mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-02 12:36:54 -06:00
baba9b6773
Use std::variant access to Segment::icd
3749 lines
155 KiB
C++
3749 lines
155 KiB
C++
/*
|
|
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
|
|
Copyright 2017 Statoil ASA.
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
|
|
#include <opm/simulators/wells/MSWellHelpers.hpp>
|
|
#include <opm/simulators/utils/DeferredLoggingErrorHelpers.hpp>
|
|
#include <opm/parser/eclipse/EclipseState/Schedule/MSW/Valve.hpp>
|
|
|
|
namespace Opm
|
|
{
|
|
|
|
|
|
template <typename TypeTag>
|
|
MultisegmentWell<TypeTag>::
|
|
MultisegmentWell(const Well& well, const int time_step,
|
|
const ModelParameters& param,
|
|
const RateConverterType& rate_converter,
|
|
const int pvtRegionIdx,
|
|
const int num_components,
|
|
const int num_phases,
|
|
const int index_of_well,
|
|
const int first_perf_index,
|
|
const std::vector<PerforationData>& perf_data)
|
|
: Base(well, time_step, param, rate_converter, pvtRegionIdx, num_components, num_phases, index_of_well, first_perf_index, perf_data)
|
|
, segment_perforations_(numberOfSegments())
|
|
, segment_inlets_(numberOfSegments())
|
|
, cell_perforation_depth_diffs_(number_of_perforations_, 0.0)
|
|
, cell_perforation_pressure_diffs_(number_of_perforations_, 0.0)
|
|
, perforation_segment_depth_diffs_(number_of_perforations_, 0.0)
|
|
, segment_fluid_initial_(numberOfSegments(), std::vector<double>(num_components_, 0.0))
|
|
, segment_densities_(numberOfSegments(), 0.0)
|
|
, segment_viscosities_(numberOfSegments(), 0.0)
|
|
, segment_mass_rates_(numberOfSegments(), 0.0)
|
|
, segment_depth_diffs_(numberOfSegments(), 0.0)
|
|
, upwinding_segments_(numberOfSegments(), 0)
|
|
, segment_reservoir_volume_rates_(numberOfSegments(), 0.0)
|
|
, segment_phase_fractions_(numberOfSegments(), std::vector<EvalWell>(num_components_, 0.0)) // number of phase here?
|
|
, segment_phase_viscosities_(numberOfSegments(), std::vector<EvalWell>(num_components_, 0.0)) // number of phase here?
|
|
{
|
|
// not handling solvent or polymer for now with multisegment well
|
|
if (has_solvent) {
|
|
OPM_THROW(std::runtime_error, "solvent is not supported by multisegment well yet");
|
|
}
|
|
|
|
if (has_polymer) {
|
|
OPM_THROW(std::runtime_error, "polymer is not supported by multisegment well yet");
|
|
}
|
|
|
|
if (Base::has_energy) {
|
|
OPM_THROW(std::runtime_error, "energy is not supported by multisegment well yet");
|
|
}
|
|
// since we decide to use the WellSegments from the well parser. we can reuse a lot from it.
|
|
// for other facilities needed but not available from parser, we need to process them here
|
|
|
|
// initialize the segment_perforations_ and update perforation_segment_depth_diffs_
|
|
const WellConnections& completion_set = well_ecl_.getConnections();
|
|
// index of the perforation within wells struct
|
|
// there might be some perforations not active, which causes the number of the perforations in
|
|
// well_ecl_ and wells struct different
|
|
// the current implementation is a temporary solution for now, it should be corrected from the parser
|
|
// side
|
|
int i_perf_wells = 0;
|
|
perf_depth_.resize(number_of_perforations_, 0.);
|
|
for (size_t perf = 0; perf < completion_set.size(); ++perf) {
|
|
const Connection& connection = completion_set.get(perf);
|
|
if (connection.state() == Connection::State::OPEN) {
|
|
const int segment_index = segmentNumberToIndex(connection.segment());
|
|
segment_perforations_[segment_index].push_back(i_perf_wells);
|
|
perf_depth_[i_perf_wells] = connection.depth();
|
|
const double segment_depth = segmentSet()[segment_index].depth();
|
|
perforation_segment_depth_diffs_[i_perf_wells] = perf_depth_[i_perf_wells] - segment_depth;
|
|
i_perf_wells++;
|
|
}
|
|
}
|
|
|
|
// initialize the segment_inlets_
|
|
for (int seg = 0; seg < numberOfSegments(); ++seg) {
|
|
const Segment& segment = segmentSet()[seg];
|
|
const int segment_number = segment.segmentNumber();
|
|
const int outlet_segment_number = segment.outletSegment();
|
|
if (outlet_segment_number > 0) {
|
|
const int segment_index = segmentNumberToIndex(segment_number);
|
|
const int outlet_segment_index = segmentNumberToIndex(outlet_segment_number);
|
|
segment_inlets_[outlet_segment_index].push_back(segment_index);
|
|
}
|
|
}
|
|
|
|
// calculating the depth difference between the segment and its oulet_segments
|
|
// for the top segment, we will make its zero unless we find other purpose to use this value
|
|
for (int seg = 1; seg < numberOfSegments(); ++seg) {
|
|
const double segment_depth = segmentSet()[seg].depth();
|
|
const int outlet_segment_number = segmentSet()[seg].outletSegment();
|
|
const Segment& outlet_segment = segmentSet()[segmentNumberToIndex(outlet_segment_number)];
|
|
const double outlet_depth = outlet_segment.depth();
|
|
segment_depth_diffs_[seg] = segment_depth - outlet_depth;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
void
|
|
MultisegmentWell<TypeTag>::
|
|
init(const PhaseUsage* phase_usage_arg,
|
|
const std::vector<double>& depth_arg,
|
|
const double gravity_arg,
|
|
const int num_cells)
|
|
{
|
|
Base::init(phase_usage_arg, depth_arg, gravity_arg, num_cells);
|
|
|
|
// TODO: for StandardWell, we need to update the perf depth here using depth_arg.
|
|
// for MultisegmentWell, it is much more complicated.
|
|
// It can be specified directly, it can be calculated from the segment depth,
|
|
// it can also use the cell center, which is the same for StandardWell.
|
|
// For the last case, should we update the depth with the depth_arg? For the
|
|
// future, it can be a source of wrong result with Multisegment well.
|
|
// An indicator from the opm-parser should indicate what kind of depth we should use here.
|
|
|
|
// \Note: we do not update the depth here. And it looks like for now, we only have the option to use
|
|
// specified perforation depth
|
|
initMatrixAndVectors(num_cells);
|
|
|
|
// calcuate the depth difference between the perforations and the perforated grid block
|
|
for (int perf = 0; perf < number_of_perforations_; ++perf) {
|
|
const int cell_idx = well_cells_[perf];
|
|
cell_perforation_depth_diffs_[perf] = depth_arg[cell_idx] - perf_depth_[perf];
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
void
|
|
MultisegmentWell<TypeTag>::
|
|
initMatrixAndVectors(const int num_cells) const
|
|
{
|
|
duneB_.setBuildMode( OffDiagMatWell::row_wise );
|
|
duneC_.setBuildMode( OffDiagMatWell::row_wise );
|
|
duneD_.setBuildMode( DiagMatWell::row_wise );
|
|
|
|
// set the size and patterns for all the matrices and vectors
|
|
// [A C^T [x = [ res
|
|
// B D] x_well] res_well]
|
|
|
|
// calculatiing the NNZ for duneD_
|
|
// NNZ = number_of_segments + 2 * (number_of_inlets / number_of_outlets)
|
|
{
|
|
int nnz_d = numberOfSegments();
|
|
for (const std::vector<int>& inlets : segment_inlets_) {
|
|
nnz_d += 2 * inlets.size();
|
|
}
|
|
duneD_.setSize(numberOfSegments(), numberOfSegments(), nnz_d);
|
|
}
|
|
duneB_.setSize(numberOfSegments(), num_cells, number_of_perforations_);
|
|
duneC_.setSize(numberOfSegments(), num_cells, number_of_perforations_);
|
|
|
|
// we need to add the off diagonal ones
|
|
for (auto row = duneD_.createbegin(), end = duneD_.createend(); row != end; ++row) {
|
|
// the number of the row corrspnds to the segment now
|
|
const int seg = row.index();
|
|
// adding the item related to outlet relation
|
|
const Segment& segment = segmentSet()[seg];
|
|
const int outlet_segment_number = segment.outletSegment();
|
|
if (outlet_segment_number > 0) { // if there is a outlet_segment
|
|
const int outlet_segment_index = segmentNumberToIndex(outlet_segment_number);
|
|
row.insert(outlet_segment_index);
|
|
}
|
|
|
|
// Add nonzeros for diagonal
|
|
row.insert(seg);
|
|
|
|
// insert the item related to its inlets
|
|
for (const int& inlet : segment_inlets_[seg]) {
|
|
row.insert(inlet);
|
|
}
|
|
}
|
|
|
|
// make the C matrix
|
|
for (auto row = duneC_.createbegin(), end = duneC_.createend(); row != end; ++row) {
|
|
// the number of the row corresponds to the segment number now.
|
|
for (const int& perf : segment_perforations_[row.index()]) {
|
|
const int cell_idx = well_cells_[perf];
|
|
row.insert(cell_idx);
|
|
}
|
|
}
|
|
|
|
// make the B^T matrix
|
|
for (auto row = duneB_.createbegin(), end = duneB_.createend(); row != end; ++row) {
|
|
// the number of the row corresponds to the segment number now.
|
|
for (const int& perf : segment_perforations_[row.index()]) {
|
|
const int cell_idx = well_cells_[perf];
|
|
row.insert(cell_idx);
|
|
}
|
|
}
|
|
|
|
resWell_.resize( numberOfSegments() );
|
|
|
|
primary_variables_.resize(numberOfSegments());
|
|
primary_variables_evaluation_.resize(numberOfSegments());
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
void
|
|
MultisegmentWell<TypeTag>::
|
|
initPrimaryVariablesEvaluation() const
|
|
{
|
|
for (int seg = 0; seg < numberOfSegments(); ++seg) {
|
|
for (int eq_idx = 0; eq_idx < numWellEq; ++eq_idx) {
|
|
primary_variables_evaluation_[seg][eq_idx] = 0.0;
|
|
primary_variables_evaluation_[seg][eq_idx].setValue(primary_variables_[seg][eq_idx]);
|
|
primary_variables_evaluation_[seg][eq_idx].setDerivative(eq_idx + numEq, 1.0);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
void
|
|
MultisegmentWell<TypeTag>::
|
|
assembleWellEq(const Simulator& ebosSimulator,
|
|
const std::vector<Scalar>& B_avg,
|
|
const double dt,
|
|
WellState& well_state,
|
|
Opm::DeferredLogger& deferred_logger)
|
|
{
|
|
const auto& summary_state = ebosSimulator.vanguard().summaryState();
|
|
const auto inj_controls = well_ecl_.isInjector() ? well_ecl_.injectionControls(summary_state) : Well::InjectionControls(0);
|
|
const auto prod_controls = well_ecl_.isProducer() ? well_ecl_.productionControls(summary_state) : Well::ProductionControls(0);
|
|
|
|
const bool use_inner_iterations = param_.use_inner_iterations_ms_wells_;
|
|
if (use_inner_iterations) {
|
|
|
|
iterateWellEquations(ebosSimulator, B_avg, dt, inj_controls, prod_controls, well_state, deferred_logger);
|
|
}
|
|
|
|
assembleWellEqWithoutIteration(ebosSimulator, dt, inj_controls, prod_controls, well_state, deferred_logger);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
void
|
|
MultisegmentWell<TypeTag>::
|
|
updateWellStateWithTarget(const Simulator& ebos_simulator,
|
|
WellState& well_state,
|
|
Opm::DeferredLogger& deferred_logger) const
|
|
{
|
|
// segRates and segPressure are used to initilize the primaryvariables for MSW wells
|
|
// first initialize wellRates and then use it to compute segRates
|
|
// When THP is supported for MSW wells this code and its fried in the standard model
|
|
// can be merge.
|
|
|
|
const auto& well = well_ecl_;
|
|
const int well_index = index_of_well_;
|
|
const int top_segment_index = well_state.topSegmentIndex(index_of_well_);
|
|
const auto& pu = phaseUsage();
|
|
const int np = well_state.numPhases();
|
|
const auto& summaryState = ebos_simulator.vanguard().summaryState();
|
|
|
|
if (wellIsStopped_) {
|
|
for (int p = 0; p<np; ++p) {
|
|
well_state.wellRates()[well_index*np + p] = 0.0;
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (well.isInjector() )
|
|
{
|
|
const auto& controls = well.injectionControls(summaryState);
|
|
|
|
InjectorType injectorType = controls.injector_type;
|
|
int phasePos;
|
|
switch (injectorType) {
|
|
case InjectorType::WATER:
|
|
{
|
|
phasePos = pu.phase_pos[BlackoilPhases::Aqua];
|
|
break;
|
|
}
|
|
case InjectorType::OIL:
|
|
{
|
|
phasePos = pu.phase_pos[BlackoilPhases::Liquid];
|
|
break;
|
|
}
|
|
case InjectorType::GAS:
|
|
{
|
|
phasePos = pu.phase_pos[BlackoilPhases::Vapour];
|
|
break;
|
|
}
|
|
default:
|
|
throw("Expected WATER, OIL or GAS as type for injectors " + well.name());
|
|
}
|
|
|
|
const Opm::Well::InjectorCMode& current = well_state.currentInjectionControls()[well_index];
|
|
|
|
switch(current) {
|
|
case Well::InjectorCMode::RATE:
|
|
{
|
|
well_state.wellRates()[well_index*np + phasePos] = controls.surface_rate;
|
|
break;
|
|
}
|
|
|
|
case Well::InjectorCMode::RESV:
|
|
{
|
|
std::vector<double> convert_coeff(number_of_phases_, 1.0);
|
|
Base::rateConverter_.calcCoeff(/*fipreg*/ 0, Base::pvtRegionIdx_, convert_coeff);
|
|
const double coeff = convert_coeff[phasePos];
|
|
well_state.wellRates()[well_index*np + phasePos] = controls.reservoir_rate/coeff;
|
|
break;
|
|
}
|
|
|
|
case Well::InjectorCMode::THP:
|
|
{
|
|
std::vector<double> rates(3, 0.0);
|
|
for (int p = 0; p<np; ++p) {
|
|
rates[p] = well_state.wellRates()[well_index*np + p];
|
|
}
|
|
double bhp = calculateBhpFromThp(rates, well, summaryState, deferred_logger);
|
|
well_state.bhp()[well_index] = bhp;
|
|
break;
|
|
}
|
|
case Well::InjectorCMode::BHP:
|
|
{
|
|
well_state.segPress()[top_segment_index] = controls.bhp_limit;
|
|
break;
|
|
}
|
|
case Well::InjectorCMode::GRUP:
|
|
{
|
|
//do nothing at the moment
|
|
break;
|
|
}
|
|
case Well::InjectorCMode::CMODE_UNDEFINED:
|
|
{
|
|
OPM_DEFLOG_THROW(std::runtime_error, "Well control must be specified for well " + name(), deferred_logger );
|
|
}
|
|
|
|
}
|
|
}
|
|
//Producer
|
|
else
|
|
{
|
|
const Well::ProducerCMode& current = well_state.currentProductionControls()[well_index];
|
|
const auto& controls = well.productionControls(summaryState);
|
|
|
|
switch (current) {
|
|
case Well::ProducerCMode::ORAT:
|
|
{
|
|
double current_rate = -well_state.wellRates()[ well_index*np + pu.phase_pos[Oil] ];
|
|
|
|
if (current_rate == 0.0)
|
|
break;
|
|
|
|
for (int p = 0; p<np; ++p) {
|
|
well_state.wellRates()[well_index*np + p] *= controls.oil_rate/current_rate;
|
|
}
|
|
break;
|
|
}
|
|
case Well::ProducerCMode::WRAT:
|
|
{
|
|
double current_rate = -well_state.wellRates()[ well_index*np + pu.phase_pos[Water] ];
|
|
|
|
if (current_rate == 0.0)
|
|
break;
|
|
|
|
for (int p = 0; p<np; ++p) {
|
|
well_state.wellRates()[well_index*np + p] *= controls.water_rate/current_rate;
|
|
}
|
|
break;
|
|
}
|
|
case Well::ProducerCMode::GRAT:
|
|
{
|
|
double current_rate = -well_state.wellRates()[ well_index*np + pu.phase_pos[Gas] ];
|
|
|
|
if (current_rate == 0.0)
|
|
break;
|
|
|
|
for (int p = 0; p<np; ++p) {
|
|
well_state.wellRates()[well_index*np + p] *= controls.gas_rate/current_rate;
|
|
}
|
|
break;
|
|
|
|
}
|
|
case Well::ProducerCMode::LRAT:
|
|
{
|
|
double current_rate = -well_state.wellRates()[ well_index*np + pu.phase_pos[Water] ]
|
|
- well_state.wellRates()[ well_index*np + pu.phase_pos[Oil] ];
|
|
|
|
if (current_rate == 0.0)
|
|
break;
|
|
|
|
for (int p = 0; p<np; ++p) {
|
|
well_state.wellRates()[well_index*np + p] *= controls.liquid_rate/current_rate;
|
|
}
|
|
break;
|
|
}
|
|
case Well::ProducerCMode::CRAT:
|
|
{
|
|
OPM_DEFLOG_THROW(std::runtime_error, "CRAT control not supported " << name(), deferred_logger);
|
|
}
|
|
case Well::ProducerCMode::RESV:
|
|
{
|
|
std::vector<double> convert_coeff(number_of_phases_, 1.0);
|
|
Base::rateConverter_.calcCoeff(/*fipreg*/ 0, Base::pvtRegionIdx_, convert_coeff);
|
|
double total_res_rate = 0.0;
|
|
for (int p = 0; p<np; ++p) {
|
|
total_res_rate -= well_state.wellRates()[well_index*np + p] * convert_coeff[p];
|
|
}
|
|
if (total_res_rate == 0.0)
|
|
break;
|
|
|
|
if (controls.prediction_mode) {
|
|
for (int p = 0; p<np; ++p) {
|
|
well_state.wellRates()[well_index*np + p] *= controls.resv_rate/total_res_rate;
|
|
}
|
|
} else {
|
|
std::vector<double> hrates(number_of_phases_,0.);
|
|
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
|
|
hrates[pu.phase_pos[Water]] = controls.water_rate;
|
|
}
|
|
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
|
|
hrates[pu.phase_pos[Oil]] = controls.oil_rate;
|
|
}
|
|
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
|
|
hrates[pu.phase_pos[Gas]] = controls.gas_rate;
|
|
}
|
|
std::vector<double> hrates_resv(number_of_phases_,0.);
|
|
Base::rateConverter_.calcReservoirVoidageRates(/*fipreg*/ 0, Base::pvtRegionIdx_, hrates, hrates_resv);
|
|
double target = std::accumulate(hrates_resv.begin(), hrates_resv.end(), 0.0);
|
|
for (int p = 0; p<np; ++p) {
|
|
well_state.wellRates()[well_index*np + p] *= target/total_res_rate;
|
|
}
|
|
|
|
}
|
|
break;
|
|
}
|
|
case Well::ProducerCMode::BHP:
|
|
{
|
|
well_state.segPress()[top_segment_index] = controls.bhp_limit;
|
|
break;
|
|
}
|
|
case Well::ProducerCMode::THP:
|
|
{
|
|
std::vector<double> rates(3, 0.0);
|
|
for (int p = 0; p<np; ++p) {
|
|
rates[p] = well_state.wellRates()[well_index*np + p];
|
|
}
|
|
double bhp = calculateBhpFromThp(rates, well, summaryState, deferred_logger);
|
|
well_state.bhp()[well_index] = bhp;
|
|
break;
|
|
}
|
|
case Well::ProducerCMode::GRUP:
|
|
{
|
|
//do nothing at the moment
|
|
break;
|
|
}
|
|
case Well::ProducerCMode::CMODE_UNDEFINED:
|
|
{
|
|
OPM_DEFLOG_THROW(std::runtime_error, "Well control must be specified for well " + name(), deferred_logger );
|
|
}
|
|
case Well::ProducerCMode::NONE:
|
|
{
|
|
OPM_DEFLOG_THROW(std::runtime_error, "Well control must be specified for well " + name() , deferred_logger);
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
// compute the segment rates based on the wellRates
|
|
initSegmentRatesWithWellRates(well_state);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
void
|
|
MultisegmentWell<TypeTag>::
|
|
initSegmentRatesWithWellRates(WellState& well_state) const
|
|
{
|
|
for (int phase = 0; phase < number_of_phases_; ++phase) {
|
|
const double perf_phaserate = well_state.wellRates()[number_of_phases_ * index_of_well_ + phase] / number_of_perforations_;
|
|
for (int perf = 0; perf < number_of_perforations_; ++perf) {
|
|
well_state.perfPhaseRates()[number_of_phases_ * (first_perf_ + perf) + phase] = perf_phaserate;
|
|
}
|
|
}
|
|
|
|
const std::vector<double> perforation_rates(well_state.perfPhaseRates().begin() + number_of_phases_ * first_perf_,
|
|
well_state.perfPhaseRates().begin() +
|
|
number_of_phases_ * (first_perf_ + number_of_perforations_) );
|
|
std::vector<double> segment_rates;
|
|
WellState::calculateSegmentRates(segment_inlets_, segment_perforations_, perforation_rates, number_of_phases_,
|
|
0, segment_rates);
|
|
const int top_segment_index = well_state.topSegmentIndex(index_of_well_);
|
|
std::copy(segment_rates.begin(), segment_rates.end(),
|
|
well_state.segRates().begin() + number_of_phases_ * top_segment_index );
|
|
// we need to check the top segment rates should be same with the well rates
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
ConvergenceReport
|
|
MultisegmentWell<TypeTag>::
|
|
getWellConvergence(const WellState& well_state, const std::vector<double>& B_avg, Opm::DeferredLogger& deferred_logger, const bool relax_tolerance) const
|
|
{
|
|
assert(int(B_avg.size()) == num_components_);
|
|
|
|
// checking if any residual is NaN or too large. The two large one is only handled for the well flux
|
|
std::vector<std::vector<double>> abs_residual(numberOfSegments(), std::vector<double>(numWellEq, 0.0));
|
|
for (int seg = 0; seg < numberOfSegments(); ++seg) {
|
|
for (int eq_idx = 0; eq_idx < numWellEq; ++eq_idx) {
|
|
abs_residual[seg][eq_idx] = std::abs(resWell_[seg][eq_idx]);
|
|
}
|
|
}
|
|
|
|
std::vector<double> maximum_residual(numWellEq, 0.0);
|
|
|
|
ConvergenceReport report;
|
|
// TODO: the following is a little complicated, maybe can be simplified in some way?
