mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-02 12:36:54 -06:00
3773 lines
158 KiB
C++
3773 lines
158 KiB
C++
/*
|
|
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
|
|
Copyright 2017 Statoil ASA.
|
|
Copyright 2016 - 2017 IRIS AS.
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <opm/common/utility/numeric/RootFinders.hpp>
|
|
#include <opm/parser/eclipse/EclipseState/Schedule/Well/WellInjectionProperties.hpp>
|
|
#include <opm/simulators/utils/DeferredLoggingErrorHelpers.hpp>
|
|
|
|
namespace Opm
|
|
{
|
|
|
|
template<typename TypeTag>
|
|
StandardWell<TypeTag>::
|
|
StandardWell(const Well& well, const int time_step,
|
|
const ModelParameters& param,
|
|
const RateConverterType& rate_converter,
|
|
const int pvtRegionIdx,
|
|
const int num_components,
|
|
const int num_phases,
|
|
const int index_of_well,
|
|
const int first_perf_index,
|
|
const std::vector<PerforationData>& perf_data)
|
|
: Base(well, time_step, param, rate_converter, pvtRegionIdx, num_components, num_phases, index_of_well, first_perf_index, perf_data)
|
|
, perf_densities_(number_of_perforations_)
|
|
, perf_pressure_diffs_(number_of_perforations_)
|
|
, F0_(numWellConservationEq)
|
|
, ipr_a_(number_of_phases_)
|
|
, ipr_b_(number_of_phases_)
|
|
{
|
|
assert(num_components_ == numWellConservationEq);
|
|
|
|
duneB_.setBuildMode( OffDiagMatWell::row_wise );
|
|
duneC_.setBuildMode( OffDiagMatWell::row_wise );
|
|
invDuneD_.setBuildMode( DiagMatWell::row_wise );
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWell<TypeTag>::
|
|
init(const PhaseUsage* phase_usage_arg,
|
|
const std::vector<double>& depth_arg,
|
|
const double gravity_arg,
|
|
const int num_cells)
|
|
{
|
|
Base::init(phase_usage_arg, depth_arg, gravity_arg, num_cells);
|
|
|
|
perf_depth_.resize(number_of_perforations_, 0.);
|
|
for (int perf = 0; perf < number_of_perforations_; ++perf) {
|
|
const int cell_idx = well_cells_[perf];
|
|
perf_depth_[perf] = depth_arg[cell_idx];
|
|
}
|
|
|
|
// counting/updating primary variable numbers
|
|
if (this->has_polymermw && this->isInjector()) {
|
|
// adding a primary variable for water perforation rate per connection
|
|
numWellEq_ += number_of_perforations_;
|
|
// adding a primary variable for skin pressure per connection
|
|
numWellEq_ += number_of_perforations_;
|
|
}
|
|
|
|
// with the updated numWellEq_, we can initialize the primary variables and matrices now
|
|
primary_variables_.resize(numWellEq_, 0.0);
|
|
primary_variables_evaluation_.resize(numWellEq_, EvalWell{numWellEq_ + numEq, 0.0});
|
|
|
|
// setup sparsity pattern for the matrices
|
|
//[A C^T [x = [ res
|
|
// B D] x_well] res_well]
|
|
// set the size of the matrices
|
|
invDuneD_.setSize(1, 1, 1);
|
|
duneB_.setSize(1, num_cells, number_of_perforations_);
|
|
duneC_.setSize(1, num_cells, number_of_perforations_);
|
|
|
|
for (auto row=invDuneD_.createbegin(), end = invDuneD_.createend(); row!=end; ++row) {
|
|
// Add nonzeros for diagonal
|
|
row.insert(row.index());
|
|
}
|
|
// the block size is run-time determined now
|
|
invDuneD_[0][0].resize(numWellEq_, numWellEq_);
|
|
|
|
for (auto row = duneB_.createbegin(), end = duneB_.createend(); row!=end; ++row) {
|
|
for (int perf = 0 ; perf < number_of_perforations_; ++perf) {
|
|
const int cell_idx = well_cells_[perf];
|
|
row.insert(cell_idx);
|
|
}
|
|
}
|
|
|
|
for (int perf = 0 ; perf < number_of_perforations_; ++perf) {
|
|
const int cell_idx = well_cells_[perf];
|
|
// the block size is run-time determined now
|
|
duneB_[0][cell_idx].resize(numWellEq_, numEq);
|
|
}
|
|
|
|
// make the C^T matrix
|
|
for (auto row = duneC_.createbegin(), end = duneC_.createend(); row!=end; ++row) {
|
|
for (int perf = 0; perf < number_of_perforations_; ++perf) {
|
|
const int cell_idx = well_cells_[perf];
|
|
row.insert(cell_idx);
|
|
}
|
|
}
|
|
|
|
for (int perf = 0; perf < number_of_perforations_; ++perf) {
|
|
const int cell_idx = well_cells_[perf];
|
|
duneC_[0][cell_idx].resize(numWellEq_, numEq);
|
|
}
|
|
|
|
resWell_.resize(1);
|
|
// the block size of resWell_ is also run-time determined now
|
|
resWell_[0].resize(numWellEq_);
|
|
|
|
// resize temporary class variables
|
|
Bx_.resize( duneB_.N() );
|
|
for (unsigned i = 0; i < duneB_.N(); ++i) {
|
|
Bx_[i].resize(numWellEq_);
|
|
}
|
|
|
|
invDrw_.resize( invDuneD_.N() );
|
|
for (unsigned i = 0; i < invDuneD_.N(); ++i) {
|
|
invDrw_[i].resize(numWellEq_);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void StandardWell<TypeTag>::
|
|
initPrimaryVariablesEvaluation() const
|
|
{
|
|
for (int eqIdx = 0; eqIdx < numWellEq_; ++eqIdx) {
|
|
primary_variables_evaluation_[eqIdx] =
|
|
EvalWell::createVariable(numWellEq_ + numEq, primary_variables_[eqIdx], numEq + eqIdx);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
const typename StandardWell<TypeTag>::EvalWell&
|
|
StandardWell<TypeTag>::
|
|
getBhp() const
|
|
{
|
|
return primary_variables_evaluation_[Bhp];
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
const typename StandardWell<TypeTag>::EvalWell&
|
|
StandardWell<TypeTag>::
|
|
getWQTotal() const
|
|
{
|
|
return primary_variables_evaluation_[WQTotal];
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
typename StandardWell<TypeTag>::EvalWell
|
|
StandardWell<TypeTag>::
|
|
getQs(const int comp_idx) const
|
|
{
|
|
// Note: currently, the WQTotal definition is still depends on Injector/Producer.
