void assembleWellEq(const Simulator& ebosSimulator,
const std::vector<Scalar>& B_avg,
const double dt,
WellState& well_state,
Opm::DeferredLogger& deferred_logger) override;
/// updating the well state based the current control mode
virtual void updateWellStateWithTarget(const Simulator& ebos_simulator,
WellState& well_state,
Opm::DeferredLogger& deferred_logger) const override;
/// check whether the well equations get converged for this well
virtual ConvergenceReport getWellConvergence(const WellState& well_state, const std::vector<double>& B_avg, Opm::DeferredLogger& deferred_logger, const bool relax_tolerance = false) const override;
/// Ax = Ax - C D^-1 B x
virtual void apply(const BVector& x, BVector& Ax) const override;
/// r = r - C D^-1 Rw
virtual void apply(BVector& r) const override;
#if HAVE_CUDA
/// add the contribution (C, D, B matrices) of this Well to the WellContributions object
void addWellContribution(WellContributions& wellContribs) const;
#endif
/// using the solution x to recover the solution xw for wells and applying
/// xw to update Well State
virtual void recoverWellSolutionAndUpdateWellState(const BVector& x,
WellState& well_state,
Opm::DeferredLogger& deferred_logger) const override;
/// computing the well potentials for group control
virtual void computeWellPotentials(const Simulator& ebosSimulator,
const std::vector<Scalar>& B_avg,
const WellState& well_state,
std::vector<double>& well_potentials,
Opm::DeferredLogger& deferred_logger) override;
virtual void updatePrimaryVariables(const WellState& well_state, Opm::DeferredLogger& deferred_logger) const override;
virtual void solveEqAndUpdateWellState(WellState& well_state, Opm::DeferredLogger& deferred_logger) override; // const?
virtual void calculateExplicitQuantities(const Simulator& ebosSimulator,
const WellState& well_state,
Opm::DeferredLogger& deferred_logger) override; // should be const?
virtual void addWellContributions(SparseMatrixAdapter& jacobian) const override;
/// number of segments for this well
/// int number_of_segments_;
int numberOfSegments() const;
int numberOfPerforations() const;
protected:
int number_segments_;
// components of the pressure drop to be included
WellSegments::CompPressureDrop compPressureDrop() const;
// multi-phase flow model
WellSegments::MultiPhaseModel multiphaseModel() const;
// get the WellSegments from the well_ecl_
const WellSegments& segmentSet() const;
// protected member variables from the Base class
using Base::well_ecl_;
using Base::vfp_properties_;
using Base::ref_depth_;
using Base::number_of_perforations_; // TODO: can use well_ecl_?
using Base::current_step_;
using Base::index_of_well_;
using Base::number_of_phases_;
// TODO: the current implementation really relies on the order of the
// perforation does not change from the parser to Wells structure.
using Base::well_cells_;
using Base::param_;
using Base::well_index_;
using Base::first_perf_;
using Base::saturation_table_number_;
using Base::well_efficiency_factor_;
using Base::gravity_;
using Base::perf_depth_;
using Base::num_components_;
using Base::connectionRates_;
// protected functions from the Base class
using Base::phaseUsage;
using Base::name;
using Base::flowPhaseToEbosCompIdx;
using Base::ebosCompIdxToFlowCompIdx;
using Base::getAllowCrossFlow;
using Base::scalingFactor;
using Base::wellIsStopped_;
// TODO: trying to use the information from the Well opm-parser as much
// as possible, it will possibly be re-implemented later for efficiency reason.
// the completions that is related to each segment
// the completions's ids are their index in the vector well_index_, well_cell_
// This is also assuming the order of the completions in Well is the same with
// the order of the completions in wells.