|
|
for (int eq_idx = 0; eq_idx < numWellEq; ++eq_idx) {
|
|
for (int seg = 0; seg < numberOfSegments(); ++seg) {
|
|
if (eq_idx < num_components_) { // phase or component mass equations
|
|
const double flux_residual = B_avg[eq_idx] * abs_residual[seg][eq_idx];
|
|
if (flux_residual > maximum_residual[eq_idx]) {
|
|
maximum_residual[eq_idx] = flux_residual;
|
|
}
|
|
} else { // pressure or control equation
|
|
// for the top segment (seg == 0), it is control equation, will be checked later separately
|
|
if (seg > 0) {
|
|
// Pressure equation
|
|
const double pressure_residual = abs_residual[seg][eq_idx];
|
|
if (pressure_residual > maximum_residual[eq_idx]) {
|
|
maximum_residual[eq_idx] = pressure_residual;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
using CR = ConvergenceReport;
|
|
for (int eq_idx = 0; eq_idx < numWellEq; ++eq_idx) {
|
|
if (eq_idx < num_components_) { // phase or component mass equations
|
|
const double flux_residual = maximum_residual[eq_idx];
|
|
// TODO: the report can not handle the segment number yet.
|
|
|
|
if (std::isnan(flux_residual)) {
|
|
report.setWellFailed({CR::WellFailure::Type::MassBalance, CR::Severity::NotANumber, eq_idx, name()});
|
|
} else if (flux_residual > param_.max_residual_allowed_) {
|
|
report.setWellFailed({CR::WellFailure::Type::MassBalance, CR::Severity::TooLarge, eq_idx, name()});
|
|
} else if (!relax_tolerance && flux_residual > param_.tolerance_wells_) {
|
|
report.setWellFailed({CR::WellFailure::Type::MassBalance, CR::Severity::Normal, eq_idx, name()});
|
|
} else if (flux_residual > param_.relaxed_inner_tolerance_flow_ms_well_) {
|
|
report.setWellFailed({CR::WellFailure::Type::MassBalance, CR::Severity::Normal, eq_idx, name()});
|
|
}
|
|
} else { // pressure equation
|
|
const double pressure_residual = maximum_residual[eq_idx];
|
|
const int dummy_component = -1;
|
|
if (std::isnan(pressure_residual)) {
|
|
report.setWellFailed({CR::WellFailure::Type::Pressure, CR::Severity::NotANumber, dummy_component, name()});
|
|
} else if (std::isinf(pressure_residual)) {
|
|
report.setWellFailed({CR::WellFailure::Type::Pressure, CR::Severity::TooLarge, dummy_component, name()});
|
|
} else if (!relax_tolerance && pressure_residual > param_.tolerance_pressure_ms_wells_) {
|
|
report.setWellFailed({CR::WellFailure::Type::Pressure, CR::Severity::Normal, dummy_component, name()});
|
|
} else if (pressure_residual > param_.relaxed_inner_tolerance_pressure_ms_well_) {
|
|
report.setWellFailed({CR::WellFailure::Type::Pressure, CR::Severity::Normal, dummy_component, name()});
|
|
}
|
|
}
|
|
}
|
|
|
|
checkConvergenceControlEq(well_state, report, deferred_logger);
|
|
|
|
return report;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
void
|
|
MultisegmentWell<TypeTag>::
|
|
apply(const BVector& x, BVector& Ax) const
|
|
{
|
|
BVectorWell Bx(duneB_.N());
|
|
|
|
duneB_.mv(x, Bx);
|
|
|
|
// invDBx = duneD^-1 * Bx_
|
|
const BVectorWell invDBx = mswellhelpers::invDXDirect(duneD_, Bx);
|
|
|
|
// Ax = Ax - duneC_^T * invDBx
|
|
duneC_.mmtv(invDBx,Ax);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
void
|
|
MultisegmentWell<TypeTag>::
|
|
apply(BVector& r) const
|
|
{
|
|
// invDrw_ = duneD^-1 * resWell_
|
|
const BVectorWell invDrw = mswellhelpers::invDXDirect(duneD_, resWell_);
|
|
// r = r - duneC_^T * invDrw
|
|
duneC_.mmtv(invDrw, r);
|
|
}
|
|
|
|
|
|
|
|
#if HAVE_CUDA
|
|
template<typename TypeTag>
|
|
void
|
|
MultisegmentWell<TypeTag>::
|
|
addWellContribution(WellContributions& wellContribs) const
|
|
{
|
|
unsigned int Nb = duneB_.M(); // number of blockrows in matrix A
|
|
unsigned int Mb = duneB_.N(); // number of blockrows in duneB_, duneC_ and duneD_
|
|
unsigned int BnumBlocks = duneB_.nonzeroes();
|
|
unsigned int DnumBlocks = duneD_.nonzeroes();
|
|
|
|
// duneC
|
|
std::vector<unsigned int> Ccols;
|
|
std::vector<double> Cvals;
|
|
Ccols.reserve(BnumBlocks);
|
|
Cvals.reserve(BnumBlocks * numEq * numWellEq);
|
|
for (auto rowC = duneC_.begin(); rowC != duneC_.end(); ++rowC) {
|
|
for (auto colC = rowC->begin(), endC = rowC->end(); colC != endC; ++colC) {
|
|
Ccols.emplace_back(colC.index());
|
|
for (int i = 0; i < numWellEq; ++i) {
|
|
for (int j = 0; j < numEq; ++j) {
|
|
Cvals.emplace_back((*colC)[i][j]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// duneD
|
|
Dune::UMFPack<DiagMatWell> umfpackMatrix(duneD_, 0);
|
|
double *Dvals = umfpackMatrix.getInternalMatrix().getValues();
|
|
int *Dcols = umfpackMatrix.getInternalMatrix().getColStart();
|
|
int *Drows = umfpackMatrix.getInternalMatrix().getRowIndex();
|
|
|
|
// duneB
|
|
std::vector<unsigned int> Bcols;
|
|
std::vector<unsigned int> Brows;
|
|
std::vector<double> Bvals;
|
|
Bcols.reserve(BnumBlocks);
|
|
Brows.reserve(Mb+1);
|
|
Bvals.reserve(BnumBlocks * numEq * numWellEq);
|
|
Brows.emplace_back(0);
|
|
unsigned int sumBlocks = 0;
|
|
for (auto rowB = duneB_.begin(); rowB != duneB_.end(); ++rowB) {
|
|
int sizeRow = 0;
|
|
for (auto colB = rowB->begin(), endB = rowB->end(); colB != endB; ++colB) {
|
|
Bcols.emplace_back(colB.index());
|
|
for (int i = 0; i < numWellEq; ++i) {
|
|
for (int j = 0; j < numEq; ++j) {
|
|
Bvals.emplace_back((*colB)[i][j]);
|
|
}
|
|
}
|
|
sizeRow++;
|
|
}
|
|
sumBlocks += sizeRow;
|
|
Brows.emplace_back(sumBlocks);
|
|
}
|
|
|
|
wellContribs.addMultisegmentWellContribution(numEq, numWellEq, Nb, Mb, BnumBlocks, Bvals, Bcols, Brows, DnumBlocks, Dvals, Dcols, Drows, Cvals);
|
|
}
|
|
#endif
|
|
|
|
|
|
template <typename TypeTag>
|
|
void
|
|
MultisegmentWell<TypeTag>::
|
|
recoverWellSolutionAndUpdateWellState(const BVector& x,
|
|
WellState& well_state,
|
|
Opm::DeferredLogger& deferred_logger) const
|
|
{
|
|
BVectorWell xw(1);
|
|
recoverSolutionWell(x, xw);
|
|
updateWellState(xw, well_state, deferred_logger);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
void
|
|
MultisegmentWell<TypeTag>::
|
|
computeWellPotentials(const Simulator& ebosSimulator,
|
|
const std::vector<Scalar>& B_avg,
|
|
const WellState& well_state,
|
|
std::vector<double>& well_potentials,
|
|
Opm::DeferredLogger& deferred_logger)
|
|
{
|
|
const int np = number_of_phases_;
|
|
well_potentials.resize(np, 0.0);
|
|
|
|
// Stopped wells have zero potential.
|
|
if (this->wellIsStopped()) {
|
|
return;
|
|
}
|
|
|
|
// If the well is pressure controlled the potential equals the rate.
|
|
/* {
|
|
bool pressure_controlled_well = false;
|
|
if (this->isInjector()) {
|
|
const Opm::Well::InjectorCMode& current = well_state.currentInjectionControls()[index_of_well_];
|
|
if (current == Well::InjectorCMode::BHP || current == Well::InjectorCMode::THP) {
|
|
pressure_controlled_well = true;
|
|
}
|
|
} else {
|
|
const Opm::Well::ProducerCMode& current = well_state.currentProductionControls()[index_of_well_];
|
|
if (current == Well::ProducerCMode::BHP || current == Well::ProducerCMode::THP) {
|
|
pressure_controlled_well = true;
|
|
}
|
|
}
|
|
if (pressure_controlled_well) {
|
|
for (int compIdx = 0; compIdx < num_components_; ++compIdx) {
|
|
const EvalWell rate = this->getQs(compIdx);
|
|
well_potentials[ebosCompIdxToFlowCompIdx(compIdx)] = rate.value();
|
|
}
|
|
return;
|
|
}
|
|
} */
|
|
|
|
// creating a copy of the well itself, to avoid messing up the explicit informations
|
|
// during this copy, the only information not copied properly is the well controls
|
|
MultisegmentWell<TypeTag> well(*this);
|
|
well.debug_cost_counter_ = 0;
|
|
|
|
well.updatePrimaryVariables(well_state, deferred_logger);
|
|
|
|
// initialize the primary variables in Evaluation, which is used in computePerfRate for computeWellPotentials
|
|
// TODO: for computeWellPotentials, no derivative is required actually
|
|
well.initPrimaryVariablesEvaluation();
|
|
|
|
// does the well have a THP related constraint?
|
|
const auto& summaryState = ebosSimulator.vanguard().summaryState();
|
|
const Well::ProducerCMode& current_control = well_state.currentProductionControls()[this->index_of_well_];
|
|
if ( !well.Base::wellHasTHPConstraints(summaryState) || current_control == Well::ProducerCMode::BHP) {
|
|
well.computeWellRatesAtBhpLimit(ebosSimulator, B_avg, well_potentials, deferred_logger);
|
|
} else {
|
|
well_potentials = well.computeWellPotentialWithTHP(ebosSimulator, B_avg, deferred_logger);
|
|
}
|
|
deferred_logger.debug("Cost in iterations of finding well potential for well "
|
|
+ name() + ": " + std::to_string(well.debug_cost_counter_));
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
MultisegmentWell<TypeTag>::
|
|
computeWellRatesAtBhpLimit(const Simulator& ebosSimulator,
|
|
const std::vector<Scalar>& B_avg,
|
|
std::vector<double>& well_flux,
|
|
Opm::DeferredLogger& deferred_logger) const
|
|
{
|
|
if (well_ecl_.isInjector()) {
|
|
const auto controls = well_ecl_.injectionControls(ebosSimulator.vanguard().summaryState());
|
|
computeWellRatesWithBhp(ebosSimulator, B_avg, controls.bhp_limit, well_flux, deferred_logger);
|
|
} else {
|
|
const auto controls = well_ecl_.productionControls(ebosSimulator.vanguard().summaryState());
|
|
computeWellRatesWithBhp(ebosSimulator, B_avg, controls.bhp_limit, well_flux, deferred_logger);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
MultisegmentWell<TypeTag>::
|
|
computeWellRatesWithBhp(const Simulator& ebosSimulator,
|
|
const std::vector<Scalar>& B_avg,
|
|
const Scalar bhp,
|
|
std::vector<double>& well_flux,
|
|
Opm::DeferredLogger& deferred_logger) const
|
|
{
|
|
// creating a copy of the well itself, to avoid messing up the explicit informations
|
|
// during this copy, the only information not copied properly is the well controls
|
|
MultisegmentWell<TypeTag> well_copy(*this);
|
|
well_copy.debug_cost_counter_ = 0;
|
|
|
|
// store a copy of the well state, we don't want to update the real well state
|
|
WellState well_state_copy = ebosSimulator.problem().wellModel().wellState();
|
|
|
|
// Get the current controls.
|
|
const auto& summary_state = ebosSimulator.vanguard().summaryState();
|
|
auto inj_controls = well_copy.well_ecl_.isInjector()
|
|
? well_copy.well_ecl_.injectionControls(summary_state)
|
|
: Well::InjectionControls(0);
|
|
auto prod_controls = well_copy.well_ecl_.isProducer()
|
|
? well_copy.well_ecl_.productionControls(summary_state) :
|
|
Well::ProductionControls(0);
|
|
|
|
// Set current control to bhp, and bhp value in state, modify bhp limit in control object.
|
|
if (well_copy.well_ecl_.isInjector()) {
|
|
inj_controls.bhp_limit = bhp;
|
|
well_state_copy.currentInjectionControls()[index_of_well_] = Well::InjectorCMode::BHP;
|
|
} else {
|
|
prod_controls.bhp_limit = bhp;
|
|
well_state_copy.currentProductionControls()[index_of_well_] = Well::ProducerCMode::BHP;
|
|
}
|
|
well_state_copy.bhp()[well_copy.index_of_well_] = bhp;
|
|
well_copy.calculateExplicitQuantities(ebosSimulator, well_state_copy, deferred_logger);
|
|
const double dt = ebosSimulator.timeStepSize();
|
|
// iterate to get a solution at the given bhp.
|
|
well_copy.iterateWellEquations(ebosSimulator, B_avg, dt, inj_controls, prod_controls, well_state_copy, deferred_logger);
|
|
|
|
// compute the potential and store in the flux vector.