|
|
assert(comp_idx < num_components_);
|
|
|
|
if (this->isInjector()) { // only single phase injection
|
|
double inj_frac = 0.0;
|
|
switch (this->wellEcl().injectorType()) {
|
|
case InjectorType::WATER:
|
|
if (comp_idx == int(Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx))) {
|
|
inj_frac = 1.0;
|
|
}
|
|
break;
|
|
case InjectorType::GAS:
|
|
if (has_solvent && comp_idx == contiSolventEqIdx) { // solvent
|
|
inj_frac = wsolvent();
|
|
} else if (comp_idx == int(Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx))) {
|
|
inj_frac = has_solvent ? 1.0 - wsolvent() : 1.0;
|
|
}
|
|
break;
|
|
case InjectorType::OIL:
|
|
if (comp_idx == int(Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx))) {
|
|
inj_frac = 1.0;
|
|
}
|
|
break;
|
|
case InjectorType::MULTI:
|
|
// Not supported.
|
|
// deferred_logger.warning("MULTI_PHASE_INJECTOR_NOT_SUPPORTED",
|
|
// "Multi phase injectors are not supported, requested for well " + name());
|
|
break;
|
|
}
|
|
return inj_frac * primary_variables_evaluation_[WQTotal];
|
|
} else { // producers
|
|
return primary_variables_evaluation_[WQTotal] * wellVolumeFractionScaled(comp_idx);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
typename StandardWell<TypeTag>::EvalWell
|
|
StandardWell<TypeTag>::
|
|
wellVolumeFractionScaled(const int compIdx) const
|
|
{
|
|
|
|
const int legacyCompIdx = ebosCompIdxToFlowCompIdx(compIdx);
|
|
const double scal = scalingFactor(legacyCompIdx);
|
|
if (scal > 0)
|
|
return wellVolumeFraction(compIdx) / scal;
|
|
|
|
// the scaling factor may be zero for RESV controlled wells.
|
|
return wellVolumeFraction(compIdx);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
typename StandardWell<TypeTag>::EvalWell
|
|
StandardWell<TypeTag>::
|
|
wellVolumeFraction(const unsigned compIdx) const
|
|
{
|
|
if (FluidSystem::numActivePhases() == 1) {
|
|
return EvalWell(numWellEq_ + numEq, 1.0);
|
|
}
|
|
|
|
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) && compIdx == Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx)) {
|
|
return primary_variables_evaluation_[WFrac];
|
|
}
|
|
|
|
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) && compIdx == Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx)) {
|
|
return primary_variables_evaluation_[GFrac];
|
|
}
|
|
|
|
if (has_solvent && compIdx == (unsigned)contiSolventEqIdx) {
|
|
return primary_variables_evaluation_[SFrac];
|
|
}
|
|
|
|
// Oil fraction
|
|
EvalWell well_fraction(numWellEq_ + numEq, 1.0);
|
|
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
|
|
well_fraction -= primary_variables_evaluation_[WFrac];
|
|
}
|
|
|
|
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
|
|
well_fraction -= primary_variables_evaluation_[GFrac];
|
|
}
|
|
if (has_solvent) {
|
|
well_fraction -= primary_variables_evaluation_[SFrac];
|
|
}
|
|
return well_fraction;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
typename StandardWell<TypeTag>::EvalWell
|
|
StandardWell<TypeTag>::
|
|
wellSurfaceVolumeFraction(const int compIdx) const
|
|
{
|
|
|
|
EvalWell sum_volume_fraction_scaled(numWellEq_ + numEq, 0.);
|
|
for (int idx = 0; idx < num_components_; ++idx) {
|
|
sum_volume_fraction_scaled += wellVolumeFractionScaled(idx);
|
|
}
|
|
|
|
assert(sum_volume_fraction_scaled.value() != 0.);
|
|
|
|
return wellVolumeFractionScaled(compIdx) / sum_volume_fraction_scaled;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
typename StandardWell<TypeTag>::EvalWell
|
|
StandardWell<TypeTag>::
|
|
extendEval(const Eval& in) const
|
|
{
|
|
EvalWell out(numWellEq_ + numEq, in.value());
|
|
for(int eqIdx = 0; eqIdx < numEq;++eqIdx) {
|
|
out.setDerivative(eqIdx, in.derivative(eqIdx));
|
|
}
|
|
return out;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
typename StandardWell<TypeTag>::Eval
|
|
StandardWell<TypeTag>::getPerfCellPressure(const typename StandardWell<TypeTag>::FluidState& fs) const
|
|
{
|
|
Eval pressure;
|
|
if (Indices::oilEnabled) {
|
|
pressure = fs.pressure(FluidSystem::oilPhaseIdx);
|
|
} else {
|
|
if (Indices::waterEnabled) {
|
|
pressure = fs.pressure(FluidSystem::waterPhaseIdx);
|
|
} else {
|
|
pressure = fs.pressure(FluidSystem::gasPhaseIdx);
|
|
}
|
|
}
|
|
return pressure;
|
|
}
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWell<TypeTag>::
|
|
computePerfRate(const IntensiveQuantities& intQuants,
|
|
const std::vector<EvalWell>& mob,
|
|
const EvalWell& bhp,
|
|
const double Tw,
|
|
const int perf,
|
|
const bool allow_cf,
|
|
std::vector<EvalWell>& cq_s,
|
|
double& perf_dis_gas_rate,
|
|
double& perf_vap_oil_rate,
|
|
Opm::DeferredLogger& deferred_logger) const
|
|
{
|
|
|
|
const auto& fs = intQuants.fluidState();
|
|
const EvalWell pressure = extendEval(getPerfCellPressure(fs));
|
|
const EvalWell rs = extendEval(fs.Rs());
|
|
const EvalWell rv = extendEval(fs.Rv());
|
|
std::vector<EvalWell> b_perfcells_dense(num_components_, EvalWell{numWellEq_ + numEq, 0.0});
|
|
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) {
|
|
if (!FluidSystem::phaseIsActive(phaseIdx)) {
|
|
continue;
|
|
}
|
|
|
|
const unsigned compIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
|
|
b_perfcells_dense[compIdx] = extendEval(fs.invB(phaseIdx));
|
|
}
|
|
if (has_solvent) {
|
|
b_perfcells_dense[contiSolventEqIdx] = extendEval(intQuants.solventInverseFormationVolumeFactor());
|
|
}
|
|
|
|
// Pressure drawdown (also used to determine direction of flow)
|
|
const EvalWell well_pressure = bhp + perf_pressure_diffs_[perf];
|
|
EvalWell drawdown = pressure - well_pressure;
|
|
|
|
if (this->has_polymermw && this->isInjector()) {
|
|
const int pskin_index = Bhp + 1 + number_of_perforations_ + perf;
|
|
const EvalWell& skin_pressure = primary_variables_evaluation_[pskin_index];
|
|
drawdown += skin_pressure;
|
|
}
|
|
|
|
// producing perforations
|
|
if ( drawdown.value() > 0 ) {
|
|
//Do nothing if crossflow is not allowed
|
|
if (!allow_cf && this->isInjector()) {
|
|
return;