// it is for convinience reason. we can just calcuate the inforation for segment once then using it for all the perofrations
// belonging to this segment
std::vector<std::vector<int> > segment_perforations_;
// the inlet segments for each segment. It is for convinience and efficiency reason
std::vector<std::vector<int> > segment_inlets_;
// segment number is an ID of the segment, it is specified in the deck
// get the loation of the segment with a segment number in the segmentSet
int segmentNumberToIndex(const int segment_number) const;
// TODO, the following should go to a class for computing purpose
// two off-diagonal matrices
mutable OffDiagMatWell duneB_;
mutable OffDiagMatWell duneC_;
// diagonal matrix for the well
mutable DiagMatWell duneD_;
// residuals of the well equations
mutable BVectorWell resWell_;
// the values for the primary varibles
// based on different solutioin strategies, the wells can have different primary variables
mutable std::vector<std::array<double, numWellEq> > primary_variables_;
// the Evaluation for the well primary variables, which contain derivativles and are used in AD calculation
mutable std::vector<std::array<EvalWell, numWellEq> > primary_variables_evaluation_;
// depth difference between perforations and the perforated grid cells
std::vector<double> cell_perforation_depth_diffs_;
// pressure correction due to the different depth of the perforation and
// center depth of the grid block
std::vector<double> cell_perforation_pressure_diffs_;
// depth difference between the segment and the peforation
// or in another way, the depth difference between the perforation and
// the segment the perforation belongs to
std::vector<double> perforation_segment_depth_diffs_;
// the intial amount of fluids in each segment under surface condition
std::vector<std::vector<double> > segment_fluid_initial_;
// the densities of segment fluids
// we should not have this member variable
std::vector<EvalWell> segment_densities_;
// the viscosity of the segments
std::vector<EvalWell> segment_viscosities_;
// the mass rate of the segments
std::vector<EvalWell> segment_mass_rates_;
std::vector<double> segment_depth_diffs_;
// the upwinding segment for each segment based on the flow direction
std::vector<int> upwinding_segments_;
mutable int debug_cost_counter_ = 0;
// TODO: this is the old implementation, it is possible the new value does not need it anymore
std::vector<EvalWell> segment_reservoir_volume_rates_;
std::vector<std::vector<EvalWell>> segment_phase_fractions_;
std::vector<std::vector<EvalWell>> segment_phase_viscosities_;
void initMatrixAndVectors(const int num_cells) const;
EvalWell getBhp() const;
EvalWell getQs(const int comp_idx) const;
EvalWell getWQTotal() const;
// xw = inv(D)*(rw - C*x)
void recoverSolutionWell(const BVector& x, BVectorWell& xw) const;
// updating the well_state based on well solution dwells
void updateWellState(const BVectorWell& dwells,
WellState& well_state,
Opm::DeferredLogger& deferred_logger,
const double relaxation_factor=1.0) const;
// initialize the segment rates with well rates
// when there is no more accurate way to initialize the segment rates, we initialize
// the segment rates based on well rates with a simple strategy
void initSegmentRatesWithWellRates(WellState& well_state) const;
// computing the accumulation term for later use in well mass equations
void computeInitialSegmentFluids(const Simulator& ebos_simulator);
// compute the pressure difference between the perforation and cell center
void computePerfCellPressDiffs(const Simulator& ebosSimulator);
// fraction value of the primary variables
// should we just use member variables to store them instead of calculating them again and again
EvalWell volumeFraction(const int seg, const unsigned comp_idx) const;
// F_p / g_p, the basic usage of this value is because Q_p = G_t * F_p / G_p
EvalWell volumeFractionScaled(const int seg, const int comp_idx) const;
// basically Q_p / \sigma_p Q_p
EvalWell surfaceVolumeFraction(const int seg, const int comp_idx) const;
void computePerfRatePressure(const IntensiveQuantities& int_quants,
const std::vector<EvalWell>& mob_perfcells,
const int seg,
const int perf,
const EvalWell& segment_pressure,
const bool& allow_cf,
std::vector<EvalWell>& cq_s,
EvalWell& perf_press,
double& perf_dis_gas_rate,
double& perf_vap_oil_rate,
Opm::DeferredLogger& deferred_logger) const;
// convert a Eval from reservoir to contain the derivative related to wells
EvalWell extendEval(const Eval& in) const;
template <class ValueType>
ValueType calculateBhpFromThp(const std::vector<ValueType>& rates, const Well& well, const SummaryState& summaryState, Opm::DeferredLogger& deferred_logger) const;
double calculateThpFromBhp(const std::vector<double>& rates, const double bhp, Opm::DeferredLogger& deferred_logger) const;
void updateThp(WellState& well_state, Opm::DeferredLogger& deferred_logger) const;
// compute the fluid properties, such as densities, viscosities, and so on, in the segments
// They will be treated implicitly, so they need to be of Evaluation type
void computeSegmentFluidProperties(const Simulator& ebosSimulator);