|
|
well_flux.clear();
|
|
const int np = number_of_phases_;
|
|
well_flux.resize(np, 0.0);
|
|
for (int compIdx = 0; compIdx < num_components_; ++compIdx) {
|
|
const EvalWell rate = well_copy.getQs(compIdx);
|
|
well_flux[ebosCompIdxToFlowCompIdx(compIdx)] = rate.value();
|
|
}
|
|
debug_cost_counter_ += well_copy.debug_cost_counter_;
|
|
}
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
std::vector<double>
|
|
MultisegmentWell<TypeTag>::
|
|
computeWellPotentialWithTHP(const Simulator& ebos_simulator,
|
|
const std::vector<Scalar>& B_avg,
|
|
Opm::DeferredLogger& deferred_logger) const
|
|
{
|
|
std::vector<double> potentials(number_of_phases_, 0.0);
|
|
const auto& summary_state = ebos_simulator.vanguard().summaryState();
|
|
|
|
const auto& well = well_ecl_;
|
|
if (well.isInjector()){
|
|
auto bhp_at_thp_limit = computeBhpAtThpLimitInj(ebos_simulator, B_avg, summary_state, deferred_logger);
|
|
if (bhp_at_thp_limit) {
|
|
const auto& controls = well_ecl_.injectionControls(summary_state);
|
|
const double bhp = std::min(*bhp_at_thp_limit, controls.bhp_limit);
|
|
computeWellRatesWithBhp(ebos_simulator, B_avg, bhp, potentials, deferred_logger);
|
|
deferred_logger.debug("Converged thp based potential calculation for well "
|
|
+ name() + ", at bhp = " + std::to_string(bhp));
|
|
} else {
|
|
deferred_logger.warning("FAILURE_GETTING_CONVERGED_POTENTIAL",
|
|
"Failed in getting converged thp based potential calculation for well "
|
|
+ name() + ". Instead the bhp based value is used");
|
|
const auto& controls = well_ecl_.injectionControls(summary_state);
|
|
const double bhp = controls.bhp_limit;
|
|
computeWellRatesWithBhp(ebos_simulator, B_avg, bhp, potentials, deferred_logger);
|
|
}
|
|
} else {
|
|
auto bhp_at_thp_limit = computeBhpAtThpLimitProd(ebos_simulator, B_avg, summary_state, deferred_logger);
|
|
if (bhp_at_thp_limit) {
|
|
const auto& controls = well_ecl_.productionControls(summary_state);
|
|
const double bhp = std::max(*bhp_at_thp_limit, controls.bhp_limit);
|
|
computeWellRatesWithBhp(ebos_simulator, B_avg, bhp, potentials, deferred_logger);
|
|
deferred_logger.debug("Converged thp based potential calculation for well "
|
|
+ name() + ", at bhp = " + std::to_string(bhp));
|
|
} else {
|
|
deferred_logger.warning("FAILURE_GETTING_CONVERGED_POTENTIAL",
|
|
"Failed in getting converged thp based potential calculation for well "
|
|
+ name() + ". Instead the bhp based value is used");
|
|
const auto& controls = well_ecl_.productionControls(summary_state);
|
|
const double bhp = controls.bhp_limit;
|
|
computeWellRatesWithBhp(ebos_simulator, B_avg, bhp, potentials, deferred_logger);
|
|
}
|
|
}
|
|
|
|
return potentials;
|
|
}
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
void
|
|
MultisegmentWell<TypeTag>::
|
|
updatePrimaryVariables(const WellState& well_state, Opm::DeferredLogger& /* deferred_logger */) const
|
|
{
|
|
// TODO: to test using rate conversion coefficients to see if it will be better than
|
|
// this default one
|
|
|
|
const Well& well = Base::wellEcl();
|
|
|
|
// the index of the top segment in the WellState
|
|
const int top_segment_index = well_state.topSegmentIndex(index_of_well_);
|
|
const std::vector<double>& segment_rates = well_state.segRates();
|
|
const PhaseUsage& pu = phaseUsage();
|
|
|
|
for (int seg = 0; seg < numberOfSegments(); ++seg) {
|
|
// calculate the total rate for each segment
|
|
double total_seg_rate = 0.0;
|
|
const int seg_index = top_segment_index + seg;
|
|
// the segment pressure
|
|
primary_variables_[seg][SPres] = well_state.segPress()[seg_index];
|
|
// TODO: under what kind of circustances, the following will be wrong?
|
|
// the definition of g makes the gas phase is always the last phase
|
|
for (int p = 0; p < number_of_phases_; p++) {
|
|
total_seg_rate += scalingFactor(p) * segment_rates[number_of_phases_ * seg_index + p];
|
|
}
|
|
|
|
primary_variables_[seg][GTotal] = total_seg_rate;
|
|
if (std::abs(total_seg_rate) > 0.) {
|
|
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
|
|
const int water_pos = pu.phase_pos[Water];
|
|
primary_variables_[seg][WFrac] = scalingFactor(water_pos) * segment_rates[number_of_phases_ * seg_index + water_pos] / total_seg_rate;
|
|
}
|
|
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
|
|
const int gas_pos = pu.phase_pos[Gas];
|
|
primary_variables_[seg][GFrac] = scalingFactor(gas_pos) * segment_rates[number_of_phases_ * seg_index + gas_pos] / total_seg_rate;
|
|
}
|
|
} else { // total_seg_rate == 0
|
|
if (this->isInjector()) {
|
|
// only single phase injection handled
|
|
auto phase = well.getInjectionProperties().injectorType;
|
|
|
|
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
|
|
if (phase == InjectorType::WATER) {
|
|
primary_variables_[seg][WFrac] = 1.0;
|
|
} else {
|
|
primary_variables_[seg][WFrac] = 0.0;
|
|
}
|
|
}
|
|
|
|
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
|
|
if (phase == InjectorType::GAS) {
|
|
primary_variables_[seg][GFrac] = 1.0;
|
|
} else {
|
|
primary_variables_[seg][GFrac] = 0.0;
|
|
}
|
|
}
|
|
|
|
} else if (this->isProducer()) { // producers
|
|
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
|
|
primary_variables_[seg][WFrac] = 1.0 / number_of_phases_;
|
|
}
|
|
|
|
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
|
|
primary_variables_[seg][GFrac] = 1.0 / number_of_phases_;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
void
|
|
MultisegmentWell<TypeTag>::
|
|
recoverSolutionWell(const BVector& x, BVectorWell& xw) const
|
|
{
|
|
BVectorWell resWell = resWell_;
|
|
// resWell = resWell - B * x
|
|
duneB_.mmv(x, resWell);
|
|
// xw = D^-1 * resWell
|
|
xw = mswellhelpers::invDXDirect(duneD_, resWell);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
void
|
|
MultisegmentWell<TypeTag>::
|
|
solveEqAndUpdateWellState(WellState& well_state, Opm::DeferredLogger& deferred_logger)
|
|
{
|
|
// We assemble the well equations, then we check the convergence,
|
|
// which is why we do not put the assembleWellEq here.
|
|
const BVectorWell dx_well = mswellhelpers::invDXDirect(duneD_, resWell_);
|
|
|
|
updateWellState(dx_well, well_state, deferred_logger);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
void
|
|
MultisegmentWell<TypeTag>::
|
|
computePerfCellPressDiffs(const Simulator& ebosSimulator)
|
|
{
|
|
for (int perf = 0; perf < number_of_perforations_; ++perf) {
|
|
|
|
std::vector<double> kr(number_of_phases_, 0.0);
|
|
std::vector<double> density(number_of_phases_, 0.0);
|
|
|
|
const int cell_idx = well_cells_[perf];
|
|
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/ 0));
|
|
const auto& fs = intQuants.fluidState();
|
|
|
|
double sum_kr = 0.;
|
|
|
|
const PhaseUsage& pu = phaseUsage();
|
|
if (pu.phase_used[Water]) {
|
|
const int water_pos = pu.phase_pos[Water];
|
|
kr[water_pos] = intQuants.relativePermeability(FluidSystem::waterPhaseIdx).value();
|
|
sum_kr += kr[water_pos];
|
|
density[water_pos] = fs.density(FluidSystem::waterPhaseIdx).value();
|
|
}
|
|
|
|
if (pu.phase_used[Oil]) {
|
|
const int oil_pos = pu.phase_pos[Oil];
|
|
kr[oil_pos] = intQuants.relativePermeability(FluidSystem::oilPhaseIdx).value();
|
|
sum_kr += kr[oil_pos];
|
|
density[oil_pos] = fs.density(FluidSystem::oilPhaseIdx).value();
|
|
}
|
|
|
|
if (pu.phase_used[Gas]) {
|
|
const int gas_pos = pu.phase_pos[Gas];
|
|
kr[gas_pos] = intQuants.relativePermeability(FluidSystem::gasPhaseIdx).value();
|
|
sum_kr += kr[gas_pos];
|
|
density[gas_pos] = fs.density(FluidSystem::gasPhaseIdx).value();
|
|
}
|
|
|
|
assert(sum_kr != 0.);
|
|
|
|
// calculate the average density
|
|
double average_density = 0.;
|
|
for (int p = 0; p < number_of_phases_; ++p) {
|
|
average_density += kr[p] * density[p];
|
|
}
|
|
average_density /= sum_kr;
|
|
|
|
cell_perforation_pressure_diffs_[perf] = gravity_ * average_density * cell_perforation_depth_diffs_[perf];
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
void
|
|
MultisegmentWell<TypeTag>::
|
|
computeInitialSegmentFluids(const Simulator& ebos_simulator)
|
|
{
|
|
for (int seg = 0; seg < numberOfSegments(); ++seg) {
|
|
// TODO: trying to reduce the times for the surfaceVolumeFraction calculation
|
|
const double surface_volume = getSegmentSurfaceVolume(ebos_simulator, seg).value();
|
|
for (int comp_idx = 0; comp_idx < num_components_; ++comp_idx) {
|
|
segment_fluid_initial_[seg][comp_idx] = surface_volume * surfaceVolumeFraction(seg, comp_idx).value();
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
void
|
|
MultisegmentWell<TypeTag>::
|
|
updateWellState(const BVectorWell& dwells,
|
|
WellState& well_state,
|
|
Opm::DeferredLogger& deferred_logger,
|
|
const double relaxation_factor) const
|
|
{
|
|
const double dFLimit = param_.dwell_fraction_max_;
|
|
const double max_pressure_change = param_.max_pressure_change_ms_wells_;
|
|
const std::vector<std::array<double, numWellEq> > old_primary_variables = primary_variables_;
|
|
|
|
for (int seg = 0; seg < numberOfSegments(); ++seg) {
|
|
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
|
|
const int sign = dwells[seg][WFrac] > 0. ? 1 : -1;
|
|
// const double dx_limited = sign * std::min(std::abs(dwells[seg][WFrac]), relaxation_factor * dFLimit);
|
|
const double dx_limited = sign * std::min(std::abs(dwells[seg][WFrac]) * relaxation_factor, dFLimit);
|
|
primary_variables_[seg][WFrac] = old_primary_variables[seg][WFrac] - dx_limited;
|
|
}
|
|
|
|
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
|
|
const int sign = dwells[seg][GFrac] > 0. ? 1 : -1;
|
|
// const double dx_limited = sign * std::min(std::abs(dwells[seg][GFrac]), relaxation_factor * dFLimit);
|
|
const double dx_limited = sign * std::min(std::abs(dwells[seg][GFrac]) * relaxation_factor, dFLimit);
|
|
primary_variables_[seg][GFrac] = old_primary_variables[seg][GFrac] - dx_limited;
|
|
}
|
|
|
|
// handling the overshooting or undershooting of the fractions
|
|
processFractions(seg);
|
|
|
|
// update the segment pressure
|
|
{
|
|
const int sign = dwells[seg][SPres] > 0.? 1 : -1;
|
|
//const double dx_limited = sign * std::min(std::abs(dwells[seg][SPres]), relaxation_factor * max_pressure_change);
|
|
const double dx_limited = sign * std::min(std::abs(dwells[seg][SPres]) * relaxation_factor, max_pressure_change);
|
|
primary_variables_[seg][SPres] = std::max( old_primary_variables[seg][SPres] - dx_limited, 1e5);
|
|
}
|
|
|
|
// update the total rate // TODO: should we have a limitation of the total rate change?
|
|
{
|
|
primary_variables_[seg][GTotal] = old_primary_variables[seg][GTotal] - relaxation_factor * dwells[seg][GTotal];
|
|
|
|
// make sure that no injector produce and no producer inject
|
|
if (seg == 0) {
|
|
if (this->isInjector()) {
|
|
primary_variables_[seg][GTotal] = std::max( primary_variables_[seg][GTotal], 0.0);
|
|
} else {
|
|
primary_variables_[seg][GTotal] = std::min( primary_variables_[seg][GTotal], 0.0);
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
updateWellStateFromPrimaryVariables(well_state, deferred_logger);
|
|
Base::calculateReservoirRates(well_state);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
void
|
|
MultisegmentWell<TypeTag>::
|
|
calculateExplicitQuantities(const Simulator& ebosSimulator,
|
|
const WellState& well_state,
|
|
Opm::DeferredLogger& deferred_logger)
|
|
{
|
|
updatePrimaryVariables(well_state, deferred_logger);
|
|
initPrimaryVariablesEvaluation();
|
|
computePerfCellPressDiffs(ebosSimulator);
|
|
computeInitialSegmentFluids(ebosSimulator);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
MultisegmentWell<TypeTag>::
|
|
addWellContributions(SparseMatrixAdapter& /* jacobian */) const
|
|
{
|
|
OPM_THROW(std::runtime_error, "addWellContributions is not supported by multisegment well yet");
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
const WellSegments&
|
|
MultisegmentWell<TypeTag>::
|
|
segmentSet() const
|
|
{
|
|
return well_ecl_.getSegments();
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
int
|
|
MultisegmentWell<TypeTag>::
|
|
numberOfSegments() const
|
|
{
|
|
return segmentSet().size();
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
int
|
|
MultisegmentWell<TypeTag>::
|
|
numberOfPerforations() const
|
|
{
|
|
return segmentSet().number_of_perforations_;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
WellSegments::CompPressureDrop
|
|
MultisegmentWell<TypeTag>::
|
|
compPressureDrop() const
|
|
{
|
|
return segmentSet().compPressureDrop();
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
int
|
|
MultisegmentWell<TypeTag>::
|
|
segmentNumberToIndex(const int segment_number) const
|
|
{
|
|
return segmentSet().segmentNumberToIndex(segment_number);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
typename MultisegmentWell<TypeTag>::EvalWell
|
|
MultisegmentWell<TypeTag>::
|
|
volumeFraction(const int seg, const unsigned compIdx) const
|
|
{
|
|
|
|
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) && compIdx == Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx)) {
|
|
return primary_variables_evaluation_[seg][WFrac];
|
|
}
|
|
|
|
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) && compIdx == Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx)) {
|
|
return primary_variables_evaluation_[seg][GFrac];
|
|
}
|
|
|
|
// Oil fraction
|
|
EvalWell oil_fraction = 1.0;
|
|
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
|
|
oil_fraction -= primary_variables_evaluation_[seg][WFrac];
|
|
}
|
|
|
|
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
|
|
oil_fraction -= primary_variables_evaluation_[seg][GFrac];
|
|
}
|
|
/* if (has_solvent) {
|
|
oil_fraction -= primary_variables_evaluation_[seg][SFrac];
|
|
} */
|
|
return oil_fraction;
|
|
}
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
typename MultisegmentWell<TypeTag>::EvalWell
|
|
MultisegmentWell<TypeTag>::
|
|
volumeFractionScaled(const int seg, const int comp_idx) const
|
|
{
|
|
// For reservoir rate control, the distr in well control is used for the
|
|
// rate conversion coefficients. For the injection well, only the distr of the injection
|
|
// phase is not zero.
|
|
const double scale = scalingFactor(ebosCompIdxToFlowCompIdx(comp_idx));
|
|
if (scale > 0.) {
|
|
return volumeFraction(seg, comp_idx) / scale;
|
|
}
|
|
|
|
return volumeFraction(seg, comp_idx);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
typename MultisegmentWell<TypeTag>::EvalWell
|
|
MultisegmentWell<TypeTag>::
|
|
surfaceVolumeFraction(const int seg, const int comp_idx) const
|
|
{
|
|
EvalWell sum_volume_fraction_scaled = 0.;
|
|
for (int idx = 0; idx < num_components_; ++idx) {
|
|
sum_volume_fraction_scaled += volumeFractionScaled(seg, idx);
|
|
}
|
|
|
|
assert(sum_volume_fraction_scaled.value() != 0.);
|
|
|
|
return volumeFractionScaled(seg, comp_idx) / sum_volume_fraction_scaled;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
void
|
|
MultisegmentWell<TypeTag>::
|
|
computePerfRatePressure(const IntensiveQuantities& int_quants,
|
|
const std::vector<EvalWell>& mob_perfcells,
|
|
const int seg,
|
|
const int perf,
|
|
const EvalWell& segment_pressure,
|
|
const bool& allow_cf,
|
|
std::vector<EvalWell>& cq_s,
|
|
EvalWell& perf_press,
|
|
double& perf_dis_gas_rate,
|
|
double& perf_vap_oil_rate,
|
|
Opm::DeferredLogger& deferred_logger) const
|
|
|
|
{
|
|
std::vector<EvalWell> cmix_s(num_components_, 0.0);
|
|
|
|
// the composition of the components inside wellbore
|
|
for (int comp_idx = 0; comp_idx < num_components_; ++comp_idx) {
|
|
cmix_s[comp_idx] = surfaceVolumeFraction(seg, comp_idx);
|
|
}
|
|
|
|
const auto& fs = int_quants.fluidState();
|
|
|
|
const EvalWell pressure_cell = extendEval(fs.pressure(FluidSystem::oilPhaseIdx));
|
|
const EvalWell rs = extendEval(fs.Rs());
|
|
const EvalWell rv = extendEval(fs.Rv());
|
|
|
|
// not using number_of_phases_ because of solvent
|
|
std::vector<EvalWell> b_perfcells(num_components_, 0.0);
|
|
|
|
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) {
|
|
if (!FluidSystem::phaseIsActive(phaseIdx)) {
|
|
continue;
|
|
}
|
|
|
|
const unsigned compIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
|
|
b_perfcells[compIdx] = extendEval(fs.invB(phaseIdx));
|
|
}
|
|
|
|
// pressure difference between the segment and the perforation
|
|
const EvalWell perf_seg_press_diff = gravity_ * segment_densities_[seg] * perforation_segment_depth_diffs_[perf];
|
|
// pressure difference between the perforation and the grid cell
|
|
const double cell_perf_press_diff = cell_perforation_pressure_diffs_[perf];
|
|
|
|
perf_press = pressure_cell - cell_perf_press_diff;
|
|
// Pressure drawdown (also used to determine direction of flow)
|
|
// TODO: not 100% sure about the sign of the seg_perf_press_diff
|
|
const EvalWell drawdown = perf_press - (segment_pressure + perf_seg_press_diff);
|
|
|
|
// producing perforations
|
|
if ( drawdown > 0.0) {
|
|
// Do nothing is crossflow is not allowed
|
|
if (!allow_cf && this->isInjector()) {
|
|
return;
|
|
}
|
|
|
|
// compute component volumetric rates at standard conditions
|
|
for (int comp_idx = 0; comp_idx < num_components_; ++comp_idx) {
|
|
const EvalWell cq_p = - well_index_[perf] * (mob_perfcells[comp_idx] * drawdown);
|
|
cq_s[comp_idx] = b_perfcells[comp_idx] * cq_p;
|
|
}
|
|
|
|
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
|
|
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
|
|
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
|
|
const EvalWell cq_s_oil = cq_s[oilCompIdx];
|
|
const EvalWell cq_s_gas = cq_s[gasCompIdx];
|
|
cq_s[gasCompIdx] += rs * cq_s_oil;
|
|
cq_s[oilCompIdx] += rv * cq_s_gas;
|
|
}
|
|
} else { // injecting perforations
|
|
// Do nothing if crossflow is not allowed
|
|
if (!allow_cf && this->isProducer()) {
|
|
return;
|
|
}
|
|
|
|
// for injecting perforations, we use total mobility
|
|
EvalWell total_mob = mob_perfcells[0];
|
|
for (int comp_idx = 1; comp_idx < num_components_; ++comp_idx) {
|
|
total_mob += mob_perfcells[comp_idx];
|
|
}
|
|
|
|
// injection perforations total volume rates
|
|
const EvalWell cqt_i = - well_index_[perf] * (total_mob * drawdown);
|
|
|
|
// compute volume ratio between connection and at standard conditions
|
|
EvalWell volume_ratio = 0.0;
|
|
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
|
|
const unsigned waterCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx);
|
|
volume_ratio += cmix_s[waterCompIdx] / b_perfcells[waterCompIdx];
|
|
}
|
|
|
|
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
|
|
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
|
|
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
|
|
|
|
// Incorporate RS/RV factors if both oil and gas active
|
|
// TODO: not sure we use rs rv from the perforation cells when handling injecting perforations
|
|
// basically, for injecting perforations, the wellbore is the upstreaming side.