|
|
}
|
|
|
|
// compute component volumetric rates at standard conditions
|
|
for (int componentIdx = 0; componentIdx < num_components_; ++componentIdx) {
|
|
const EvalWell cq_p = - Tw * (mob[componentIdx] * drawdown);
|
|
cq_s[componentIdx] = b_perfcells_dense[componentIdx] * cq_p;
|
|
}
|
|
|
|
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
|
|
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
|
|
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
|
|
const EvalWell cq_sOil = cq_s[oilCompIdx];
|
|
const EvalWell cq_sGas = cq_s[gasCompIdx];
|
|
const EvalWell dis_gas = rs * cq_sOil;
|
|
const EvalWell vap_oil = rv * cq_sGas;
|
|
|
|
cq_s[gasCompIdx] += dis_gas;
|
|
cq_s[oilCompIdx] += vap_oil;
|
|
|
|
// recording the perforation solution gas rate and solution oil rates
|
|
if (this->isProducer()) {
|
|
perf_dis_gas_rate = dis_gas.value();
|
|
perf_vap_oil_rate = vap_oil.value();
|
|
}
|
|
}
|
|
|
|
} else {
|
|
//Do nothing if crossflow is not allowed
|
|
if (!allow_cf && this->isProducer()) {
|
|
return;
|
|
}
|
|
|
|
// Using total mobilities
|
|
EvalWell total_mob_dense = mob[0];
|
|
for (int componentIdx = 1; componentIdx < num_components_; ++componentIdx) {
|
|
total_mob_dense += mob[componentIdx];
|
|
}
|
|
|
|
// injection perforations total volume rates
|
|
const EvalWell cqt_i = - Tw * (total_mob_dense * drawdown);
|
|
|
|
// surface volume fraction of fluids within wellbore
|
|
std::vector<EvalWell> cmix_s(num_components_, EvalWell{numWellEq_ + numEq});
|
|
for (int componentIdx = 0; componentIdx < num_components_; ++componentIdx) {
|
|
cmix_s[componentIdx] = wellSurfaceVolumeFraction(componentIdx);
|
|
}
|
|
|
|
// compute volume ratio between connection at standard conditions
|
|
EvalWell volumeRatio(numWellEq_ + numEq, 0.);
|
|
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
|
|
const unsigned waterCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx);
|
|
volumeRatio += cmix_s[waterCompIdx] / b_perfcells_dense[waterCompIdx];
|
|
}
|
|
|
|
if (has_solvent) {
|
|
volumeRatio += cmix_s[contiSolventEqIdx] / b_perfcells_dense[contiSolventEqIdx];
|
|
}
|
|
|
|
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
|
|
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
|
|
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
|
|
// Incorporate RS/RV factors if both oil and gas active
|
|
const EvalWell d = EvalWell(numWellEq_ + numEq, 1.0) - rv * rs;
|
|
|
|
if (d.value() == 0.0) {
|
|
OPM_DEFLOG_THROW(Opm::NumericalIssue, "Zero d value obtained for well " << name() << " during flux calcuation"
|
|
<< " with rs " << rs << " and rv " << rv, deferred_logger);
|
|
}
|
|
|
|
const EvalWell tmp_oil = (cmix_s[oilCompIdx] - rv * cmix_s[gasCompIdx]) / d;
|
|
//std::cout << "tmp_oil " <<tmp_oil << std::endl;
|
|
volumeRatio += tmp_oil / b_perfcells_dense[oilCompIdx];
|
|
|
|
const EvalWell tmp_gas = (cmix_s[gasCompIdx] - rs * cmix_s[oilCompIdx]) / d;
|
|
//std::cout << "tmp_gas " <<tmp_gas << std::endl;
|
|
volumeRatio += tmp_gas / b_perfcells_dense[gasCompIdx];
|
|
}
|
|
else {
|
|
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
|
|
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
|
|
volumeRatio += cmix_s[oilCompIdx] / b_perfcells_dense[oilCompIdx];
|
|
}
|
|
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
|
|
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
|
|
volumeRatio += cmix_s[gasCompIdx] / b_perfcells_dense[gasCompIdx];
|
|
}
|
|
}
|
|
|
|
// injecting connections total volumerates at standard conditions
|
|
EvalWell cqt_is = cqt_i/volumeRatio;
|
|
//std::cout << "volrat " << volumeRatio << " " << volrat_perf_[perf] << std::endl;
|
|
for (int componentIdx = 0; componentIdx < num_components_; ++componentIdx) {
|
|
cq_s[componentIdx] = cmix_s[componentIdx] * cqt_is; // * b_perfcells_dense[phase];
|
|
}
|
|
|
|
// calculating the perforation solution gas rate and solution oil rates
|
|
if (this->isProducer()) {
|
|
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
|
|
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
|
|
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
|
|
// TODO: the formulations here remain to be tested with cases with strong crossflow through production wells
|
|
// s means standard condition, r means reservoir condition
|
|
// q_os = q_or * b_o + rv * q_gr * b_g
|
|
// q_gs = q_gr * g_g + rs * q_or * b_o
|
|
// d = 1.0 - rs * rv
|
|
// q_or = 1 / (b_o * d) * (q_os - rv * q_gs)
|
|
// q_gr = 1 / (b_g * d) * (q_gs - rs * q_os)
|
|
|
|
const double d = 1.0 - rv.value() * rs.value();
|
|
// vaporized oil into gas
|
|
// rv * q_gr * b_g = rv * (q_gs - rs * q_os) / d
|
|
perf_vap_oil_rate = rv.value() * (cq_s[gasCompIdx].value() - rs.value() * cq_s[oilCompIdx].value()) / d;
|
|
// dissolved of gas in oil
|
|
// rs * q_or * b_o = rs * (q_os - rv * q_gs) / d
|
|
perf_dis_gas_rate = rs.value() * (cq_s[oilCompIdx].value() - rv.value() * cq_s[gasCompIdx].value()) / d;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWell<TypeTag>::
|
|
assembleWellEq(const Simulator& ebosSimulator,
|
|
const std::vector<Scalar>& /* B_avg */,
|
|
const double dt,
|
|
WellState& well_state,
|
|
Opm::DeferredLogger& deferred_logger)
|
|
{
|
|
// TODO: only_wells should be put back to save some computation
|
|
// for example, the matrices B C does not need to update if only_wells
|
|
|
|
checkWellOperability(ebosSimulator, well_state, deferred_logger);
|
|
|
|
if (!this->isOperable() && !this->wellIsStopped()) return;
|
|
|
|
// clear all entries
|
|
duneB_ = 0.0;
|
|
duneC_ = 0.0;
|
|
invDuneD_ = 0.0;
|
|
resWell_ = 0.0;
|
|
|
|
// TODO: it probably can be static member for StandardWell
|
|
const double volume = 0.002831684659200; // 0.1 cu ft;
|
|
|
|
const bool allow_cf = getAllowCrossFlow() || openCrossFlowAvoidSingularity(ebosSimulator);
|
|
|
|
const EvalWell& bhp = getBhp();
|
|
|
|
// the solution gas rate and solution oil rate needs to be reset to be zero for well_state.