EvalWell getSegmentPressure(const int seg) const;
EvalWell getSegmentRate(const int seg, const int comp_idx) const;
EvalWell getSegmentRateUpwinding(const int seg, const size_t comp_idx) const;
EvalWell getSegmentGTotal(const int seg) const;
// get the mobility for specific perforation
void getMobility(const Simulator& ebosSimulator,
const int perf,
std::vector<EvalWell>& mob) const;
void computeWellRatesAtBhpLimit(const Simulator& ebosSimulator,
const std::vector<Scalar>& B_avg,
std::vector<double>& well_flux,
Opm::DeferredLogger& deferred_logger) const;
void computeWellRatesWithBhp(const Simulator& ebosSimulator,
const std::vector<Scalar>& B_avg,
const Scalar bhp,
std::vector<double>& well_flux,
Opm::DeferredLogger& deferred_logger) const;
std::vector<double>
computeWellPotentialWithTHP(const Simulator& ebos_simulator,
const std::vector<Scalar>& B_avg,
Opm::DeferredLogger& deferred_logger) const;
void assembleControlEq(const WellState& well_state,
const Opm::Schedule& schedule,
const SummaryState& summaryState,
const Well::InjectionControls& inj_controls,
const Well::ProductionControls& prod_controls,
Opm::DeferredLogger& deferred_logger);
void assemblePressureEq(const int seg, WellState& well_state) const;
// hytrostatic pressure loss
EvalWell getHydroPressureLoss(const int seg) const;
// frictinal pressure loss
EvalWell getFrictionPressureLoss(const int seg) const;
void handleAccelerationPressureLoss(const int seg, WellState& well_state) const;
// handling the overshooting and undershooting of the fractions
void processFractions(const int seg) const;
// checking the operability of the well based on current reservoir condition
// it is not implemented for multisegment well yet
virtual void checkWellOperability(const Simulator& ebos_simulator,
const WellState& well_state,
Opm::DeferredLogger& deferred_logger) override;
void updateWellStateFromPrimaryVariables(WellState& well_state, Opm::DeferredLogger& deferred_logger) const;
bool frictionalPressureLossConsidered() const;
bool accelerationalPressureLossConsidered() const;
// TODO: try to make ebosSimulator const, as it should be
void iterateWellEquations(const Simulator& ebosSimulator,
const std::vector<Scalar>& B_avg,
const double dt,
const Well::InjectionControls& inj_controls,
const Well::ProductionControls& prod_controls,
WellState& well_state,
Opm::DeferredLogger& deferred_logger);
void assembleWellEqWithoutIteration(const Simulator& ebosSimulator,
const double dt,
const Well::InjectionControls& inj_controls,
const Well::ProductionControls& prod_controls,
WellState& well_state,
Opm::DeferredLogger& deferred_logger);
virtual void wellTestingPhysical(const Simulator& simulator, const std::vector<double>& B_avg,
const double simulation_time, const int report_step,
WellState& well_state, WellTestState& welltest_state, Opm::DeferredLogger& deferred_logger) override;
virtual void updateWaterThroughput(const double dt, WellState& well_state) const override;
EvalWell getSegmentSurfaceVolume(const Simulator& ebos_simulator, const int seg_idx) const;
std::vector<Scalar> getWellResiduals(const std::vector<Scalar>& B_avg) const;
void detectOscillations(const std::vector<double>& measure_history,
const int it, bool& oscillate, bool& stagnate) const;
double getResidualMeasureValue(const WellState& well_state,
const std::vector<double>& residuals,
DeferredLogger& deferred_logger) const;
double getControlTolerance(const WellState& well_state, DeferredLogger& deferred_logger) const;
void checkConvergenceControlEq(const WellState& well_state,
ConvergenceReport& report,
DeferredLogger& deferred_logger) const;
void updateUpwindingSegments();
// turn on crossflow to avoid singular well equations
// when the well is banned from cross-flow and the BHP is not properly initialized,
// we turn on crossflow to avoid singular well equations. It can result in wrong-signed
// well rates, it can cause problem for THP calculation
// TODO: looking for better alternative to avoid wrong-signed well rates
bool openCrossFlowAvoidSingularity(const Simulator& ebos_simulator) const;
// for a well, when all drawdown are in the wrong direction, then this well will not
// be able to produce/inject .
bool allDrawDownWrongDirection(const Simulator& ebos_simulator) const;
std::optional<double> computeBhpAtThpLimitProd(const Simulator& ebos_simulator,
const std::vector<Scalar>& B_avg,
const SummaryState& summary_state,
DeferredLogger& deferred_logger) const;
std::optional<double> computeBhpAtThpLimitInj(const Simulator& ebos_simulator,
const std::vector<Scalar>& B_avg,
const SummaryState& summary_state,
DeferredLogger& deferred_logger) const;
double maxPerfPress(const Simulator& ebos_simulator) const;
void assembleSICDPressureEq(const int seg, WellState& well_state) const;
EvalWell pressureDropSpiralICD(const int seg) const;
// assemble the pressure equation for sub-critical valve (WSEGVALV)
void assembleValvePressureEq(const int seg, WellState& well_state) const;
EvalWell pressureDropValve(const int seg) const;
};
}
#include "MultisegmentWell_impl.hpp"
#endif // OPM_MULTISEGMENTWELL_HEADER_INCLUDED