|
|
const EvalWell d = 1.0 - rv * rs;
|
|
|
|
if (d.value() == 0.0) {
|
|
OPM_DEFLOG_THROW(Opm::NumericalIssue, "Zero d value obtained for well " << name() << " during flux calcuation"
|
|
<< " with rs " << rs << " and rv " << rv, deferred_logger);
|
|
}
|
|
|
|
const EvalWell tmp_oil = (cmix_s[oilCompIdx] - rv * cmix_s[gasCompIdx]) / d;
|
|
volume_ratio += tmp_oil / b_perfcells[oilCompIdx];
|
|
|
|
const EvalWell tmp_gas = (cmix_s[gasCompIdx] - rs * cmix_s[oilCompIdx]) / d;
|
|
volume_ratio += tmp_gas / b_perfcells[gasCompIdx];
|
|
} else { // not having gas and oil at the same time
|
|
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
|
|
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
|
|
volume_ratio += cmix_s[oilCompIdx] / b_perfcells[oilCompIdx];
|
|
}
|
|
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
|
|
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
|
|
volume_ratio += cmix_s[gasCompIdx] / b_perfcells[gasCompIdx];
|
|
}
|
|
}
|
|
// injecting connections total volumerates at standard conditions
|
|
EvalWell cqt_is = cqt_i / volume_ratio;
|
|
for (int comp_idx = 0; comp_idx < num_components_; ++comp_idx) {
|
|
cq_s[comp_idx] = cmix_s[comp_idx] * cqt_is;
|
|
}
|
|
} // end for injection perforations
|
|
|
|
// calculating the perforation solution gas rate and solution oil rates
|
|
if (this->isProducer()) {
|
|
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
|
|
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
|
|
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
|
|
// TODO: the formulations here remain to be tested with cases with strong crossflow through production wells
|
|
// s means standard condition, r means reservoir condition
|
|
// q_os = q_or * b_o + rv * q_gr * b_g
|
|
// q_gs = q_gr * g_g + rs * q_or * b_o
|
|
// d = 1.0 - rs * rv
|
|
// q_or = 1 / (b_o * d) * (q_os - rv * q_gs)
|
|
// q_gr = 1 / (b_g * d) * (q_gs - rs * q_os)
|
|
|
|
const double d = 1.0 - rv.value() * rs.value();
|
|
// vaporized oil into gas
|
|
// rv * q_gr * b_g = rv * (q_gs - rs * q_os) / d
|
|
perf_vap_oil_rate = rv.value() * (cq_s[gasCompIdx].value() - rs.value() * cq_s[oilCompIdx].value()) / d;
|
|
// dissolved of gas in oil
|
|
// rs * q_or * b_o = rs * (q_os - rv * q_gs) / d
|
|
perf_dis_gas_rate = rs.value() * (cq_s[oilCompIdx].value() - rv.value() * cq_s[gasCompIdx].value()) / d;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
typename MultisegmentWell<TypeTag>::EvalWell
|
|
MultisegmentWell<TypeTag>::
|
|
extendEval(const Eval& in) const
|
|
{
|
|
EvalWell out = 0.0;
|
|
out.setValue(in.value());
|
|
for(int eq_idx = 0; eq_idx < numEq;++eq_idx) {
|
|
out.setDerivative(eq_idx, in.derivative(eq_idx));
|
|
}
|
|
return out;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
void
|
|
MultisegmentWell<TypeTag>::
|
|
computeSegmentFluidProperties(const Simulator& ebosSimulator)
|
|
{
|
|
// TODO: the concept of phases and components are rather confusing in this function.
|
|
// needs to be addressed sooner or later.
|
|
|
|
// get the temperature for later use. It is only useful when we are not handling
|
|
// thermal related simulation
|
|
// basically, it is a single value for all the segments
|
|
|
|
EvalWell temperature;
|
|
// not sure how to handle the pvt region related to segment
|
|
// for the current approach, we use the pvt region of the first perforated cell
|
|
// although there are some text indicating using the pvt region of the lowest
|
|
// perforated cell
|
|
// TODO: later to investigate how to handle the pvt region
|
|
int pvt_region_index;
|
|
{
|
|
// using the first perforated cell
|
|
const int cell_idx = well_cells_[0];
|
|
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0));
|
|
const auto& fs = intQuants.fluidState();
|
|
temperature.setValue(fs.temperature(FluidSystem::oilPhaseIdx).value());
|
|
pvt_region_index = fs.pvtRegionIndex();
|
|
}
|
|
|
|
std::vector<double> surf_dens(num_components_);
|
|
// Surface density.
|
|
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) {
|
|
if (!FluidSystem::phaseIsActive(phaseIdx)) {
|
|
continue;
|
|
}
|
|
|
|
const unsigned compIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
|
|
surf_dens[compIdx] = FluidSystem::referenceDensity( phaseIdx, pvt_region_index );
|
|
}
|
|
|
|
for (int seg = 0; seg < numberOfSegments(); ++seg) {
|
|
// the compostion of the components inside wellbore under surface condition
|
|
std::vector<EvalWell> mix_s(num_components_, 0.0);
|
|
for (int comp_idx = 0; comp_idx < num_components_; ++comp_idx) {
|
|
mix_s[comp_idx] = surfaceVolumeFraction(seg, comp_idx);
|
|
}
|
|
|
|
std::vector<EvalWell> b(num_components_, 0.0);
|
|
std::vector<EvalWell> visc(num_components_, 0.0);
|
|
|
|
const EvalWell seg_pressure = getSegmentPressure(seg);
|
|
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
|
|
const unsigned waterCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx);
|
|
b[waterCompIdx] =
|
|
FluidSystem::waterPvt().inverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure);
|
|
visc[waterCompIdx] =
|
|
FluidSystem::waterPvt().viscosity(pvt_region_index, temperature, seg_pressure);
|
|
}
|
|
|
|
EvalWell rv(0.0);
|
|
// gas phase
|
|
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
|
|
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
|
|
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
|
|
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
|
|
const EvalWell rvmax = FluidSystem::gasPvt().saturatedOilVaporizationFactor(pvt_region_index, temperature, seg_pressure);
|
|
if (mix_s[oilCompIdx] > 0.0) {
|
|
if (mix_s[gasCompIdx] > 0.0) {
|
|
rv = mix_s[oilCompIdx] / mix_s[gasCompIdx];
|
|
}
|
|
|
|
if (rv > rvmax) {
|
|
rv = rvmax;
|
|
}
|
|
b[gasCompIdx] =
|
|
FluidSystem::gasPvt().inverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure, rv);
|
|
visc[gasCompIdx] =
|
|
FluidSystem::gasPvt().viscosity(pvt_region_index, temperature, seg_pressure, rv);
|
|
} else { // no oil exists
|
|
b[gasCompIdx] =
|
|
FluidSystem::gasPvt().saturatedInverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure);
|
|
visc[gasCompIdx] =
|
|
FluidSystem::gasPvt().saturatedViscosity(pvt_region_index, temperature, seg_pressure);
|
|
}
|
|
} else { // no Liquid phase
|
|
// it is the same with zero mix_s[Oil]
|
|
b[gasCompIdx] =
|
|
FluidSystem::gasPvt().saturatedInverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure);
|
|
visc[gasCompIdx] =
|
|
FluidSystem::gasPvt().saturatedViscosity(pvt_region_index, temperature, seg_pressure);
|
|
}
|
|
}
|
|
|
|
EvalWell rs(0.0);
|
|
// oil phase
|
|
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
|
|
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
|
|
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
|
|
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
|
|
const EvalWell rsmax = FluidSystem::oilPvt().saturatedGasDissolutionFactor(pvt_region_index, temperature, seg_pressure);
|
|
if (mix_s[gasCompIdx] > 0.0) {
|
|
if (mix_s[oilCompIdx] > 0.0) {
|
|
rs = mix_s[gasCompIdx] / mix_s[oilCompIdx];
|
|
}
|
|
|
|
if (rs > rsmax) {
|
|
rs = rsmax;
|
|
}
|
|
b[oilCompIdx] =
|
|
FluidSystem::oilPvt().inverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure, rs);
|
|
visc[oilCompIdx] =
|
|
FluidSystem::oilPvt().viscosity(pvt_region_index, temperature, seg_pressure, rs);
|
|
} else { // no oil exists
|
|
b[oilCompIdx] =
|
|
FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure);
|
|
visc[oilCompIdx] =
|
|
FluidSystem::oilPvt().saturatedViscosity(pvt_region_index, temperature, seg_pressure);
|
|
}
|
|
} else { // no Liquid phase
|
|
// it is the same with zero mix_s[Oil]
|
|
b[oilCompIdx] =
|
|
FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure);
|
|
visc[oilCompIdx] =
|
|
FluidSystem::oilPvt().saturatedViscosity(pvt_region_index, temperature, seg_pressure);
|
|
}
|
|
}
|
|
|
|
segment_phase_viscosities_[seg] = visc;
|
|
|
|
std::vector<EvalWell> mix(mix_s);
|
|
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
|
|
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
|
|
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
|
|
|
|
const EvalWell d = 1.0 - rs * rv;
|
|
|
|
if (rs != 0.0) { // rs > 0.0?
|
|
mix[gasCompIdx] = (mix_s[gasCompIdx] - mix_s[oilCompIdx] * rs) / d;
|
|
}
|
|
if (rv != 0.0) { // rv > 0.0?
|
|
mix[oilCompIdx] = (mix_s[oilCompIdx] - mix_s[gasCompIdx] * rv) / d;
|
|
}
|
|
}
|
|
|
|
EvalWell volrat(0.0);
|
|
for (int comp_idx = 0; comp_idx < num_components_; ++comp_idx) {
|
|
volrat += mix[comp_idx] / b[comp_idx];
|
|
}
|
|
|
|
segment_viscosities_[seg] = 0.;
|
|
// calculate the average viscosity
|
|
for (int comp_idx = 0; comp_idx < num_components_; ++comp_idx) {
|
|
const EvalWell fraction = mix[comp_idx] / b[comp_idx] / volrat;
|
|
// TODO: a little more work needs to be done to handle the negative fractions here
|
|
segment_phase_fractions_[seg][comp_idx] = fraction; // >= 0.0 ? fraction : 0.0;
|
|
segment_viscosities_[seg] += visc[comp_idx] * segment_phase_fractions_[seg][comp_idx];
|
|
}
|
|
|
|
EvalWell density(0.0);
|
|
for (int comp_idx = 0; comp_idx < num_components_; ++comp_idx) {
|
|
density += surf_dens[comp_idx] * mix_s[comp_idx];
|
|
}
|
|
segment_densities_[seg] = density / volrat;
|
|
|
|
// calculate the mass rates
|
|
// TODO: for now, we are not considering the upwinding for this amount
|
|
// since how to address the fact that the derivatives is not trivial for now
|
|
// and segment_mass_rates_ goes a long way with the frictional pressure loss
|
|
// and accelerational pressure loss, which needs some work to handle
|
|
segment_mass_rates_[seg] = 0.;
|
|
for (int comp_idx = 0; comp_idx < num_components_; ++comp_idx) {
|
|
const EvalWell rate = getSegmentRate(seg, comp_idx);
|
|
segment_mass_rates_[seg] += rate * surf_dens[comp_idx];
|
|
}
|
|
|
|
segment_reservoir_volume_rates_[seg] = segment_mass_rates_[seg] / segment_densities_[seg];
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
typename MultisegmentWell<TypeTag>::EvalWell
|
|
MultisegmentWell<TypeTag>::
|
|
getSegmentPressure(const int seg) const
|
|
{
|
|
return primary_variables_evaluation_[seg][SPres];
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
typename MultisegmentWell<TypeTag>::EvalWell
|
|
MultisegmentWell<TypeTag>::
|
|
getBhp() const
|
|
{
|
|
return getSegmentPressure(0);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
typename MultisegmentWell<TypeTag>::EvalWell
|
|
MultisegmentWell<TypeTag>::
|
|
getSegmentRate(const int seg,
|
|
const int comp_idx) const
|
|
{
|
|
return primary_variables_evaluation_[seg][GTotal] * volumeFractionScaled(seg, comp_idx);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
typename MultisegmentWell<TypeTag>::EvalWell
|
|
MultisegmentWell<TypeTag>::
|
|
getQs(const int comp_idx) const
|
|
{
|
|
return getSegmentRate(0, comp_idx);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
typename MultisegmentWell<TypeTag>::EvalWell
|
|
MultisegmentWell<TypeTag>::
|
|
getSegmentRateUpwinding(const int seg,
|
|
const size_t comp_idx) const
|
|
{
|
|
const int seg_upwind = upwinding_segments_[seg];
|
|
// the result will contain the derivative with resepct to GTotal in segment seg,
|
|
// and the derivatives with respect to WFrac GFrac in segment seg_upwind.
|
|
// the derivative with respect to SPres should be zero.
|
|
if (seg == 0 && this->isInjector()) {
|
|
const Well& well = Base::wellEcl();
|
|
auto phase = well.getInjectionProperties().injectorType;
|
|
|
|
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)
|
|
&& Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx) == comp_idx
|
|
&& phase == InjectorType::WATER)
|
|
return primary_variables_evaluation_[seg][GTotal] / scalingFactor(ebosCompIdxToFlowCompIdx(comp_idx));
|
|
|
|
|
|
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)
|
|
&& Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx) == comp_idx
|
|
&& phase == InjectorType::OIL)
|
|
return primary_variables_evaluation_[seg][GTotal] / scalingFactor(ebosCompIdxToFlowCompIdx(comp_idx));
|
|
|
|
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)
|
|
&& Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx) == comp_idx
|
|
&& phase == InjectorType::GAS)
|
|
return primary_variables_evaluation_[seg][GTotal] / scalingFactor(ebosCompIdxToFlowCompIdx(comp_idx));
|
|
|
|
return 0.0;
|
|
}
|
|
|
|
const EvalWell segment_rate = primary_variables_evaluation_[seg][GTotal] * volumeFractionScaled(seg_upwind, comp_idx);
|
|
|
|
assert(segment_rate.derivative(SPres + numEq) == 0.);
|
|
|
|
return segment_rate;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
typename MultisegmentWell<TypeTag>::EvalWell
|
|
MultisegmentWell<TypeTag>::
|
|
getSegmentGTotal(const int seg) const
|
|
{
|
|
return primary_variables_evaluation_[seg][GTotal];
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
typename MultisegmentWell<TypeTag>::EvalWell
|
|
MultisegmentWell<TypeTag>::
|
|
getWQTotal() const
|
|
{
|
|
return getSegmentGTotal(0);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
void
|
|
MultisegmentWell<TypeTag>::
|
|
getMobility(const Simulator& ebosSimulator,
|
|
const int perf,
|
|
std::vector<EvalWell>& mob) const
|
|
{
|
|
// TODO: most of this function, if not the whole function, can be moved to the base class
|
|
const int cell_idx = well_cells_[perf];
|
|
assert (int(mob.size()) == num_components_);
|
|
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0));
|
|
const auto& materialLawManager = ebosSimulator.problem().materialLawManager();
|
|
|
|
// either use mobility of the perforation cell or calcualte its own
|
|
// based on passing the saturation table index
|
|
const int satid = saturation_table_number_[perf] - 1;
|
|
const int satid_elem = materialLawManager->satnumRegionIdx(cell_idx);
|
|
if( satid == satid_elem ) { // the same saturation number is used. i.e. just use the mobilty from the cell
|
|
|
|
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) {
|
|
if (!FluidSystem::phaseIsActive(phaseIdx)) {
|
|
continue;
|
|
}
|
|
|
|
const unsigned activeCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
|
|
mob[activeCompIdx] = extendEval(intQuants.mobility(phaseIdx));
|
|
}
|
|
// if (has_solvent) {
|
|
// mob[contiSolventEqIdx] = extendEval(intQuants.solventMobility());
|
|
// }
|
|
} else {
|
|
|
|
const auto& paramsCell = materialLawManager->connectionMaterialLawParams(satid, cell_idx);
|
|
Eval relativePerms[3] = { 0.0, 0.0, 0.0 };
|
|
MaterialLaw::relativePermeabilities(relativePerms, paramsCell, intQuants.fluidState());
|
|
|
|
// reset the satnumvalue back to original
|
|
materialLawManager->connectionMaterialLawParams(satid_elem, cell_idx);
|
|
|
|
// compute the mobility
|
|
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) {
|
|
if (!FluidSystem::phaseIsActive(phaseIdx)) {
|
|
continue;
|
|
}
|
|
|
|
const unsigned activeCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
|
|
mob[activeCompIdx] = extendEval(relativePerms[phaseIdx] / intQuants.fluidState().viscosity(phaseIdx));
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
void
|
|
MultisegmentWell<TypeTag>::
|
|
assembleControlEq(const WellState& well_state,
|
|
const Opm::Schedule& schedule,
|
|
const SummaryState& summaryState,
|
|
const Well::InjectionControls& inj_controls,
|
|
const Well::ProductionControls& prod_controls,
|
|
Opm::DeferredLogger& deferred_logger)
|
|
{
|
|
|
|
EvalWell control_eq(0.0);
|
|
|
|
const auto& well = well_ecl_;
|
|
|
|
auto getRates = [&]() {
|
|
std::vector<EvalWell> rates(3, 0.0);
|
|
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
|
|
rates[Water] = getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx));
|
|
}
|
|
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
|
|
rates[Oil] = getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx));
|
|
}
|
|
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
|
|
rates[Gas] = getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx));
|
|
}
|
|
return rates;
|
|
};
|
|
|
|
if (wellIsStopped_) {
|
|
control_eq = getWQTotal();
|
|
} else if (this->isInjector() ) {
|
|
// Find scaling factor to get injection rate,
|
|
const InjectorType injectorType = inj_controls.injector_type;
|
|
double scaling = 1.0;
|
|
const auto& pu = phaseUsage();
|
|
switch (injectorType) {
|
|
case InjectorType::WATER:
|
|
{
|
|
scaling = scalingFactor(pu.phase_pos[BlackoilPhases::Aqua]);
|
|
break;
|
|
}
|
|
case InjectorType::OIL:
|
|
{
|
|
scaling = scalingFactor(pu.phase_pos[BlackoilPhases::Liquid]);
|
|
break;
|
|
}
|
|
case InjectorType::GAS:
|
|
{
|
|
scaling = scalingFactor(pu.phase_pos[BlackoilPhases::Vapour]);
|
|
break;
|
|
}
|
|
default:
|
|
throw("Expected WATER, OIL or GAS as type for injectors " + well.name());
|
|
}
|
|
const EvalWell injection_rate = getWQTotal() / scaling;
|
|
// Setup function for evaluation of BHP from THP (used only if needed).
|
|
auto bhp_from_thp = [&]() {
|
|
const auto rates = getRates();
|
|
return calculateBhpFromThp(rates, well, summaryState, deferred_logger);
|
|
};
|
|
// Call generic implementation.
|
|
Base::assembleControlEqInj(well_state, schedule, summaryState, inj_controls, getBhp(), injection_rate, bhp_from_thp, control_eq, deferred_logger);
|
|
} else {
|
|
// Find rates.
|
|
const auto rates = getRates();
|
|
// Setup function for evaluation of BHP from THP (used only if needed).
|
|
auto bhp_from_thp = [&]() {
|
|
return calculateBhpFromThp(rates, well, summaryState, deferred_logger);
|
|
};
|
|
// Call generic implementation.