|
|
well_state.wellVaporizedOilRates()[index_of_well_] = 0.;
|
|
well_state.wellDissolvedGasRates()[index_of_well_] = 0.;
|
|
|
|
const int np = number_of_phases_;
|
|
for (int p = 0; p < np; ++p) {
|
|
well_state.productivityIndex()[np*index_of_well_ + p] = 0.;
|
|
}
|
|
|
|
for (int perf = 0; perf < number_of_perforations_; ++perf) {
|
|
|
|
const int cell_idx = well_cells_[perf];
|
|
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/ 0));
|
|
std::vector<EvalWell> mob(num_components_, {numWellEq_ + numEq, 0.});
|
|
getMobility(ebosSimulator, perf, mob, deferred_logger);
|
|
|
|
std::vector<EvalWell> cq_s(num_components_, {numWellEq_ + numEq, 0.});
|
|
double perf_dis_gas_rate = 0.;
|
|
double perf_vap_oil_rate = 0.;
|
|
double trans_mult = ebosSimulator.problem().template rockCompTransMultiplier<double>(intQuants, cell_idx);
|
|
const double Tw = well_index_[perf] * trans_mult;
|
|
computePerfRate(intQuants, mob, bhp, Tw, perf, allow_cf,
|
|
cq_s, perf_dis_gas_rate, perf_vap_oil_rate, deferred_logger);
|
|
|
|
// better way to do here is that use the cq_s and then replace the cq_s_water here?
|
|
if (has_polymer && this->has_polymermw && this->isInjector()) {
|
|
handleInjectivityRateAndEquations(intQuants, well_state, perf, cq_s, deferred_logger);
|
|
}
|
|
|
|
// updating the solution gas rate and solution oil rate
|
|
if (this->isProducer()) {
|
|
well_state.wellDissolvedGasRates()[index_of_well_] += perf_dis_gas_rate;
|
|
well_state.wellVaporizedOilRates()[index_of_well_] += perf_vap_oil_rate;
|
|
}
|
|
|
|
if (has_energy) {
|
|
connectionRates_[perf][contiEnergyEqIdx] = 0.0;
|
|
}
|
|
|
|
for (int componentIdx = 0; componentIdx < num_components_; ++componentIdx) {
|
|
// the cq_s entering mass balance equations need to consider the efficiency factors.
|
|
const EvalWell cq_s_effective = cq_s[componentIdx] * well_efficiency_factor_;
|
|
|
|
connectionRates_[perf][componentIdx] = Base::restrictEval(cq_s_effective);
|
|
|
|
// subtract sum of phase fluxes in the well equations.
|
|
resWell_[0][componentIdx] += cq_s_effective.value();
|
|
|
|
// assemble the jacobians
|
|
for (int pvIdx = 0; pvIdx < numWellEq_; ++pvIdx) {
|
|
// also need to consider the efficiency factor when manipulating the jacobians.
|
|
duneC_[0][cell_idx][pvIdx][componentIdx] -= cq_s_effective.derivative(pvIdx+numEq); // intput in transformed matrix
|
|
invDuneD_[0][0][componentIdx][pvIdx] += cq_s_effective.derivative(pvIdx+numEq);
|
|
}
|
|
|
|
for (int pvIdx = 0; pvIdx < numEq; ++pvIdx) {
|
|
duneB_[0][cell_idx][componentIdx][pvIdx] += cq_s_effective.derivative(pvIdx);
|
|
}
|
|
|
|
// Store the perforation phase flux for later usage.
|
|
if (has_solvent && componentIdx == contiSolventEqIdx) {
|
|
well_state.perfRateSolvent()[first_perf_ + perf] = cq_s[componentIdx].value();
|
|
} else {
|
|
well_state.perfPhaseRates()[(first_perf_ + perf) * np + ebosCompIdxToFlowCompIdx(componentIdx)] = cq_s[componentIdx].value();
|
|
}
|
|
}
|
|
if (has_energy) {
|
|
|
|
auto fs = intQuants.fluidState();
|
|
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) {
|
|
if (!FluidSystem::phaseIsActive(phaseIdx)) {
|
|
continue;
|
|
}
|
|
|
|
const unsigned activeCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
|
|
// convert to reservoar conditions
|
|
EvalWell cq_r_thermal(numWellEq_ + numEq, 0.);
|
|
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
|
|
|
|
if(FluidSystem::waterPhaseIdx == phaseIdx)
|
|
cq_r_thermal = cq_s[activeCompIdx] / extendEval(fs.invB(phaseIdx));
|
|
|
|
// remove dissolved gas and vapporized oil
|
|
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
|
|
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
|
|
// q_os = q_or * b_o + rv * q_gr * b_g
|
|
// q_gs = q_gr * g_g + rs * q_or * b_o
|
|
// d = 1.0 - rs * rv
|
|
const EvalWell d = extendEval(1.0 - fs.Rv() * fs.Rs());
|
|
// q_gr = 1 / (b_g * d) * (q_gs - rs * q_os)
|
|
if(FluidSystem::gasPhaseIdx == phaseIdx)
|
|
cq_r_thermal = (cq_s[gasCompIdx] - extendEval(fs.Rs()) * cq_s[oilCompIdx]) / (d * extendEval(fs.invB(phaseIdx)) );
|
|
// q_or = 1 / (b_o * d) * (q_os - rv * q_gs)
|
|
if(FluidSystem::oilPhaseIdx == phaseIdx)
|
|
cq_r_thermal = (cq_s[oilCompIdx] - extendEval(fs.Rv()) * cq_s[gasCompIdx]) / (d * extendEval(fs.invB(phaseIdx)) );
|
|
|
|
} else {
|
|
cq_r_thermal = cq_s[activeCompIdx] / extendEval(fs.invB(phaseIdx));
|
|
}
|
|
|
|
// change temperature for injecting fluids
|
|
if (this->isInjector() && cq_s[activeCompIdx] > 0.0){
|
|
// only handles single phase injection now
|
|
assert(this->well_ecl_.injectorType() != InjectorType::MULTI);
|
|
fs.setTemperature(this->well_ecl_.temperature());
|
|
typedef typename std::decay<decltype(fs)>::type::Scalar FsScalar;
|
|
typename FluidSystem::template ParameterCache<FsScalar> paramCache;
|
|
const unsigned pvtRegionIdx = intQuants.pvtRegionIndex();
|
|
paramCache.setRegionIndex(pvtRegionIdx);
|
|
paramCache.setMaxOilSat(ebosSimulator.problem().maxOilSaturation(cell_idx));
|
|
paramCache.updatePhase(fs, phaseIdx);
|
|
|
|
const auto& rho = FluidSystem::density(fs, paramCache, phaseIdx);
|
|
fs.setDensity(phaseIdx, rho);
|
|
const auto& h = FluidSystem::enthalpy(fs, paramCache, phaseIdx);
|
|
fs.setEnthalpy(phaseIdx, h);
|
|
}
|
|
// compute the thermal flux
|
|
cq_r_thermal *= extendEval(fs.enthalpy(phaseIdx)) * extendEval(fs.density(phaseIdx));
|
|
connectionRates_[perf][contiEnergyEqIdx] += Base::restrictEval(cq_r_thermal);
|
|
}
|
|
}
|
|
|
|
if (has_polymer) {
|
|
// TODO: the application of well efficiency factor has not been tested with an example yet
|
|
const unsigned waterCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx);
|
|
EvalWell cq_s_poly = cq_s[waterCompIdx] * well_efficiency_factor_;
|
|
if (this->isInjector()) {
|
|
cq_s_poly *= wpolymer();
|
|
} else {
|
|
cq_s_poly *= extendEval(intQuants.polymerConcentration() * intQuants.polymerViscosityCorrection());
|
|
}
|
|
connectionRates_[perf][contiPolymerEqIdx] = Base::restrictEval(cq_s_poly);
|
|
|
|
if (this->has_polymermw) {
|
|
updateConnectionRatePolyMW(cq_s_poly, intQuants, well_state, perf, deferred_logger);
|
|
}
|
|
}
|
|
|
|
if (has_foam) {
|
|
// TODO: the application of well efficiency factor has not been tested with an example yet
|
|
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
|
|
EvalWell cq_s_foam = cq_s[gasCompIdx] * well_efficiency_factor_;
|
|
if (this->isInjector()) {
|
|
cq_s_foam *= wfoam();
|
|
} else {
|
|
cq_s_foam *= extendEval(intQuants.foamConcentration());
|
|
}
|
|
connectionRates_[perf][contiFoamEqIdx] = Base::restrictEval(cq_s_foam);
|
|
}
|
|
|
|
if (has_brine) {
|
|
// TODO: the application of well efficiency factor has not been tested with an example yet
|
|
const unsigned waterCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx);
|
|
EvalWell cq_s_sm = cq_s[waterCompIdx] * well_efficiency_factor_;
|
|
if (this->isInjector()) {
|
|
cq_s_sm *= wsalt();
|
|
} else {
|
|
cq_s_sm *= extendEval(intQuants.fluidState().saltConcentration());
|
|
}
|
|
connectionRates_[perf][contiBrineEqIdx] = Base::restrictEval(cq_s_sm);
|
|
}
|
|
|
|
// Store the perforation pressure for later usage.
|
|
well_state.perfPress()[first_perf_ + perf] = well_state.bhp()[index_of_well_] + perf_pressure_diffs_[perf];
|
|
|
|
// Compute Productivity index if asked for
|
|
const auto& pu = phaseUsage();
|
|
const Opm::SummaryConfig& summaryConfig = ebosSimulator.vanguard().summaryConfig();
|
|
const Opm::Schedule& schedule = ebosSimulator.vanguard().schedule();
|
|
for (int p = 0; p < np; ++p) {
|
|
if ( (pu.phase_pos[Water] == p && (summaryConfig.hasSummaryKey("WPIW:" + name()) || summaryConfig.hasSummaryKey("WPIL:" + name())))
|
|
|| (pu.phase_pos[Oil] == p && (summaryConfig.hasSummaryKey("WPIO:" + name()) || summaryConfig.hasSummaryKey("WPIL:" + name())))
|
|
|| (pu.phase_pos[Gas] == p && summaryConfig.hasSummaryKey("WPIG:" + name()))) {
|
|
|
|
const unsigned int compIdx = flowPhaseToEbosCompIdx(p);
|
|
const auto& fs = intQuants.fluidState();
|
|
Eval perf_pressure = getPerfCellPressure(fs);
|
|
const double drawdown = well_state.perfPress()[first_perf_ + perf] - perf_pressure.value();
|
|
const bool new_well = schedule.hasWellGroupEvent(name(), ScheduleEvents::NEW_WELL, current_step_);
|
|
double productivity_index = cq_s[compIdx].value() / drawdown;
|
|
scaleProductivityIndex(perf, productivity_index, new_well, deferred_logger);
|
|
well_state.productivityIndex()[np*index_of_well_ + p] += productivity_index;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
// add vol * dF/dt + Q to the well equations;
|
|
for (int componentIdx = 0; componentIdx < numWellConservationEq; ++componentIdx) {
|
|
// TODO: following the development in MSW, we need to convert the volume of the wellbore to be surface volume
|
|
// since all the rates are under surface condition
|
|
EvalWell resWell_loc(numWellEq_ + numEq, 0.0);
|
|
if (FluidSystem::numActivePhases() > 1) {
|
|
assert(dt > 0);
|
|
resWell_loc += (wellSurfaceVolumeFraction(componentIdx) - F0_[componentIdx]) * volume / dt;
|
|
}
|
|
resWell_loc -= getQs(componentIdx) * well_efficiency_factor_;
|
|
for (int pvIdx = 0; pvIdx < numWellEq_; ++pvIdx) {
|
|
invDuneD_[0][0][componentIdx][pvIdx] += resWell_loc.derivative(pvIdx+numEq);
|
|
}
|
|
resWell_[0][componentIdx] += resWell_loc.value();
|
|
}
|
|
|
|
const auto& summaryState = ebosSimulator.vanguard().summaryState();
|
|
const Opm::Schedule& schedule = ebosSimulator.vanguard().schedule();
|
|
assembleControlEq(well_state, schedule, summaryState, deferred_logger);
|
|
|
|
|
|
// do the local inversion of D.