|
|
Base::assembleControlEqProd(well_state, schedule, summaryState, prod_controls, getBhp(), rates, bhp_from_thp, control_eq, deferred_logger);
|
|
}
|
|
|
|
// using control_eq to update the matrix and residuals
|
|
resWell_[0][SPres] = control_eq.value();
|
|
for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) {
|
|
duneD_[0][0][SPres][pv_idx] = control_eq.derivative(pv_idx + numEq);
|
|
}
|
|
}
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
MultisegmentWell<TypeTag>::
|
|
updateThp(WellState& well_state, Opm::DeferredLogger& deferred_logger) const
|
|
{
|
|
// When there is no vaild VFP table provided, we set the thp to be zero.
|
|
if (!this->isVFPActive(deferred_logger) || this->wellIsStopped()) {
|
|
well_state.thp()[index_of_well_] = 0.;
|
|
return;
|
|
}
|
|
|
|
// the well is under other control types, we calculate the thp based on bhp and rates
|
|
std::vector<double> rates(3, 0.0);
|
|
|
|
const Opm::PhaseUsage& pu = phaseUsage();
|
|
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
|
|
rates[ Water ] = well_state.wellRates()[index_of_well_ * number_of_phases_ + pu.phase_pos[ Water ] ];
|
|
}
|
|
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
|
|
rates[ Oil ] = well_state.wellRates()[index_of_well_ * number_of_phases_ + pu.phase_pos[ Oil ] ];
|
|
}
|
|
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
|
|
rates[ Gas ] = well_state.wellRates()[index_of_well_ * number_of_phases_ + pu.phase_pos[ Gas ] ];
|
|
}
|
|
|
|
const double bhp = well_state.bhp()[index_of_well_];
|
|
|
|
well_state.thp()[index_of_well_] = calculateThpFromBhp(rates, bhp, deferred_logger);
|
|
|
|
}
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
double
|
|
MultisegmentWell<TypeTag>::
|
|
calculateThpFromBhp(const std::vector<double>& rates,
|
|
const double bhp,
|
|
Opm::DeferredLogger& deferred_logger) const
|
|
{
|
|
assert(int(rates.size()) == 3); // the vfp related only supports three phases now.
|
|
|
|
const double aqua = rates[Water];
|
|
const double liquid = rates[Oil];
|
|
const double vapour = rates[Gas];
|
|
|
|
// pick the density in the top segment
|
|
const double rho = segment_densities_[0].value();
|
|
|
|
double thp = 0.0;
|
|
if (this->isInjector()) {
|
|
const int table_id = well_ecl_.vfp_table_number();
|
|
const double vfp_ref_depth = vfp_properties_->getInj()->getTable(table_id)->getDatumDepth();
|
|
const double dp = wellhelpers::computeHydrostaticCorrection(ref_depth_, vfp_ref_depth, rho, gravity_);
|
|
|
|
thp = vfp_properties_->getInj()->thp(table_id, aqua, liquid, vapour, bhp + dp);
|
|
}
|
|
else if (this->isProducer()) {
|
|
const int table_id = well_ecl_.vfp_table_number();
|
|
const double alq = well_ecl_.alq_value();
|
|
const double vfp_ref_depth = vfp_properties_->getProd()->getTable(table_id)->getDatumDepth();
|
|
const double dp = wellhelpers::computeHydrostaticCorrection(ref_depth_, vfp_ref_depth, rho, gravity_);
|
|
|
|
thp = vfp_properties_->getProd()->thp(table_id, aqua, liquid, vapour, bhp + dp, alq);
|
|
}
|
|
else {
|
|
OPM_DEFLOG_THROW(std::logic_error, "Expected INJECTOR or PRODUCER well", deferred_logger);
|
|
}
|
|
|
|
return thp;
|
|
}
|
|
|
|
|
|
template<typename TypeTag>
|
|
template<class ValueType>
|
|
ValueType
|
|
MultisegmentWell<TypeTag>::
|
|
calculateBhpFromThp(const std::vector<ValueType>& rates,
|
|
const Well& well,
|
|
const SummaryState& summaryState,
|
|
Opm::DeferredLogger& deferred_logger) const
|
|
{
|
|
// TODO: when well is under THP control, the BHP is dependent on the rates,
|
|
// the well rates is also dependent on the BHP, so it might need to do some iteration.
|
|
// However, when group control is involved, change of the rates might impacts other wells
|
|
// so iterations on a higher level will be required. Some investigation might be needed when
|
|
// we face problems under THP control.
|
|
|
|
assert(int(rates.size()) == 3); // the vfp related only supports three phases now.
|
|
|
|
const ValueType aqua = rates[Water];
|
|
const ValueType liquid = rates[Oil];
|
|
const ValueType vapour = rates[Gas];
|
|
|
|
// pick the density in the top layer
|
|
// TODO: it is possible it should be a Evaluation
|
|
const double rho = segment_densities_[0].value();
|
|
|
|
if (well.isInjector() )
|
|
{
|
|
const auto& controls = well.injectionControls(summaryState);
|
|
const double vfp_ref_depth = vfp_properties_->getInj()->getTable(controls.vfp_table_number)->getDatumDepth();
|
|
const double dp = wellhelpers::computeHydrostaticCorrection(ref_depth_, vfp_ref_depth, rho, gravity_);
|
|
return vfp_properties_->getInj()->bhp(controls.vfp_table_number, aqua, liquid, vapour, controls.thp_limit) - dp;
|
|
}
|
|
else if (well.isProducer()) {
|
|
const auto& controls = well.productionControls(summaryState);
|
|
const double vfp_ref_depth = vfp_properties_->getProd()->getTable(controls.vfp_table_number)->getDatumDepth();
|
|
const double dp = wellhelpers::computeHydrostaticCorrection(ref_depth_, vfp_ref_depth, rho, gravity_);
|
|
return vfp_properties_->getProd()->bhp(controls.vfp_table_number, aqua, liquid, vapour, controls.thp_limit, controls.alq_value) - dp;
|
|
}
|
|
else {
|
|
OPM_DEFLOG_THROW(std::logic_error, "Expected INJECTOR or PRODUCER well", deferred_logger);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
void
|
|
MultisegmentWell<TypeTag>::
|
|
assemblePressureEq(const int seg, WellState& well_state) const
|
|
{
|
|
assert(seg != 0); // not top segment
|
|
|
|
// for top segment, the well control equation will be used.
|
|
EvalWell pressure_equation = getSegmentPressure(seg);
|
|
|
|
// we need to handle the pressure difference between the two segments
|
|
// we only consider the hydrostatic pressure loss first
|
|
// TODO: we might be able to add member variables to store these values, then we update well state
|
|
// after converged
|
|
const auto hydro_pressure_drop = getHydroPressureLoss(seg);
|
|
well_state.segPressDropHydroStatic()[seg] = hydro_pressure_drop.value();
|
|
pressure_equation -= hydro_pressure_drop;
|
|
|
|
if (frictionalPressureLossConsidered()) {
|
|
const auto friction_pressure_drop = getFrictionPressureLoss(seg);
|
|
pressure_equation -= friction_pressure_drop;
|
|
well_state.segPressDropFriction()[seg] = friction_pressure_drop.value();
|
|
}
|
|
|
|
resWell_[seg][SPres] = pressure_equation.value();
|
|
for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) {
|
|
duneD_[seg][seg][SPres][pv_idx] = pressure_equation.derivative(pv_idx + numEq);
|
|
}
|
|
|
|
// contribution from the outlet segment
|
|
const int outlet_segment_index = segmentNumberToIndex(segmentSet()[seg].outletSegment());
|
|
const EvalWell outlet_pressure = getSegmentPressure(outlet_segment_index);
|
|
|
|
resWell_[seg][SPres] -= outlet_pressure.value();
|
|
for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) {
|
|
duneD_[seg][outlet_segment_index][SPres][pv_idx] = -outlet_pressure.derivative(pv_idx + numEq);
|
|
}
|
|
|
|
if (accelerationalPressureLossConsidered()) {
|
|
handleAccelerationPressureLoss(seg, well_state);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
typename MultisegmentWell<TypeTag>::EvalWell
|
|
MultisegmentWell<TypeTag>::
|
|
getHydroPressureLoss(const int seg) const
|
|
{
|
|
return segment_densities_[seg] * gravity_ * segment_depth_diffs_[seg];
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
typename MultisegmentWell<TypeTag>::EvalWell
|
|
MultisegmentWell<TypeTag>::
|
|
getFrictionPressureLoss(const int seg) const
|
|
{
|
|
const EvalWell mass_rate = segment_mass_rates_[seg];
|
|
const EvalWell density = segment_densities_[seg];
|
|
const EvalWell visc = segment_viscosities_[seg];
|
|
const int outlet_segment_index = segmentNumberToIndex(segmentSet()[seg].outletSegment());
|
|
const double length = segmentSet()[seg].totalLength() - segmentSet()[outlet_segment_index].totalLength();
|
|
assert(length > 0.);
|
|
const double roughness = segmentSet()[seg].roughness();
|
|
const double area = segmentSet()[seg].crossArea();
|
|
const double diameter = segmentSet()[seg].internalDiameter();
|
|
|
|
const double sign = mass_rate < 0. ? 1.0 : - 1.0;
|
|
|
|
return sign * mswellhelpers::frictionPressureLoss(length, diameter, area, roughness, density, mass_rate, visc);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
void
|
|
MultisegmentWell<TypeTag>::
|
|
handleAccelerationPressureLoss(const int seg, WellState& well_state) const
|
|
{
|
|
// TODO: this pressure loss is not significant enough to be well tested yet.
|
|
// handle the out velcocity head
|
|
const double area = segmentSet()[seg].crossArea();
|
|
const EvalWell mass_rate = segment_mass_rates_[seg];
|
|
const EvalWell density = segment_densities_[seg];
|
|
const EvalWell out_velocity_head = mswellhelpers::velocityHead(area, mass_rate, density);
|
|
|
|
resWell_[seg][SPres] -= out_velocity_head.value();
|
|
for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) {
|
|
duneD_[seg][seg][SPres][pv_idx] -= out_velocity_head.derivative(pv_idx + numEq);
|
|
}
|
|
|
|
// calcuate the maximum cross-area among the segment and its inlet segments
|
|
double max_area = area;
|
|
for (const int inlet : segment_inlets_[seg]) {
|
|
const double inlet_area = segmentSet()[inlet].crossArea();
|
|
if (inlet_area > max_area) {
|
|
max_area = inlet_area;
|
|
}
|
|
}
|
|
|
|
// handling the velocity head of intlet segments
|
|
for (const int inlet : segment_inlets_[seg]) {
|
|
const EvalWell inlet_density = segment_densities_[inlet];
|
|
const EvalWell inlet_mass_rate = segment_mass_rates_[inlet];
|
|
const EvalWell inlet_velocity_head = mswellhelpers::velocityHead(area, inlet_mass_rate, inlet_density);
|
|
well_state.segPressDropAcceleration()[seg] = inlet_velocity_head.value();
|
|
resWell_[seg][SPres] += inlet_velocity_head.value();
|
|
for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) {
|
|
duneD_[seg][inlet][SPres][pv_idx] += inlet_velocity_head.derivative(pv_idx + numEq);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
void
|
|
MultisegmentWell<TypeTag>::
|
|
processFractions(const int seg) const
|
|
{
|
|
const PhaseUsage& pu = phaseUsage();
|
|
|
|
std::vector<double> fractions(number_of_phases_, 0.0);
|
|
|
|
assert( FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) );
|
|
const int oil_pos = pu.phase_pos[Oil];
|
|
fractions[oil_pos] = 1.0;
|
|
|
|
if ( FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) ) {
|
|
const int water_pos = pu.phase_pos[Water];
|
|
fractions[water_pos] = primary_variables_[seg][WFrac];
|
|
fractions[oil_pos] -= fractions[water_pos];
|
|
}
|
|
|
|
if ( FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) ) {
|
|
const int gas_pos = pu.phase_pos[Gas];
|
|
fractions[gas_pos] = primary_variables_[seg][GFrac];
|
|
fractions[oil_pos] -= fractions[gas_pos];
|
|
}
|
|
|
|
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
|
|
const int water_pos = pu.phase_pos[Water];
|
|
if (fractions[water_pos] < 0.0) {
|
|
if ( FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) ) {
|
|
fractions[pu.phase_pos[Gas]] /= (1.0 - fractions[water_pos]);
|
|
}
|
|
fractions[oil_pos] /= (1.0 - fractions[water_pos]);
|
|
fractions[water_pos] = 0.0;
|
|
}
|
|
}
|
|
|
|
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
|
|
const int gas_pos = pu.phase_pos[Gas];
|
|
if (fractions[gas_pos] < 0.0) {
|
|
if ( FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) ) {
|
|
fractions[pu.phase_pos[Water]] /= (1.0 - fractions[gas_pos]);
|
|
}
|
|
fractions[oil_pos] /= (1.0 - fractions[gas_pos]);
|
|
fractions[gas_pos] = 0.0;
|
|
}
|
|
}
|
|
|
|
if (fractions[oil_pos] < 0.0) {
|
|
if ( FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) ) {
|
|
fractions[pu.phase_pos[Water]] /= (1.0 - fractions[oil_pos]);
|
|
}
|
|
if ( FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) ) {
|
|
fractions[pu.phase_pos[Gas]] /= (1.0 - fractions[oil_pos]);
|
|
}
|
|
fractions[oil_pos] = 0.0;
|
|
}
|
|
|
|
if ( FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) ) {
|
|
primary_variables_[seg][WFrac] = fractions[pu.phase_pos[Water]];
|
|
}
|
|
|
|
if ( FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) ) {
|
|
primary_variables_[seg][GFrac] = fractions[pu.phase_pos[Gas]];
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
void
|
|
MultisegmentWell<TypeTag>::
|
|
checkWellOperability(const Simulator& /* ebos_simulator */,
|
|
const WellState& /* well_state */,
|
|
Opm::DeferredLogger& deferred_logger)
|
|
{
|
|
const bool checkOperability = EWOMS_GET_PARAM(TypeTag, bool, EnableWellOperabilityCheck);
|
|
if (!checkOperability) {
|
|
return;
|
|
}
|
|
|
|
// focusing on PRODUCER for now
|
|
if (this->isInjector()) {
|
|
return;
|
|
}
|
|
|
|
if (!this->underPredictionMode() ) {
|
|
return;
|
|
}
|
|
|
|
const std::string msg = "Support of well operability checking for multisegment wells is not implemented "
|
|
"yet, checkWellOperability() for " + name() + " will do nothing";
|
|
deferred_logger.warning("NO_OPERATABILITY_CHECKING_MS_WELLS", msg);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
void
|
|
MultisegmentWell<TypeTag>::
|
|
updateWellStateFromPrimaryVariables(WellState& well_state, Opm::DeferredLogger& deferred_logger) const
|
|
{
|
|
const PhaseUsage& pu = phaseUsage();
|
|
assert( FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) );
|
|
const int oil_pos = pu.phase_pos[Oil];
|
|
|
|
for (int seg = 0; seg < numberOfSegments(); ++seg) {
|
|
std::vector<double> fractions(number_of_phases_, 0.0);
|
|
fractions[oil_pos] = 1.0;
|
|
|
|
if ( FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) ) {
|
|
const int water_pos = pu.phase_pos[Water];
|
|
fractions[water_pos] = primary_variables_[seg][WFrac];
|
|
fractions[oil_pos] -= fractions[water_pos];
|
|
}
|
|
|
|
if ( FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) ) {
|
|
const int gas_pos = pu.phase_pos[Gas];
|
|
fractions[gas_pos] = primary_variables_[seg][GFrac];
|
|
fractions[oil_pos] -= fractions[gas_pos];
|
|
}
|
|
|
|
// convert the fractions to be Q_p / G_total to calculate the phase rates
|
|
for (int p = 0; p < number_of_phases_; ++p) {
|
|
const double scale = scalingFactor(p);
|
|
// for injection wells, there should only one non-zero scaling factor
|
|
if (scale > 0.) {
|
|
fractions[p] /= scale;
|
|
} else {
|
|
// this should only happens to injection wells
|
|
fractions[p] = 0.;
|
|
}
|
|
}
|
|
|
|
// calculate the phase rates based on the primary variables
|
|
const double g_total = primary_variables_[seg][GTotal];
|
|
const int top_segment_index = well_state.topSegmentIndex(index_of_well_);
|
|
for (int p = 0; p < number_of_phases_; ++p) {
|
|
const double phase_rate = g_total * fractions[p];
|
|
well_state.segRates()[(seg + top_segment_index) * number_of_phases_ + p] = phase_rate;
|
|
if (seg == 0) { // top segment
|
|
well_state.wellRates()[index_of_well_ * number_of_phases_ + p] = phase_rate;
|
|
}
|
|
}
|
|
|
|
// update the segment pressure
|
|
well_state.segPress()[seg + top_segment_index] = primary_variables_[seg][SPres];
|
|
if (seg == 0) { // top segment
|
|
well_state.bhp()[index_of_well_] = well_state.segPress()[seg + top_segment_index];
|
|
}
|
|
}
|
|
updateThp(well_state, deferred_logger);
|
|
}
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
bool
|
|
MultisegmentWell<TypeTag>::
|
|
frictionalPressureLossConsidered() const
|
|
{
|
|
// HF- and HFA needs to consider frictional pressure loss
|
|
return (segmentSet().compPressureDrop() != WellSegments::CompPressureDrop::H__);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
bool
|
|
MultisegmentWell<TypeTag>::
|
|
accelerationalPressureLossConsidered() const
|
|
{
|
|
return (segmentSet().compPressureDrop() == WellSegments::CompPressureDrop::HFA);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
MultisegmentWell<TypeTag>::
|
|
iterateWellEquations(const Simulator& ebosSimulator,
|
|
const std::vector<Scalar>& B_avg,
|
|
const double dt,
|
|
const Well::InjectionControls& inj_controls,
|
|
const Well::ProductionControls& prod_controls,
|
|
WellState& well_state,
|
|
Opm::DeferredLogger& deferred_logger)
|
|
{
|
|
const int max_iter_number = param_.max_inner_iter_ms_wells_;
|
|
const WellState well_state0 = well_state;
|
|
const std::vector<Scalar> residuals0 = getWellResiduals(B_avg);
|
|
std::vector<std::vector<Scalar> > residual_history;
|
|
std::vector<double> measure_history;
|
|
int it = 0;
|
|
// relaxation factor
|
|
double relaxation_factor = 1.;
|
|
const double min_relaxation_factor = 0.6;
|
|
bool converged = false;
|
|
int stagnate_count = 0;
|
|
bool relax_convergence = false;
|
|
for (; it < max_iter_number; ++it, ++debug_cost_counter_) {
|
|
|
|
assembleWellEqWithoutIteration(ebosSimulator, dt, inj_controls, prod_controls, well_state, deferred_logger);
|
|
|
|
const BVectorWell dx_well = mswellhelpers::invDXDirect(duneD_, resWell_);
|
|
|
|
if (it > param_.strict_inner_iter_ms_wells_)
|
|
relax_convergence = true;
|
|
|
|
const auto report = getWellConvergence(well_state, B_avg, deferred_logger, relax_convergence);
|
|
if (report.converged()) {
|
|
converged = true;
|
|
break;
|
|
}
|
|
|
|
residual_history.push_back(getWellResiduals(B_avg));
|
|
measure_history.push_back(getResidualMeasureValue(well_state, residual_history[it], deferred_logger) );
|
|
|
|
bool is_oscillate = false;
|
|
bool is_stagnate = false;
|
|
|
|
detectOscillations(measure_history, it, is_oscillate, is_stagnate);
|
|
// TODO: maybe we should have more sophiscated strategy to recover the relaxation factor,
|
|
// for example, to recover it to be bigger
|
|
|
|
if (is_oscillate || is_stagnate) {
|
|
// HACK!