|
|
try {
|
|
Dune::ISTLUtility::invertMatrix(invDuneD_[0][0]);
|
|
} catch( ... ) {
|
|
OPM_DEFLOG_THROW(Opm::NumericalIssue,"Error when inverting local well equations for well " + name(), deferred_logger);
|
|
}
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
void
|
|
StandardWell<TypeTag>::assembleControlEq(const WellState& well_state,
|
|
const Opm::Schedule& schedule,
|
|
const SummaryState& summaryState,
|
|
Opm::DeferredLogger& deferred_logger)
|
|
{
|
|
EvalWell control_eq(numWellEq_ + numEq, 0.0);
|
|
|
|
const auto& well = well_ecl_;
|
|
|
|
auto getRates = [&]() {
|
|
std::vector<EvalWell> rates(3, EvalWell(numWellEq_ + numEq, 0.0));
|
|
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
|
|
rates[Water] = getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx));
|
|
}
|
|
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
|
|
rates[Oil] = getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx));
|
|
}
|
|
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
|
|
rates[Gas] = getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx));
|
|
}
|
|
return rates;
|
|
};
|
|
|
|
if (wellIsStopped_) {
|
|
control_eq = getWQTotal();
|
|
} else if (this->isInjector()) {
|
|
// Find injection rate.
|
|
const EvalWell injection_rate = getWQTotal();
|
|
// Setup function for evaluation of BHP from THP (used only if needed).
|
|
auto bhp_from_thp = [&]() {
|
|
const auto rates = getRates();
|
|
return calculateBhpFromThp(rates, well, summaryState, deferred_logger);
|
|
};
|
|
// Call generic implementation.
|
|
const auto& inj_controls = well.injectionControls(summaryState);
|
|
Base::assembleControlEqInj(well_state, schedule, summaryState, inj_controls, getBhp(), injection_rate, bhp_from_thp, control_eq, deferred_logger);
|
|
} else {
|
|
// Find rates.
|
|
const auto rates = getRates();
|
|
// Setup function for evaluation of BHP from THP (used only if needed).
|
|
auto bhp_from_thp = [&]() {
|
|
return calculateBhpFromThp(rates, well, summaryState, deferred_logger);
|
|
};
|
|
// Call generic implementation.
|
|
const auto& prod_controls = well.productionControls(summaryState);
|
|
Base::assembleControlEqProd(well_state, schedule, summaryState, prod_controls, getBhp(), rates, bhp_from_thp, control_eq, deferred_logger);
|
|
}
|
|
|
|
// using control_eq to update the matrix and residuals
|
|
// TODO: we should use a different index system for the well equations
|
|
resWell_[0][Bhp] = control_eq.value();
|
|
for (int pv_idx = 0; pv_idx < numWellEq_; ++pv_idx) {
|
|
invDuneD_[0][0][Bhp][pv_idx] = control_eq.derivative(pv_idx + numEq);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWell<TypeTag>::
|
|
getMobility(const Simulator& ebosSimulator,
|
|
const int perf,
|
|
std::vector<EvalWell>& mob,
|
|
Opm::DeferredLogger& deferred_logger) const
|
|
{
|
|
const int cell_idx = well_cells_[perf];
|
|
assert (int(mob.size()) == num_components_);
|
|
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0));
|
|
const auto& materialLawManager = ebosSimulator.problem().materialLawManager();
|
|
|
|
// either use mobility of the perforation cell or calcualte its own
|
|
// based on passing the saturation table index
|
|
const int satid = saturation_table_number_[perf] - 1;
|
|
const int satid_elem = materialLawManager->satnumRegionIdx(cell_idx);
|
|
if( satid == satid_elem ) { // the same saturation number is used. i.e. just use the mobilty from the cell
|
|
|
|
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) {
|
|
if (!FluidSystem::phaseIsActive(phaseIdx)) {
|
|
continue;
|
|
}
|
|
|
|
const unsigned activeCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
|
|
mob[activeCompIdx] = extendEval(intQuants.mobility(phaseIdx));
|
|
}
|
|
if (has_solvent) {
|
|
mob[contiSolventEqIdx] = extendEval(intQuants.solventMobility());
|
|
}
|
|
} else {
|
|
|
|
const auto& paramsCell = materialLawManager->connectionMaterialLawParams(satid, cell_idx);
|
|
Eval relativePerms[3] = { 0.0, 0.0, 0.0 };
|
|
MaterialLaw::relativePermeabilities(relativePerms, paramsCell, intQuants.fluidState());
|
|
|
|
// reset the satnumvalue back to original
|
|
materialLawManager->connectionMaterialLawParams(satid_elem, cell_idx);
|
|
|
|
// compute the mobility
|
|
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) {
|
|
if (!FluidSystem::phaseIsActive(phaseIdx)) {
|
|
continue;
|
|
}
|
|
|
|
const unsigned activeCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
|
|
mob[activeCompIdx] = extendEval(relativePerms[phaseIdx] / intQuants.fluidState().viscosity(phaseIdx));
|
|
}
|
|
|
|
// this may not work if viscosity and relperms has been modified?
|
|
if (has_solvent) {
|
|
OPM_DEFLOG_THROW(std::runtime_error, "individual mobility for wells does not work in combination with solvent", deferred_logger);
|
|
}
|
|
}
|
|
|
|
// modify the water mobility if polymer is present
|
|
if (has_polymer) {
|
|
if (!FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
|
|
OPM_DEFLOG_THROW(std::runtime_error, "Water is required when polymer is active", deferred_logger);
|
|
}
|
|
|
|
updateWaterMobilityWithPolymer(ebosSimulator, perf, mob, deferred_logger);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWell<TypeTag>::
|
|
updateWellState(const BVectorWell& dwells,
|
|
WellState& well_state,
|
|
Opm::DeferredLogger& deferred_logger) const
|
|
{
|
|
if (!this->isOperable() && !this->wellIsStopped()) return;
|
|
|
|
updatePrimaryVariablesNewton(dwells, well_state);
|
|
|
|
updateWellStateFromPrimaryVariables(well_state, deferred_logger);
|
|
Base::calculateReservoirRates(well_state);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWell<TypeTag>::
|
|
updatePrimaryVariablesNewton(const BVectorWell& dwells,
|
|
const WellState& /* well_state */) const
|
|
{
|
|
const double dFLimit = param_.dwell_fraction_max_;
|
|
|
|
const std::vector<double> old_primary_variables = primary_variables_;
|
|
|
|
// for injectors, very typical one of the fractions will be one, and it is easy to get zero value
|
|
// fractions. not sure what is the best way to handle it yet, so we just use 1.0 here
|
|
const double relaxation_factor_fractions = (this->isProducer()) ?
|
|
relaxationFactorFractionsProducer(old_primary_variables, dwells)
|
|
: 1.0;
|
|
|
|
// update the second and third well variable (The flux fractions)
|
|
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
|
|
const int sign2 = dwells[0][WFrac] > 0 ? 1: -1;
|
|
const double dx2_limited = sign2 * std::min(std::abs(dwells[0][WFrac] * relaxation_factor_fractions), dFLimit);
|
|
// primary_variables_[WFrac] = old_primary_variables[WFrac] - dx2_limited;
|
|
primary_variables_[WFrac] = old_primary_variables[WFrac] - dx2_limited;
|
|
}
|
|
|
|
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
|
|
const int sign3 = dwells[0][GFrac] > 0 ? 1: -1;
|
|
const double dx3_limited = sign3 * std::min(std::abs(dwells[0][GFrac] * relaxation_factor_fractions), dFLimit);
|
|
primary_variables_[GFrac] = old_primary_variables[GFrac] - dx3_limited;
|
|
}
|
|
|
|
if (has_solvent) {
|
|
const int sign4 = dwells[0][SFrac] > 0 ? 1: -1;
|
|
const double dx4_limited = sign4 * std::min(std::abs(dwells[0][SFrac]) * relaxation_factor_fractions, dFLimit);
|
|
primary_variables_[SFrac] = old_primary_variables[SFrac] - dx4_limited;
|
|
}
|
|
|
|
processFractions();
|
|
|
|
// updating the total rates Q_t
|
|
const double relaxation_factor_rate = relaxationFactorRate(old_primary_variables, dwells);
|
|
primary_variables_[WQTotal] = old_primary_variables[WQTotal] - dwells[0][WQTotal] * relaxation_factor_rate;
|
|
|
|
// updating the bottom hole pressure
|
|
{
|
|
const double dBHPLimit = param_.dbhp_max_rel_;
|
|
const int sign1 = dwells[0][Bhp] > 0 ? 1: -1;
|
|
const double dx1_limited = sign1 * std::min(std::abs(dwells[0][Bhp]), std::abs(old_primary_variables[Bhp]) * dBHPLimit);
|
|
// 1e5 to make sure bhp will not be below 1bar
|
|
primary_variables_[Bhp] = std::max(old_primary_variables[Bhp] - dx1_limited, 1e5);
|
|
}
|
|
|
|
updateExtraPrimaryVariables(dwells);
|
|
|
|
#ifndef NDEBUG
|
|
for (double v : primary_variables_) {
|
|
assert(Opm::isfinite(v));
|
|
}
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWell<TypeTag>::
|
|
updateExtraPrimaryVariables(const BVectorWell& dwells) const
|
|
{
|
|
// for the water velocity and skin pressure
|
|
if (this->has_polymermw && this->isInjector()) {
|
|
for (int perf = 0; perf < number_of_perforations_; ++perf) {
|
|
const int wat_vel_index = Bhp + 1 + perf;
|
|
const int pskin_index = Bhp + 1 + number_of_perforations_ + perf;
|
|
|
|
const double relaxation_factor = 0.9;
|
|
const double dx_wat_vel = dwells[0][wat_vel_index];
|
|
primary_variables_[wat_vel_index] -= relaxation_factor * dx_wat_vel;
|
|
|
|
const double dx_pskin = dwells[0][pskin_index];
|
|
primary_variables_[pskin_index] -= relaxation_factor * dx_pskin;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWell<TypeTag>::
|
|
processFractions() const
|
|
{
|
|
assert(FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx));
|
|
const auto pu = phaseUsage();
|
|
std::vector<double> F(number_of_phases_, 0.0);
|
|
F[pu.phase_pos[Oil]] = 1.0;
|
|
|
|
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
|
|
F[pu.phase_pos[Water]] = primary_variables_[WFrac];
|
|
F[pu.phase_pos[Oil]] -= F[pu.phase_pos[Water]];
|
|
}
|
|
|
|
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
|
|
F[pu.phase_pos[Gas]] = primary_variables_[GFrac];
|
|
F[pu.phase_pos[Oil]] -= F[pu.phase_pos[Gas]];
|
|
}
|
|
|
|
double F_solvent = 0.0;
|
|
if (has_solvent) {
|
|
F_solvent = primary_variables_[SFrac];
|
|
F[pu.phase_pos[Oil]] -= F_solvent;
|
|
}
|
|
|
|
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
|
|
if (F[Water] < 0.0) {
|
|
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
|
|
F[pu.phase_pos[Gas]] /= (1.0 - F[pu.phase_pos[Water]]);
|
|
}
|
|
if (has_solvent) {
|
|
F_solvent /= (1.0 - F[pu.phase_pos[Water]]);
|
|
}
|
|
F[pu.phase_pos[Oil]] /= (1.0 - F[pu.phase_pos[Water]]);
|
|
F[pu.phase_pos[Water]] = 0.0;
|
|
}
|
|
}
|
|
|
|
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
|
|
if (F[pu.phase_pos[Gas]] < 0.0) {
|
|
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
|
|
F[pu.phase_pos[Water]] /= (1.0 - F[pu.phase_pos[Gas]]);
|
|
}
|
|
if (has_solvent) {
|
|
F_solvent /= (1.0 - F[pu.phase_pos[Gas]]);
|
|
}
|
|
F[pu.phase_pos[Oil]] /= (1.0 - F[pu.phase_pos[Gas]]);
|
|
F[pu.phase_pos[Gas]] = 0.0;
|
|
}
|
|
}
|
|
|
|
if (F[pu.phase_pos[Oil]] < 0.0) {
|
|
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
|
|
F[pu.phase_pos[Water]] /= (1.0 - F[pu.phase_pos[Oil]]);
|
|
}
|
|
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
|
|
F[pu.phase_pos[Gas]] /= (1.0 - F[pu.phase_pos[Oil]]);
|
|
}
|
|
if (has_solvent) {
|
|
F_solvent /= (1.0 - F[pu.phase_pos[Oil]]);
|
|
}
|
|
F[pu.phase_pos[Oil]] = 0.0;
|
|
}
|
|
|
|
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
|
|
primary_variables_[WFrac] = F[pu.phase_pos[Water]];
|
|
}
|
|
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
|
|
primary_variables_[GFrac] = F[pu.phase_pos[Gas]];
|
|
}
|
|
if(has_solvent) {
|
|
primary_variables_[SFrac] = F_solvent;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWell<TypeTag>::
|
|