|
|
std::ostringstream sstr;
|
|
if (relaxation_factor == min_relaxation_factor) {
|
|
// Still stagnating, terminate iterations if 5 iterations pass.
|
|
++stagnate_count;
|
|
if (stagnate_count == 6) {
|
|
sstr << " well " << name() << " observes severe stagnation and/or oscillation. We relax the tolerance and check for convergence. \n";
|
|
const auto reportStag = getWellConvergence(well_state, B_avg, deferred_logger, true);
|
|
if (reportStag.converged()) {
|
|
converged = true;
|
|
sstr << " well " << name() << " manages to get converged with relaxed tolerances in " << it << " inner iterations";
|
|
deferred_logger.debug(sstr.str());
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
// a factor value to reduce the relaxation_factor
|
|
const double reduction_mutliplier = 0.9;
|
|
relaxation_factor = std::max(relaxation_factor * reduction_mutliplier, min_relaxation_factor);
|
|
|
|
// debug output
|
|
if (is_stagnate) {
|
|
sstr << " well " << name() << " observes stagnation in inner iteration " << it << "\n";
|
|
|
|
}
|
|
if (is_oscillate) {
|
|
sstr << " well " << name() << " observes oscillation in inner iteration " << it << "\n";
|
|
}
|
|
sstr << " relaxation_factor is " << relaxation_factor << " now\n";
|
|
deferred_logger.debug(sstr.str());
|
|
}
|
|
updateWellState(dx_well, well_state, deferred_logger, relaxation_factor);
|
|
initPrimaryVariablesEvaluation();
|
|
}
|
|
|
|
// TODO: we should decide whether to keep the updated well_state, or recover to use the old well_state
|
|
if (converged) {
|
|
std::ostringstream sstr;
|
|
sstr << " Well " << name() << " converged in " << it << " inner iterations.";
|
|
if (relax_convergence)
|
|
sstr << " (A relaxed tolerance was used after "<< param_.strict_inner_iter_ms_wells_ << " iterations)";
|
|
deferred_logger.debug(sstr.str());
|
|
} else {
|
|
std::ostringstream sstr;
|
|
sstr << " Well " << name() << " did not converge in " << it << " inner iterations.";
|
|
#define EXTRA_DEBUG_MSW 0
|
|
#if EXTRA_DEBUG_MSW
|
|
sstr << "***** Outputting the residual history for well " << name() << " during inner iterations:";
|
|
for (int i = 0; i < it; ++i) {
|
|
const auto& residual = residual_history[i];
|
|
sstr << " residual at " << i << "th iteration ";
|
|
for (const auto& res : residual) {
|
|
sstr << " " << res;
|
|
}
|
|
sstr << " " << measure_history[i] << " \n";
|
|
}
|
|
#endif
|
|
deferred_logger.debug(sstr.str());
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
MultisegmentWell<TypeTag>::
|
|
assembleWellEqWithoutIteration(const Simulator& ebosSimulator,
|
|
const double dt,
|
|
const Well::InjectionControls& inj_controls,
|
|
const Well::ProductionControls& prod_controls,
|
|
WellState& well_state,
|
|
Opm::DeferredLogger& deferred_logger)
|
|
{
|
|
// calculate the fluid properties needed.
|
|
computeSegmentFluidProperties(ebosSimulator);
|
|
|
|
// update the upwinding segments
|
|
updateUpwindingSegments();
|
|
|
|
// clear all entries
|
|
duneB_ = 0.0;
|
|
duneC_ = 0.0;
|
|
|
|
duneD_ = 0.0;
|
|
resWell_ = 0.0;
|
|
|
|
well_state.wellVaporizedOilRates()[index_of_well_] = 0.;
|
|
well_state.wellDissolvedGasRates()[index_of_well_] = 0.;
|
|
|
|
// for the black oil cases, there will be four equations,
|
|
// the first three of them are the mass balance equations, the last one is the pressure equations.
|
|
//
|
|
// but for the top segment, the pressure equation will be the well control equation, and the other three will be the same.
|
|
|
|
const bool allow_cf = getAllowCrossFlow() || openCrossFlowAvoidSingularity(ebosSimulator);
|
|
|
|
const int nseg = numberOfSegments();
|
|
|
|
for (int seg = 0; seg < nseg; ++seg) {
|
|
// calculating the accumulation term
|
|
// TODO: without considering the efficiencty factor for now
|
|
{
|
|
const EvalWell segment_surface_volume = getSegmentSurfaceVolume(ebosSimulator, seg);
|
|
|
|
// Add a regularization_factor to increase the accumulation term
|
|
// This will make the system less stiff and help convergence for
|
|
// difficult cases
|
|
const Scalar regularization_factor = param_.regularization_factor_ms_wells_;
|
|
// for each component
|
|
for (int comp_idx = 0; comp_idx < num_components_; ++comp_idx) {
|
|
const EvalWell accumulation_term = regularization_factor * (segment_surface_volume * surfaceVolumeFraction(seg, comp_idx)
|
|
- segment_fluid_initial_[seg][comp_idx]) / dt;
|
|
|
|
resWell_[seg][comp_idx] += accumulation_term.value();
|
|
for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) {
|
|
duneD_[seg][seg][comp_idx][pv_idx] += accumulation_term.derivative(pv_idx + numEq);
|
|
}
|
|
}
|
|
}
|
|
// considering the contributions due to flowing out from the segment
|
|
{
|
|
for (int comp_idx = 0; comp_idx < num_components_; ++comp_idx) {
|
|
const EvalWell segment_rate = getSegmentRateUpwinding(seg, comp_idx) * well_efficiency_factor_;
|
|
|
|
const int seg_upwind = upwinding_segments_[seg];
|
|
// segment_rate contains the derivatives with respect to GTotal in seg,
|
|
// and WFrac and GFrac in seg_upwind
|
|
resWell_[seg][comp_idx] -= segment_rate.value();
|
|
duneD_[seg][seg][comp_idx][GTotal] -= segment_rate.derivative(GTotal + numEq);
|
|
duneD_[seg][seg_upwind][comp_idx][WFrac] -= segment_rate.derivative(WFrac + numEq);
|
|
duneD_[seg][seg_upwind][comp_idx][GFrac] -= segment_rate.derivative(GFrac + numEq);
|
|
// pressure derivative should be zero
|
|
}
|
|
}
|
|
|
|
// considering the contributions from the inlet segments
|
|
{
|
|
for (const int inlet : segment_inlets_[seg]) {
|
|
for (int comp_idx = 0; comp_idx < num_components_; ++comp_idx) {
|
|
const EvalWell inlet_rate = getSegmentRateUpwinding(inlet, comp_idx) * well_efficiency_factor_;
|
|
|
|
const int inlet_upwind = upwinding_segments_[inlet];
|
|
// inlet_rate contains the derivatives with respect to GTotal in inlet,
|
|
// and WFrac and GFrac in inlet_upwind
|
|
resWell_[seg][comp_idx] += inlet_rate.value();
|
|
duneD_[seg][inlet][comp_idx][GTotal] += inlet_rate.derivative(GTotal + numEq);
|
|
duneD_[seg][inlet_upwind][comp_idx][WFrac] += inlet_rate.derivative(WFrac + numEq);
|
|
duneD_[seg][inlet_upwind][comp_idx][GFrac] += inlet_rate.derivative(GFrac + numEq);
|
|
// pressure derivative should be zero
|
|
}
|
|
}
|
|
}
|
|
|
|
// calculating the perforation rate for each perforation that belongs to this segment
|
|
const EvalWell seg_pressure = getSegmentPressure(seg);
|
|
for (const int perf : segment_perforations_[seg]) {
|
|
const int cell_idx = well_cells_[perf];
|
|
const auto& int_quants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/ 0));
|
|
std::vector<EvalWell> mob(num_components_, 0.0);
|
|
getMobility(ebosSimulator, perf, mob);
|
|
std::vector<EvalWell> cq_s(num_components_, 0.0);
|
|
EvalWell perf_press;
|
|
double perf_dis_gas_rate = 0.;
|
|
double perf_vap_oil_rate = 0.;
|
|
|
|
computePerfRatePressure(int_quants, mob, seg, perf, seg_pressure, allow_cf, cq_s, perf_press, perf_dis_gas_rate, perf_vap_oil_rate, deferred_logger);
|
|
|
|
// updating the solution gas rate and solution oil rate
|
|
if (this->isProducer()) {
|
|
well_state.wellDissolvedGasRates()[index_of_well_] += perf_dis_gas_rate;
|
|
well_state.wellVaporizedOilRates()[index_of_well_] += perf_vap_oil_rate;
|
|
}
|
|
|
|
// store the perf pressure and rates
|
|
const int rate_start_offset = (first_perf_ + perf) * number_of_phases_;
|
|
for (int comp_idx = 0; comp_idx < num_components_; ++comp_idx) {
|
|
well_state.perfPhaseRates()[rate_start_offset + ebosCompIdxToFlowCompIdx(comp_idx)] = cq_s[comp_idx].value();
|
|
}
|
|
well_state.perfPress()[first_perf_ + perf] = perf_press.value();
|
|
|
|
for (int comp_idx = 0; comp_idx < num_components_; ++comp_idx) {
|
|
// the cq_s entering mass balance equations need to consider the efficiency factors.
|
|
const EvalWell cq_s_effective = cq_s[comp_idx] * well_efficiency_factor_;
|
|
|
|
connectionRates_[perf][comp_idx] = Base::restrictEval(cq_s_effective);
|
|
|
|
// subtract sum of phase fluxes in the well equations.
|
|
resWell_[seg][comp_idx] += cq_s_effective.value();
|
|
|
|
// assemble the jacobians
|
|
for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) {
|
|
|
|
// also need to consider the efficiency factor when manipulating the jacobians.
|
|
duneC_[seg][cell_idx][pv_idx][comp_idx] -= cq_s_effective.derivative(pv_idx + numEq); // intput in transformed matrix
|
|
|
|
// the index name for the D should be eq_idx / pv_idx
|
|
duneD_[seg][seg][comp_idx][pv_idx] += cq_s_effective.derivative(pv_idx + numEq);
|
|
}
|
|
|
|
for (int pv_idx = 0; pv_idx < numEq; ++pv_idx) {
|
|
// also need to consider the efficiency factor when manipulating the jacobians.
|
|
duneB_[seg][cell_idx][comp_idx][pv_idx] += cq_s_effective.derivative(pv_idx);
|
|
}
|
|
}
|
|
}
|
|
|
|
// the fourth dequation, the pressure drop equation
|
|
if (seg == 0) { // top segment, pressure equation is the control equation
|
|
const auto& summaryState = ebosSimulator.vanguard().summaryState();
|
|
const Opm::Schedule& schedule = ebosSimulator.vanguard().schedule();
|
|
assembleControlEq(well_state, schedule, summaryState, inj_controls, prod_controls, deferred_logger);
|
|
} else {
|
|
// TODO: maybe the following should go to the function assemblePressureEq()
|
|
switch(segmentSet()[seg].segmentType()) {
|
|
case Segment::SegmentType::SICD :
|
|
assembleSICDPressureEq(seg, well_state);
|
|
break;
|
|
case Segment::SegmentType::VALVE :
|
|
assembleValvePressureEq(seg, well_state);
|
|
break;
|
|
default :
|
|
assemblePressureEq(seg, well_state);
|
|
}
|
|
}
|
|
|
|
well_state.segPressDrop()[seg] = well_state.segPressDropHydroStatic()[seg] +
|
|
well_state.segPressDropFriction()[seg] +
|
|
well_state.segPressDropAcceleration()[seg];
|
|
}
|
|
}
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
bool
|
|
MultisegmentWell<TypeTag>::
|
|
openCrossFlowAvoidSingularity(const Simulator& ebos_simulator) const
|
|
{
|
|
return !getAllowCrossFlow() && allDrawDownWrongDirection(ebos_simulator);
|
|
}
|
|
|
|
|
|
template<typename TypeTag>
|
|
bool
|
|
MultisegmentWell<TypeTag>::
|
|
allDrawDownWrongDirection(const Simulator& ebos_simulator) const
|
|
{
|
|
bool all_drawdown_wrong_direction = true;
|
|
const int nseg = numberOfSegments();
|
|
|
|
for (int seg = 0; seg < nseg; ++seg) {
|
|
const EvalWell segment_pressure = getSegmentPressure(seg);
|
|
for (const int perf : segment_perforations_[seg]) {
|
|
|
|
const int cell_idx = well_cells_[perf];
|
|
const auto& intQuants = *(ebos_simulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/ 0));
|
|
const auto& fs = intQuants.fluidState();
|
|
|
|
// pressure difference between the segment and the perforation
|
|
const EvalWell perf_seg_press_diff = gravity_ * segment_densities_[seg] * perforation_segment_depth_diffs_[perf];
|
|
// pressure difference between the perforation and the grid cell
|
|
const double cell_perf_press_diff = cell_perforation_pressure_diffs_[perf];
|
|
|
|
const double pressure_cell = (fs.pressure(FluidSystem::oilPhaseIdx)).value();
|
|
const double perf_press = pressure_cell - cell_perf_press_diff;
|
|
// Pressure drawdown (also used to determine direction of flow)
|
|
// TODO: not 100% sure about the sign of the seg_perf_press_diff
|
|
const EvalWell drawdown = perf_press - (segment_pressure + perf_seg_press_diff);
|
|
|
|
// for now, if there is one perforation can produce/inject in the correct
|
|
// direction, we consider this well can still produce/inject.
|
|
// TODO: it can be more complicated than this to cause wrong-signed rates
|
|
if ( (drawdown < 0. && this->isInjector()) ||
|
|
(drawdown > 0. && this->isProducer()) ) {
|
|
all_drawdown_wrong_direction = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return all_drawdown_wrong_direction;
|
|
}
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
MultisegmentWell<TypeTag>::
|
|
wellTestingPhysical(const Simulator& /* simulator */, const std::vector<double>& /* B_avg */,
|
|
const double /* simulation_time */, const int /* report_step */,
|
|
WellState& /* well_state */, WellTestState& /* welltest_state */, Opm::DeferredLogger& deferred_logger)
|
|
{
|
|
const std::string msg = "Support of well testing for physical limits for multisegment wells is not "
|
|
"implemented yet, wellTestingPhysical() for " + name() + " will do nothing";
|
|
deferred_logger.warning("NO_WELLTESTPHYSICAL_CHECKING_MS_WELLS", msg);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
MultisegmentWell<TypeTag>::
|
|
updateWaterThroughput(const double dt OPM_UNUSED, WellState& well_state OPM_UNUSED) const
|
|
{
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
typename MultisegmentWell<TypeTag>::EvalWell
|
|
MultisegmentWell<TypeTag>::
|
|
getSegmentSurfaceVolume(const Simulator& ebos_simulator, const int seg_idx) const
|
|
{
|
|
EvalWell temperature;
|
|
int pvt_region_index;
|
|
{
|
|
// using the pvt region of first perforated cell
|
|
// TODO: it should be a member of the WellInterface, initialized properly
|
|
const int cell_idx = well_cells_[0];
|
|
const auto& intQuants = *(ebos_simulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0));
|
|
const auto& fs = intQuants.fluidState();
|
|
temperature.setValue(fs.temperature(FluidSystem::oilPhaseIdx).value());
|
|
pvt_region_index = fs.pvtRegionIndex();
|
|
}
|
|
|
|
const EvalWell seg_pressure = getSegmentPressure(seg_idx);
|
|
|
|
std::vector<EvalWell> mix_s(num_components_, 0.0);
|
|
for (int comp_idx = 0; comp_idx < num_components_; ++comp_idx) {
|
|
mix_s[comp_idx] = surfaceVolumeFraction(seg_idx, comp_idx);
|
|
}
|
|
|
|
std::vector<EvalWell> b(num_components_, 0.);
|
|
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
|
|
const unsigned waterCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx);
|
|
b[waterCompIdx] =
|
|
FluidSystem::waterPvt().inverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure);
|
|
}
|
|
|
|
EvalWell rv(0.0);
|
|
// gas phase
|
|
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
|
|
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
|
|
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
|
|
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
|
|
EvalWell rvmax = FluidSystem::gasPvt().saturatedOilVaporizationFactor(pvt_region_index, temperature, seg_pressure);
|
|
if (rvmax < 0.0) { // negative rvmax can happen if the seg_pressure is outside the range of the table
|
|
rvmax = 0.0;
|
|
}
|
|
if (mix_s[oilCompIdx] > 0.0) {
|
|
if (mix_s[gasCompIdx] > 0.0) {
|
|
rv = mix_s[oilCompIdx] / mix_s[gasCompIdx];
|
|
}
|
|
|
|
if (rv > rvmax) {
|
|
rv = rvmax;
|
|
}
|
|
b[gasCompIdx] =
|
|
FluidSystem::gasPvt().inverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure, rv);
|
|
} else { // no oil exists
|
|
b[gasCompIdx] =
|
|
FluidSystem::gasPvt().saturatedInverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure);
|
|
}
|
|
} else { // no Liquid phase
|
|
// it is the same with zero mix_s[Oil]
|
|
b[gasCompIdx] =
|
|
FluidSystem::gasPvt().saturatedInverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure);
|
|
}
|
|
}
|
|
|
|
EvalWell rs(0.0);
|
|
// oil phase
|
|
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
|
|
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
|
|
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
|
|
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
|
|
EvalWell rsmax = FluidSystem::oilPvt().saturatedGasDissolutionFactor(pvt_region_index, temperature, seg_pressure);
|
|
if (rsmax < 0.0) { // negative rsmax can happen if the seg_pressure is outside the range of the table
|
|
rsmax = 0.0;
|
|
}
|
|
if (mix_s[gasCompIdx] > 0.0) {
|
|
if (mix_s[oilCompIdx] > 0.0) {
|
|
rs = mix_s[gasCompIdx] / mix_s[oilCompIdx];
|
|
}
|
|
// std::cout << " rs " << rs.value() << " rsmax " << rsmax.value() << std::endl;
|
|
|
|
if (rs > rsmax) {
|
|
rs = rsmax;
|
|
}
|
|
b[oilCompIdx] =
|
|
FluidSystem::oilPvt().inverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure, rs);
|
|
} else { // no oil exists
|
|
b[oilCompIdx] =
|
|
FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure);
|
|
}
|
|
} else { // no gas phase
|
|
// it is the same with zero mix_s[Gas]
|
|
b[oilCompIdx] =
|
|
FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure);
|
|
}
|
|
}
|
|
|
|
std::vector<EvalWell> mix(mix_s);
|
|
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
|
|
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
|
|
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
|
|
|
|
const EvalWell d = 1.0 - rs * rv;
|
|
if (d <= 0.0 || d > 1.0) {
|
|
OPM_THROW(Opm::NumericalIssue, "Problematic d value " << d << " obtained for well " << name()
|
|
<< " during convertion to surface volume with rs " << rs
|
|
<< ", rv " << rv << " and pressure " << seg_pressure
|
|
<< " obtaining d " << d);
|
|
}
|
|
|
|
if (rs > 0.0) { // rs > 0.0?
|
|
mix[gasCompIdx] = (mix_s[gasCompIdx] - mix_s[oilCompIdx] * rs) / d;
|
|
}
|
|
if (rv > 0.0) { // rv > 0.0?
|
|
mix[oilCompIdx] = (mix_s[oilCompIdx] - mix_s[gasCompIdx] * rv) / d;
|
|
}
|
|
}
|
|
|
|
EvalWell vol_ratio(0.0);
|
|
for (int comp_idx = 0; comp_idx < num_components_; ++comp_idx) {
|
|
vol_ratio += mix[comp_idx] / b[comp_idx];
|
|
}
|
|
|
|
// We increase the segment volume with a factor 10 to stabilize the system.
|
|
const double volume = segmentSet()[seg_idx].volume();
|
|
|
|
return volume / vol_ratio;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
std::vector<typename MultisegmentWell<TypeTag>::Scalar>
|
|
MultisegmentWell<TypeTag>::
|
|
getWellResiduals(const std::vector<Scalar>& B_avg) const
|
|
{
|
|
assert(int(B_avg.size() ) == num_components_);
|
|
std::vector<Scalar> residuals(numWellEq + 1, 0.0);
|
|
|
|
for (int seg = 0; seg < numberOfSegments(); ++seg) {
|
|
for (int eq_idx = 0; eq_idx < numWellEq; ++eq_idx) {
|
|
double residual = 0.;
|
|
if (eq_idx < num_components_) {
|
|
residual = std::abs(resWell_[seg][eq_idx]) * B_avg[eq_idx];
|
|
} else {
|
|
if (seg > 0) {
|
|
residual = std::abs(resWell_[seg][eq_idx]);
|
|
}
|
|
}
|
|
if (std::isnan(residual) || std::isinf(residual)) {
|
|
OPM_THROW(Opm::NumericalIssue, "nan or inf value for residal get for well " << name()
|
|
<< " segment " << seg << " eq_idx " << eq_idx);
|
|
}
|
|
|
|
if (residual > residuals[eq_idx]) {
|
|
residuals[eq_idx] = residual;
|
|
}
|
|
}
|
|
}
|
|
|
|
// handling the control equation residual
|
|
{
|
|
const double control_residual = std::abs(resWell_[0][numWellEq - 1]);
|
|
if (std::isnan(control_residual) || std::isinf(control_residual)) {
|
|
OPM_THROW(Opm::NumericalIssue, "nan or inf value for control residal get for well " << name());
|
|
}
|
|
residuals[numWellEq] = control_residual;
|
|
}
|
|
|
|
return residuals;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/// Detect oscillation or stagnation based on the residual measure history
|
|
template<typename TypeTag>
|
|
void
|
|
MultisegmentWell<TypeTag>::
|
|
detectOscillations(const std::vector<double>& measure_history,
|
|
const int it, bool& oscillate, bool& stagnate) const
|
|
{
|
|
if ( it < 2 ) {
|
|
oscillate = false;
|
|
stagnate = false;
|
|
return;
|
|
}
|
|
|
|
stagnate = true;
|
|
const double F0 = measure_history[it];
|
|
const double F1 = measure_history[it - 1];
|
|
const double F2 = measure_history[it - 2];
|
|
const double d1 = std::abs((F0 - F2) / F0);
|
|
const double d2 = std::abs((F0 - F1) / F0);
|
|
|
|
const double oscillaton_rel_tol = 0.2;
|
|
oscillate = (d1 < oscillaton_rel_tol) && (oscillaton_rel_tol < d2);
|
|
|
|
const double stagnation_rel_tol = 1.e-2;
|
|
stagnate = std::abs((F1 - F2) / F2) <= stagnation_rel_tol;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
double
|
|
MultisegmentWell<TypeTag>::
|
|
getResidualMeasureValue(const WellState& well_state,
|
|
const std::vector<double>& residuals,
|
|
DeferredLogger& deferred_logger) const
|
|
{
|
|
assert(int(residuals.size()) == numWellEq + 1);
|
|
|
|
const double rate_tolerance = param_.tolerance_wells_;
|
|
int count = 0;
|
|
double sum = 0;
|
|
for (int eq_idx = 0; eq_idx < numWellEq - 1; ++eq_idx) {
|
|
if (residuals[eq_idx] > rate_tolerance) {
|
|
sum += residuals[eq_idx] / rate_tolerance;
|
|
++count;
|
|
}
|
|
}
|
|
|
|
const double pressure_tolerance = param_.tolerance_pressure_ms_wells_;
|
|
if (residuals[SPres] > pressure_tolerance) {
|
|
sum += residuals[SPres] / pressure_tolerance;
|
|
++count;
|
|
}
|
|
|
|
const double control_tolerance = getControlTolerance(well_state, deferred_logger);
|
|
if (residuals[SPres + 1] > control_tolerance) {
|
|
sum += residuals[SPres + 1] / control_tolerance;
|
|
++count;
|
|
}
|
|
|
|
// if (count == 0), it should be converged.
|
|
assert(count != 0);
|
|
|
|
return sum;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
double
|
|
MultisegmentWell<TypeTag>::
|
|
getControlTolerance(const WellState& well_state,
|
|
DeferredLogger& deferred_logger) const
|
|
{
|
|
double control_tolerance = 0.;
|
|
|
|
const int well_index = index_of_well_;
|
|
if (this->isInjector() )
|
|
{
|
|
const Opm::Well::InjectorCMode& current = well_state.currentInjectionControls()[well_index];
|
|
switch(current) {
|
|
case Well::InjectorCMode::THP:
|
|
control_tolerance = param_.tolerance_pressure_ms_wells_;
|
|
break;
|
|
case Well::InjectorCMode::BHP:
|
|
control_tolerance = param_.tolerance_wells_;
|
|
break;
|
|
case Well::InjectorCMode::RATE:
|
|
case Well::InjectorCMode::RESV:
|
|
control_tolerance = param_.tolerance_wells_;
|
|
break;
|
|
case Well::InjectorCMode::GRUP:
|
|
control_tolerance = param_.tolerance_wells_;
|
|
break;
|
|
default:
|
|
OPM_DEFLOG_THROW(std::runtime_error, "Unknown well control control types for well " << name(), deferred_logger);
|
|
}
|
|
}
|
|
|
|
if (this->isProducer() )
|
|
{
|
|
const Well::ProducerCMode& current = well_state.currentProductionControls()[well_index];
|
|
switch(current) {
|
|
case Well::ProducerCMode::THP:
|
|
control_tolerance = param_.tolerance_pressure_ms_wells_; // 0.1 bar
|
|
break;
|
|
case Well::ProducerCMode::BHP:
|
|
control_tolerance = param_.tolerance_wells_; // 0.01 bar
|
|
break;
|
|
case Well::ProducerCMode::ORAT:
|
|
case Well::ProducerCMode::WRAT:
|
|
case Well::ProducerCMode::GRAT:
|
|
case Well::ProducerCMode::LRAT:
|
|
case Well::ProducerCMode::RESV:
|
|
case Well::ProducerCMode::CRAT:
|
|
control_tolerance = param_.tolerance_wells_; // smaller tolerance for rate control
|
|
break;
|
|
case Well::ProducerCMode::GRUP:
|
|
control_tolerance = param_.tolerance_wells_; // smaller tolerance for rate control
|
|
break;
|
|
default:
|
|
OPM_DEFLOG_THROW(std::runtime_error, "Unknown well control control types for well " << name(), deferred_logger);
|
|
}
|
|
}
|
|
|
|
return control_tolerance;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
MultisegmentWell<TypeTag>::
|
|
checkConvergenceControlEq(const WellState& well_state,
|
|
ConvergenceReport& report,
|
|
DeferredLogger& deferred_logger) const
|
|
{
|
|
double control_tolerance = 0.;
|
|
using CR = ConvergenceReport;
|
|
CR::WellFailure::Type ctrltype = CR::WellFailure::Type::Invalid;
|
|
|
|
const int well_index = index_of_well_;
|
|
if (this->isInjector() )
|
|
{
|
|
const Opm::Well::InjectorCMode& current = well_state.currentInjectionControls()[well_index];
|
|
switch(current) {
|
|
case Well::InjectorCMode::THP:
|
|
ctrltype = CR::WellFailure::Type::ControlTHP;
|
|
control_tolerance = param_.tolerance_pressure_ms_wells_;
|
|
break;
|
|
case Well::InjectorCMode::BHP:
|
|
ctrltype = CR::WellFailure::Type::ControlBHP;
|
|
control_tolerance = param_.tolerance_pressure_ms_wells_;
|
|
break;
|
|
case Well::InjectorCMode::RATE:
|
|
case Well::InjectorCMode::RESV:
|
|
ctrltype = CR::WellFailure::Type::ControlRate;
|
|
control_tolerance = param_.tolerance_wells_;
|
|
break;
|
|
case Well::InjectorCMode::GRUP:
|
|
ctrltype = CR::WellFailure::Type::ControlRate;
|
|
control_tolerance = param_.tolerance_wells_;
|
|
break;
|
|
default:
|
|
OPM_DEFLOG_THROW(std::runtime_error, "Unknown well control control types for well " << name(), deferred_logger);
|
|
}
|
|
}
|
|
|
|
if (this->isProducer() )
|
|
{
|
|
const Well::ProducerCMode& current = well_state.currentProductionControls()[well_index];
|
|
switch(current) {
|
|
case Well::ProducerCMode::THP:
|
|
ctrltype = CR::WellFailure::Type::ControlTHP;
|
|
control_tolerance = param_.tolerance_pressure_ms_wells_;
|
|
break;
|
|
case Well::ProducerCMode::BHP:
|
|
ctrltype = CR::WellFailure::Type::ControlBHP;
|
|
control_tolerance = param_.tolerance_pressure_ms_wells_;
|
|
break;
|
|
case Well::ProducerCMode::ORAT:
|
|
case Well::ProducerCMode::WRAT:
|
|
case Well::ProducerCMode::GRAT:
|
|
case Well::ProducerCMode::LRAT:
|
|
case Well::ProducerCMode::RESV:
|
|
case Well::ProducerCMode::CRAT:
|
|
ctrltype = CR::WellFailure::Type::ControlRate;
|
|
control_tolerance = param_.tolerance_wells_;
|
|
break;
|
|
case Well::ProducerCMode::GRUP:
|
|
ctrltype = CR::WellFailure::Type::ControlRate;
|
|
control_tolerance = param_.tolerance_wells_;
|
|
break;
|
|
default:
|
|
OPM_DEFLOG_THROW(std::runtime_error, "Unknown well control control types for well " << name(), deferred_logger);
|
|
}
|
|
}
|
|
|
|
const double well_control_residual = std::abs(resWell_[0][SPres]);
|
|
const int dummy_component = -1;
|
|
const double max_residual_allowed = param_.max_residual_allowed_;
|
|
if (std::isnan(well_control_residual)) {
|
|
report.setWellFailed({ctrltype, CR::Severity::NotANumber, dummy_component, name()});
|
|
} else if (well_control_residual > max_residual_allowed * 10.) {
|
|
report.setWellFailed({ctrltype, CR::Severity::TooLarge, dummy_component, name()});
|
|
} else if ( well_control_residual > control_tolerance) {
|
|
report.setWellFailed({ctrltype, CR::Severity::Normal, dummy_component, name()});
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
MultisegmentWell<TypeTag>::
|
|
updateUpwindingSegments()
|
|
{
|
|
for (int seg = 0; seg < numberOfSegments(); ++seg) {
|
|
// special treatment is needed for segment 0
|
|
if (seg == 0) {
|
|
// we are not supposed to have injecting producers and producing injectors
|
|
assert( ! (this->isProducer() && primary_variables_evaluation_[seg][GTotal] > 0.) );
|
|
assert( ! (this->isInjector() && primary_variables_evaluation_[seg][GTotal] < 0.) );
|
|
upwinding_segments_[seg] = seg;
|
|
continue;
|
|
}
|
|
|
|
// for other normal segments
|
|
if (primary_variables_evaluation_[seg][GTotal] <= 0.) {
|
|
upwinding_segments_[seg] = seg;
|
|
} else {
|
|
const int outlet_segment_index = segmentNumberToIndex(segmentSet()[seg].outletSegment());
|
|
upwinding_segments_[seg] = outlet_segment_index;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
MultisegmentWell<TypeTag>::
|
|
assembleSICDPressureEq(const int seg, WellState& well_state) const
|
|
{
|
|
// TODO: upwinding needs to be taken care of
|
|
// top segment can not be a spiral ICD device
|
|
assert(seg != 0);
|
|
|
|
// the pressure equation is something like
|
|
// p_seg - deltaP - p_outlet = 0.
|
|
// the major part is how to calculate the deltaP
|
|
|
|
EvalWell pressure_equation = getSegmentPressure(seg);
|
|
|
|
const auto sicd_pressure_drop = pressureDropSpiralICD(seg);
|
|
pressure_equation = pressure_equation - sicd_pressure_drop;
|
|
well_state.segPressDropFriction()[seg] = sicd_pressure_drop.value();
|
|
|
|
resWell_[seg][SPres] = pressure_equation.value();
|
|
for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) {
|
|
duneD_[seg][seg][SPres][pv_idx] = pressure_equation.derivative(pv_idx + numEq);
|
|
}
|
|
|
|
// contribution from the outlet segment
|
|
const int outlet_segment_index = segmentNumberToIndex(segmentSet()[seg].outletSegment());
|
|
const EvalWell outlet_pressure = getSegmentPressure(outlet_segment_index);
|
|
|
|
resWell_[seg][SPres] -= outlet_pressure.value();
|
|
for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) {
|
|
duneD_[seg][outlet_segment_index][SPres][pv_idx] = -outlet_pressure.derivative(pv_idx + numEq);
|
|
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
MultisegmentWell<TypeTag>::
|
|
assembleValvePressureEq(const int seg, WellState& well_state) const
|
|
{
|
|
// TODO: upwinding needs to be taken care of
|
|
// top segment can not be a spiral ICD device
|
|
assert(seg != 0);
|
|
|
|
// const Valve& valve = *segmentSet()[seg].Valve();
|
|
|
|
// the pressure equation is something like
|
|
// p_seg - deltaP - p_outlet = 0.
|
|
// the major part is how to calculate the deltaP
|
|
|
|
EvalWell pressure_equation = getSegmentPressure(seg);
|
|
|
|
// const int seg_upwind = upwinding_segments_[seg];
|
|
|
|
const auto valve_pressure_drop = pressureDropValve(seg);
|
|
pressure_equation = pressure_equation - valve_pressure_drop;
|
|
well_state.segPressDropFriction()[seg] = valve_pressure_drop.value();
|
|
|
|
resWell_[seg][SPres] = pressure_equation.value();
|
|
for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) {
|
|
duneD_[seg][seg][SPres][pv_idx] = pressure_equation.derivative(pv_idx + numEq);
|
|
}
|
|
|
|
// contribution from the outlet segment
|
|
const int outlet_segment_index = segmentNumberToIndex(segmentSet()[seg].outletSegment());
|
|
const EvalWell outlet_pressure = getSegmentPressure(outlet_segment_index);
|
|
|
|
resWell_[seg][SPres] -= outlet_pressure.value();
|
|
for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) {
|
|
duneD_[seg][outlet_segment_index][SPres][pv_idx] = -outlet_pressure.derivative(pv_idx + numEq);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
std::optional<double>
|
|
MultisegmentWell<TypeTag>::
|
|
computeBhpAtThpLimitProd(const Simulator& ebos_simulator,
|
|
const std::vector<Scalar>& B_avg,
|
|
const SummaryState& summary_state,
|
|
DeferredLogger& deferred_logger) const
|
|
{
|
|
// Given a VFP function returning bhp as a function of phase
|
|
// rates and thp:
|
|
// fbhp(rates, thp),
|
|
// a function extracting the particular flow rate used for VFP
|
|
// lookups:
|
|
// flo(rates)
|
|
// and the inflow function (assuming the reservoir is fixed):
|
|
// frates(bhp)
|
|
// we want to solve the equation:
|
|
// fbhp(frates(bhp, thplimit)) - bhp = 0
|
|
// for bhp.
|
|
//
|
|
// This may result in 0, 1 or 2 solutions. If two solutions,
|
|
// the one corresponding to the lowest bhp (and therefore
|
|
// highest rate) should be returned.
|
|
|
|
// Make the fbhp() function.
|
|
const auto& controls = well_ecl_.productionControls(summary_state);
|
|
const auto& table = *(vfp_properties_->getProd()->getTable(controls.vfp_table_number));
|
|
const double vfp_ref_depth = table.getDatumDepth();
|
|
const double rho = segment_densities_[0].value(); // Use the density at the top perforation.
|
|
const double dp = wellhelpers::computeHydrostaticCorrection(ref_depth_, vfp_ref_depth, rho, gravity_);
|
|
auto fbhp = [this, &controls, dp](const std::vector<double>& rates) {
|
|
assert(rates.size() == 3);
|
|
return this->vfp_properties_->getProd()
|
|
->bhp(controls.vfp_table_number, rates[Water], rates[Oil], rates[Gas], controls.thp_limit, controls.alq_value) - dp;
|
|
};
|
|
|
|
// Make the flo() function.
|
|
auto flo_type = table.getFloType();
|
|
auto flo = [flo_type](const std::vector<double>& rates) {
|
|
return detail::getFlo(rates[Water], rates[Oil], rates[Gas], flo_type);
|
|
};
|
|
|
|
// Make the frates() function.
|
|
auto frates = [this, &ebos_simulator, &B_avg, &deferred_logger](const double bhp) {
|
|
// Not solving the well equations here, which means we are
|
|
// calculating at the current Fg/Fw values of the
|
|
// well. This does not matter unless the well is
|
|
// crossflowing, and then it is likely still a good
|
|
// approximation.
|
|
std::vector<double> rates(3);
|
|
computeWellRatesWithBhp(ebos_simulator, B_avg, bhp, rates, deferred_logger);
|
|
return rates;
|
|
};
|
|
|
|
// Find the bhp-point where production becomes nonzero.
|
|
double bhp_max = 0.0;
|
|
{
|
|
auto fflo = [&flo, &frates](double bhp) { return flo(frates(bhp)); };
|
|
double low = controls.bhp_limit;
|
|
double high = maxPerfPress(ebos_simulator) + 1.0 * unit::barsa;
|
|
double f_low = fflo(low);
|
|
double f_high = fflo(high);
|
|
deferred_logger.debug("computeBhpAtThpLimitProd(): well = " + name() +
|
|
" low = " + std::to_string(low) +
|
|
" high = " + std::to_string(high) +
|
|
" f(low) = " + std::to_string(f_low) +
|
|
" f(high) = " + std::to_string(f_high));
|
|
int adjustments = 0;
|
|
const int max_adjustments = 10;
|
|
const double adjust_amount = 5.0 * unit::barsa;
|
|
while (f_low * f_high > 0.0 && adjustments < max_adjustments) {
|
|
// Same sign, adjust high to see if we can flip it.
|
|
high += adjust_amount;
|
|
f_high = fflo(high);
|
|
++adjustments;
|
|
}
|
|
if (f_low * f_high > 0.0) {
|
|
if (f_low > 0.0) {
|
|
// Even at the BHP limit, we are injecting.
|
|
// There will be no solution here, return an
|
|
// empty optional.
|
|
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_INOPERABLE",
|
|
"Robust bhp(thp) solve failed due to inoperability for well " + name());
|
|
return std::optional<double>();
|
|
} else {
|
|
// Still producing, even at high bhp.
|
|
assert(f_high < 0.0);
|
|
bhp_max = high;
|
|
}
|
|
} else {
|
|
// Bisect to find a bhp point where we produce, but
|
|
// not a large amount ('eps' below).
|
|
const double eps = 0.1 * std::fabs(table.getFloAxis().front());
|
|
const int maxit = 50;
|
|
int it = 0;
|
|
while (std::fabs(f_low) > eps && it < maxit) {
|
|
const double curr = 0.5*(low + high);
|
|
const double f_curr = fflo(curr);
|
|
if (f_curr * f_low > 0.0) {
|
|
low = curr;
|
|
f_low = f_curr;
|
|
} else {
|
|
high = curr;
|
|
f_high = f_curr;
|
|
}
|
|
++it;
|
|
}
|
|
bhp_max = low;
|
|
}
|
|
deferred_logger.debug("computeBhpAtThpLimitProd(): well = " + name() +
|
|
" low = " + std::to_string(low) +
|
|
" high = " + std::to_string(high) +
|
|
" f(low) = " + std::to_string(f_low) +
|
|
" f(high) = " + std::to_string(f_high) +
|
|
" bhp_max = " + std::to_string(bhp_max));
|
|
}
|
|
|
|
// Define the equation we want to solve.
|
|
auto eq = [&fbhp, &frates](double bhp) {
|
|
return fbhp(frates(bhp)) - bhp;
|
|
};
|
|
|
|
// Find appropriate brackets for the solution.
|
|
double low = controls.bhp_limit;
|
|
double high = bhp_max;
|
|
{
|
|
double eq_high = eq(high);
|
|
double eq_low = eq(low);
|
|
const double eq_bhplimit = eq_low;
|
|
deferred_logger.debug("computeBhpAtThpLimitProd(): well = " + name() +
|
|
" low = " + std::to_string(low) +
|
|
" high = " + std::to_string(high) +
|
|
" eq(low) = " + std::to_string(eq_low) +
|
|
" eq(high) = " + std::to_string(eq_high));
|
|
if (eq_low * eq_high > 0.0) {
|
|
// Failed to bracket the zero.
|
|
// If this is due to having two solutions, bisect until bracketed.
|
|
double abs_low = std::fabs(eq_low);
|
|
double abs_high = std::fabs(eq_high);
|
|
int bracket_attempts = 0;
|
|
const int max_bracket_attempts = 20;
|
|
double interval = high - low;
|
|
const double min_interval = 1.0 * unit::barsa;
|
|
while (eq_low * eq_high > 0.0 && bracket_attempts < max_bracket_attempts && interval > min_interval) {
|
|
if (abs_high < abs_low) {
|
|
low = 0.5 * (low + high);
|
|
eq_low = eq(low);
|
|
abs_low = std::fabs(eq_low);
|
|
} else {
|
|
high = 0.5 * (low + high);
|
|
eq_high = eq(high);
|
|
abs_high = std::fabs(eq_high);
|
|
}
|
|
++bracket_attempts;
|
|
}
|
|
if (eq_low * eq_high > 0.0) {
|
|
// Still failed bracketing!
|
|
const double limit = 3.0 * unit::barsa;
|
|
if (std::min(abs_low, abs_high) < limit) {
|
|
// Return the least bad solution if less off than 3 bar.
|
|
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_BRACKETING_FAILURE",
|
|
"Robust bhp(thp) not solved precisely for well " + name());
|
|
return abs_low < abs_high ? low : high;
|
|
} else {
|
|
// Return failure.
|
|
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_BRACKETING_FAILURE",
|
|
"Robust bhp(thp) solve failed due to bracketing failure for well " + name());
|
|
return std::optional<double>();
|
|
}
|
|
}
|
|
}
|
|
// We have a bracket!
|
|
// Now, see if (bhplimit, low) is a bracket in addition to (low, high).
|
|
// If so, that is the bracket we shall use, choosing the solution with the
|
|
// highest flow.
|
|
if (eq_low * eq_bhplimit <= 0.0) {
|
|
high = low;
|
|
low = controls.bhp_limit;
|
|
}
|
|
}
|
|
|
|
// Solve for the proper solution in the given interval.
|
|
const int max_iteration = 100;
|
|
const double bhp_tolerance = 0.01 * unit::barsa;
|
|
int iteration = 0;
|
|
try {
|
|
const double solved_bhp = RegulaFalsiBisection<ThrowOnError>::
|
|
solve(eq, low, high, max_iteration, bhp_tolerance, iteration);
|
|
return solved_bhp;
|
|
}
|
|
catch (...) {
|
|
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE",
|
|
"Robust bhp(thp) solve failed for well " + name());
|
|
return std::optional<double>();
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
std::optional<double>
|
|
MultisegmentWell<TypeTag>::
|
|
computeBhpAtThpLimitInj(const Simulator& ebos_simulator,
|
|
const std::vector<Scalar>& B_avg,
|
|
const SummaryState& summary_state,
|
|
DeferredLogger& deferred_logger) const
|
|
{
|
|
// Given a VFP function returning bhp as a function of phase
|
|
// rates and thp:
|
|
// fbhp(rates, thp),
|
|
// a function extracting the particular flow rate used for VFP
|
|
// lookups:
|
|
// flo(rates)
|
|
// and the inflow function (assuming the reservoir is fixed):
|
|
// frates(bhp)
|
|
// we want to solve the equation:
|
|
// fbhp(frates(bhp, thplimit)) - bhp = 0
|
|
// for bhp.
|
|
//
|
|
// This may result in 0, 1 or 2 solutions. If two solutions,
|
|
// the one corresponding to the lowest bhp (and therefore
|
|
// highest rate) is returned.
|
|
//
|
|
// In order to detect these situations, we will find piecewise
|
|
// linear approximations both to the inverse of the frates
|
|
// function and to the fbhp function.
|
|
//
|
|
// We first take the FLO sample points of the VFP curve, and
|
|
// find the corresponding bhp values by solving the equation:
|
|
// flo(frates(bhp)) - flo_sample = 0
|
|
// for bhp, for each flo_sample. The resulting (flo_sample,
|
|
// bhp_sample) values give a piecewise linear approximation to
|
|
// the true inverse inflow function, at the same flo values as
|
|
// the VFP data.
|
|
//
|
|
// Then we extract a piecewise linear approximation from the
|
|
// multilinear fbhp() by evaluating it at the flo_sample
|
|
// points, with fractions given by the frates(bhp_sample)
|
|
// values.
|
|
//
|
|
// When we have both piecewise linear curves defined on the
|
|
// same flo_sample points, it is easy to distinguish between
|
|
// the 0, 1 or 2 solution cases, and obtain the right interval
|
|
// in which to solve for the solution we want (with highest
|
|
// flow in case of 2 solutions).
|
|
|
|
// Make the fbhp() function.
|
|
const auto& controls = well_ecl_.injectionControls(summary_state);
|
|
const auto& table = *(vfp_properties_->getInj()->getTable(controls.vfp_table_number));
|
|
const double vfp_ref_depth = table.getDatumDepth();
|
|
const double rho = segment_densities_[0].value(); // Use the density at the top perforation.
|
|
const double dp = wellhelpers::computeHydrostaticCorrection(ref_depth_, vfp_ref_depth, rho, gravity_);
|
|
auto fbhp = [this, &controls, dp](const std::vector<double>& rates) {
|
|
assert(rates.size() == 3);
|
|
return this->vfp_properties_->getInj()
|
|
->bhp(controls.vfp_table_number, rates[Water], rates[Oil], rates[Gas], controls.thp_limit) - dp;
|
|
};
|
|
|
|
// Make the flo() function.
|
|
auto flo_type = table.getFloType();
|
|
auto flo = [flo_type](const std::vector<double>& rates) {
|
|
return detail::getFlo(rates[Water], rates[Oil], rates[Gas], flo_type);
|
|
};
|
|
|
|
// Make the frates() function.
|
|
auto frates = [this, &ebos_simulator, &B_avg, &deferred_logger](const double bhp) {
|
|
// Not solving the well equations here, which means we are
|
|
// calculating at the current Fg/Fw values of the
|
|
// well. This does not matter unless the well is
|
|
// crossflowing, and then it is likely still a good
|
|
// approximation.
|
|
std::vector<double> rates(3);
|
|
computeWellRatesWithBhp(ebos_simulator, B_avg, bhp, rates, deferred_logger);
|
|
return rates;
|
|
};
|
|
|
|
// Get the flo samples, add extra samples at low rates and bhp
|
|
// limit point if necessary.
|
|
std::vector<double> flo_samples = table.getFloAxis();
|
|
if (flo_samples[0] > 0.0) {
|
|
const double f0 = flo_samples[0];
|
|
flo_samples.insert(flo_samples.begin(), { f0/20.0, f0/10.0, f0/5.0, f0/2.0 });
|
|
}
|
|
const double flo_bhp_limit = flo(frates(controls.bhp_limit));
|
|
if (flo_samples.back() < flo_bhp_limit) {
|
|
flo_samples.push_back(flo_bhp_limit);
|
|
}
|
|
|
|
// Find bhp values for inflow relation corresponding to flo samples.
|
|
std::vector<double> bhp_samples;
|
|
for (double flo_sample : flo_samples) {
|
|
if (flo_sample > flo_bhp_limit) {
|
|
// We would have to go over the bhp limit to obtain a
|
|
// flow of this magnitude. We associate all such flows
|
|
// with simply the bhp limit. The first one
|
|
// encountered is considered valid, the rest not. They
|
|
// are therefore skipped.
|
|
bhp_samples.push_back(controls.bhp_limit);
|
|
break;
|
|
}
|
|
auto eq = [&flo, &frates, flo_sample](double bhp) {
|
|
return flo(frates(bhp)) - flo_sample;
|
|
};
|
|
// TODO: replace hardcoded low/high limits.
|
|
const double low = 10.0 * unit::barsa;
|
|
const double high = 800.0 * unit::barsa;
|
|
const int max_iteration = 100;
|
|
const double flo_tolerance = 0.05 * std::fabs(flo_samples.back());
|
|
int iteration = 0;
|
|
try {
|
|
const double solved_bhp = RegulaFalsiBisection<WarnAndContinueOnError>::
|
|
solve(eq, low, high, max_iteration, flo_tolerance, iteration);
|
|
bhp_samples.push_back(solved_bhp);
|
|
}
|
|
catch (...) {
|
|
// Use previous value (or max value if at start) if we failed.
|
|
bhp_samples.push_back(bhp_samples.empty() ? low : bhp_samples.back());
|
|
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_EXTRACT_SAMPLES",
|
|
"Robust bhp(thp) solve failed extracting bhp values at flo samples for well " + name());
|
|
}
|
|
}
|
|
|
|
// Find bhp values for VFP relation corresponding to flo samples.
|
|
const int num_samples = bhp_samples.size(); // Note that this can be smaller than flo_samples.size()
|
|
std::vector<double> fbhp_samples(num_samples);
|
|
for (int ii = 0; ii < num_samples; ++ii) {
|
|
fbhp_samples[ii] = fbhp(frates(bhp_samples[ii]));
|
|
}
|
|
// #define EXTRA_THP_DEBUGGING
|
|
#ifdef EXTRA_THP_DEBUGGING
|
|
std::string dbgmsg;
|
|
dbgmsg += "flo: ";
|
|
for (int ii = 0; ii < num_samples; ++ii) {
|
|
dbgmsg += " " + std::to_string(flo_samples[ii]);
|
|
}
|
|
dbgmsg += "\nbhp: ";
|
|
for (int ii = 0; ii < num_samples; ++ii) {
|
|
dbgmsg += " " + std::to_string(bhp_samples[ii]);
|
|
}
|
|
dbgmsg += "\nfbhp: ";
|
|
for (int ii = 0; ii < num_samples; ++ii) {
|
|
dbgmsg += " " + std::to_string(fbhp_samples[ii]);
|
|
}
|
|
OpmLog::debug(dbgmsg);
|
|
#endif // EXTRA_THP_DEBUGGING
|
|
|
|
// Look for sign changes for the (fbhp_samples - bhp_samples) piecewise linear curve.
|
|
// We only look at the valid
|
|
int sign_change_index = -1;
|
|
for (int ii = 0; ii < num_samples - 1; ++ii) {
|
|
const double curr = fbhp_samples[ii] - bhp_samples[ii];
|
|
const double next = fbhp_samples[ii + 1] - bhp_samples[ii + 1];
|
|
if (curr * next < 0.0) {
|
|
// Sign change in the [ii, ii + 1] interval.
|
|
sign_change_index = ii; // May overwrite, thereby choosing the highest-flo solution.
|
|
}
|
|
}
|
|
|
|
// Handle the no solution case.
|
|
if (sign_change_index == -1) {
|
|
return std::optional<double>();
|
|
}
|
|
|
|
// Solve for the proper solution in the given interval.
|
|
auto eq = [&fbhp, &frates](double bhp) {
|
|
return fbhp(frates(bhp)) - bhp;
|
|
};
|
|
// TODO: replace hardcoded low/high limits.
|
|
const double low = bhp_samples[sign_change_index + 1];
|
|
const double high = bhp_samples[sign_change_index];
|
|
const int max_iteration = 100;
|
|
const double bhp_tolerance = 0.01 * unit::barsa;
|
|
int iteration = 0;
|
|
if (low == high) {
|
|
// We are in the high flow regime where the bhp_samples
|
|
// are all equal to the bhp_limit.
|
|
assert(low == controls.bhp_limit);
|
|
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE",
|
|
"Robust bhp(thp) solve failed for well " + name());
|
|
return std::optional<double>();
|
|
}
|
|
try {
|
|
const double solved_bhp = RegulaFalsiBisection<WarnAndContinueOnError>::
|
|
solve(eq, low, high, max_iteration, bhp_tolerance, iteration);
|
|
#ifdef EXTRA_THP_DEBUGGING
|
|
OpmLog::debug("***** " + name() + " solved_bhp = " + std::to_string(solved_bhp)
|
|
+ " flo_bhp_limit = " + std::to_string(flo_bhp_limit));
|
|
#endif // EXTRA_THP_DEBUGGING
|
|
return solved_bhp;
|
|
}
|
|
catch (...) {
|
|
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE",
|
|
"Robust bhp(thp) solve failed for well " + name());
|
|
return std::optional<double>();
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
double
|
|
MultisegmentWell<TypeTag>::
|
|
maxPerfPress(const Simulator& ebos_simulator) const
|
|
{
|
|
double max_pressure = 0.0;
|
|
const int nseg = numberOfSegments();
|
|
for (int seg = 0; seg < nseg; ++seg) {
|
|
for (const int perf : segment_perforations_[seg]) {
|
|
const int cell_idx = well_cells_[perf];
|
|
const auto& int_quants = *(ebos_simulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/ 0));
|
|
const auto& fs = int_quants.fluidState();
|
|
double pressure_cell = fs.pressure(FluidSystem::oilPhaseIdx).value();
|
|
max_pressure = std::max(max_pressure, pressure_cell);
|
|
}
|
|
}
|
|
return max_pressure;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
typename MultisegmentWell<TypeTag>::EvalWell
|
|
MultisegmentWell<TypeTag>::
|
|
pressureDropSpiralICD(const int seg) const
|
|
{
|
|
// TODO: We have to consider the upwinding here
|
|
const SICD& sicd = segmentSet()[seg].spiralICD();
|
|
|
|
const std::vector<EvalWell>& phase_fractions = segment_phase_fractions_[seg];
|
|
const std::vector<EvalWell>& phase_viscosities = segment_phase_viscosities_[seg];
|
|
|
|
EvalWell water_fraction = 0.;
|
|
EvalWell water_viscosity = 0.;
|
|
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
|
|
const int water_pos = Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx);
|
|
water_fraction = phase_fractions[water_pos];
|
|
water_viscosity = phase_viscosities[water_pos];
|
|
}
|
|
|
|
EvalWell oil_fraction = 0.;
|
|
EvalWell oil_viscosity = 0.;
|
|
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
|
|
const int oil_pos = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
|
|
oil_fraction = phase_fractions[oil_pos];
|
|
oil_viscosity = phase_viscosities[oil_pos];
|
|
}
|
|
|
|
EvalWell gas_fraction = 0.;
|
|
EvalWell gas_viscosities = 0.;
|
|
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
|
|
const int gas_pos = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
|
|
gas_fraction = phase_fractions[gas_pos];
|
|
gas_viscosities = phase_viscosities[gas_pos];
|
|
}
|
|
|
|
const EvalWell liquid_emulsion_viscosity = mswellhelpers::emulsionViscosity(water_fraction, water_viscosity,
|
|
oil_fraction, oil_viscosity, sicd);
|
|
const EvalWell mixture_viscosity = (water_fraction + oil_fraction) * liquid_emulsion_viscosity + gas_fraction * gas_viscosities;
|
|
|
|
const EvalWell& reservoir_rate = segment_reservoir_volume_rates_[seg];
|
|
|
|
const EvalWell reservoir_rate_icd = reservoir_rate * sicd.scalingFactor();
|
|
|
|
const double viscosity_cali = sicd.viscosityCalibration();
|
|
|
|
using MathTool = MathToolbox<EvalWell>;
|
|
|
|
const EvalWell& density = segment_densities_[seg];
|
|
const double density_cali = sicd.densityCalibration();
|
|
const EvalWell temp_value1 = MathTool::pow(density / density_cali, 0.75);
|
|
const EvalWell temp_value2 = MathTool::pow(mixture_viscosity / viscosity_cali, 0.25);
|
|
|
|
// formulation before 2016, base_strength is used
|
|
// const double base_strength = sicd.strength() / density_cali;
|
|
// formulation since 2016, strength is used instead
|
|
const double strength = sicd.strength();
|
|
|
|
const double sign = reservoir_rate_icd <= 0. ? 1.0 : -1.0;
|
|
|
|
return sign * temp_value1 * temp_value2 * strength * reservoir_rate_icd * reservoir_rate_icd;
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
typename MultisegmentWell<TypeTag>::EvalWell
|
|
MultisegmentWell<TypeTag>::
|
|
pressureDropValve(const int seg) const
|
|
{
|
|
const Valve& valve = segmentSet()[seg].valve();
|
|
|
|
const EvalWell& mass_rate = segment_mass_rates_[seg];
|
|
const EvalWell& visc = segment_viscosities_[seg];
|
|
const EvalWell& density = segment_densities_[seg];
|
|
const double additional_length = valve.pipeAdditionalLength();
|
|
const double roughness = valve.pipeRoughness();
|
|
const double diameter = valve.pipeDiameter();
|
|
const double area = valve.pipeCrossArea();
|
|
|
|
const EvalWell friction_pressure_loss =
|
|
mswellhelpers::frictionPressureLoss(additional_length, diameter, area, roughness, density, mass_rate, visc);
|
|
|
|
const double area_con = valve.conCrossArea();
|
|
const double cv = valve.conFlowCoefficient();
|
|
|
|
const EvalWell constriction_pressure_loss =
|
|
mswellhelpers::valveContrictionPressureLoss(mass_rate, density, area_con, cv);
|
|
|
|
const double sign = mass_rate <= 0. ? 1.0 : -1.0;
|
|
return sign * (friction_pressure_loss + constriction_pressure_loss);
|
|
}
|
|
}
|