updateWellStateFromPrimaryVariables(WellState& well_state, Opm::DeferredLogger& deferred_logger) const
|
|
{
|
|
const PhaseUsage& pu = phaseUsage();
|
|
assert( FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) );
|
|
const int oil_pos = pu.phase_pos[Oil];
|
|
|
|
std::vector<double> F(number_of_phases_, 0.0);
|
|
F[oil_pos] = 1.0;
|
|
|
|
if ( FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) ) {
|
|
const int water_pos = pu.phase_pos[Water];
|
|
F[water_pos] = primary_variables_[WFrac];
|
|
F[oil_pos] -= F[water_pos];
|
|
}
|
|
|
|
if ( FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) ) {
|
|
const int gas_pos = pu.phase_pos[Gas];
|
|
F[gas_pos] = primary_variables_[GFrac];
|
|
F[oil_pos] -= F[gas_pos];
|
|
}
|
|
|
|
double F_solvent = 0.0;
|
|
if (has_solvent) {
|
|
F_solvent = primary_variables_[SFrac];
|
|
F[oil_pos] -= F_solvent;
|
|
}
|
|
|
|
// convert the fractions to be Q_p / G_total to calculate the phase rates
|
|
for (int p = 0; p < number_of_phases_; ++p) {
|
|
const double scal = scalingFactor(p);
|
|
// for injection wells, there should only one non-zero scaling factor
|
|
if (scal > 0) {
|
|
F[p] /= scal ;
|
|
} else {
|
|
// this should only happens to injection wells
|
|
F[p] = 0.;
|
|
}
|
|
}
|
|
|
|
// F_solvent is added to F_gas. This means that well_rate[Gas] also contains solvent.
|
|
// More testing is needed to make sure this is correct for well groups and THP.
|
|
if (has_solvent){
|
|
F_solvent /= scalingFactor(contiSolventEqIdx);
|
|
F[pu.phase_pos[Gas]] += F_solvent;
|
|
}
|
|
|
|
well_state.bhp()[index_of_well_] = primary_variables_[Bhp];
|
|
|
|
// calculate the phase rates based on the primary variables
|
|
// for producers, this is not a problem, while not sure for injectors here
|
|
if (this->isProducer()) {
|
|
const double g_total = primary_variables_[WQTotal];
|
|
for (int p = 0; p < number_of_phases_; ++p) {
|
|
well_state.wellRates()[index_of_well_ * number_of_phases_ + p] = g_total * F[p];
|
|
}
|
|
} else { // injectors
|
|
for (int p = 0; p < number_of_phases_; ++p) {
|
|
well_state.wellRates()[index_of_well_ * number_of_phases_ + p] = 0.0;
|
|
}
|
|
switch (this->wellEcl().injectorType()) {
|
|
case InjectorType::WATER:
|
|
well_state.wellRates()[index_of_well_ * number_of_phases_ + pu.phase_pos[Water]] = primary_variables_[WQTotal];
|
|
break;
|
|
case InjectorType::GAS:
|
|
well_state.wellRates()[index_of_well_ * number_of_phases_ + pu.phase_pos[Gas]] = primary_variables_[WQTotal];
|
|
break;
|
|
case InjectorType::OIL:
|
|
well_state.wellRates()[index_of_well_ * number_of_phases_ + pu.phase_pos[Oil]] = primary_variables_[WQTotal];
|
|
break;
|
|
case InjectorType::MULTI:
|
|
// Not supported.
|
|
deferred_logger.warning("MULTI_PHASE_INJECTOR_NOT_SUPPORTED",
|
|
"Multi phase injectors are not supported, requested for well " + name());
|
|
break;
|
|
}
|
|
}
|
|
|
|
updateThp(well_state, deferred_logger);
|
|
|
|
// other primary variables related to polymer injectivity study
|
|
if (this->has_polymermw && this->isInjector()) {
|
|
for (int perf = 0; perf < number_of_perforations_; ++perf) {
|
|
well_state.perfWaterVelocity()[first_perf_ + perf] = primary_variables_[Bhp + 1 + perf];
|
|
well_state.perfSkinPressure()[first_perf_ + perf] = primary_variables_[Bhp + 1 + number_of_perforations_ + perf];
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWell<TypeTag>::
|
|
updateThp(WellState& well_state, Opm::DeferredLogger& deferred_logger) const
|
|
{
|
|
// When there is no vaild VFP table provided, we set the thp to be zero.
|
|
if (!this->isVFPActive(deferred_logger) || this->wellIsStopped()) {
|
|
well_state.thp()[index_of_well_] = 0.;
|
|
return;
|
|
}
|
|
|
|
// the well is under other control types, we calculate the thp based on bhp and rates
|
|
std::vector<double> rates(3, 0.0);
|
|
|
|
const Opm::PhaseUsage& pu = phaseUsage();
|
|
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
|
|
rates[ Water ] = well_state.wellRates()[index_of_well_ * number_of_phases_ + pu.phase_pos[ Water ] ];
|
|
}
|
|
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
|
|
rates[ Oil ] = well_state.wellRates()[index_of_well_ * number_of_phases_ + pu.phase_pos[ Oil ] ];
|
|
}
|
|
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
|
|
rates[ Gas ] = well_state.wellRates()[index_of_well_ * number_of_phases_ + pu.phase_pos[ Gas ] ];
|
|
}
|
|
|
|
const double bhp = well_state.bhp()[index_of_well_];
|
|
|
|
well_state.thp()[index_of_well_] = calculateThpFromBhp(rates, bhp, deferred_logger);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWell<TypeTag>::
|
|
updateWellStateWithTarget(const Simulator& ebos_simulator,
|
|
WellState& well_state,
|
|
Opm::DeferredLogger& deferred_logger) const
|
|
{
|
|
|
|
// only bhp and wellRates are used to initilize the primaryvariables for standard wells
|
|
const auto& well = well_ecl_;
|
|
const int well_index = index_of_well_;
|
|
const auto& pu = phaseUsage();
|
|
const int np = well_state.numPhases();
|
|
const auto& summaryState = ebos_simulator.vanguard().summaryState();
|
|
|
|
if (wellIsStopped_) {
|
|
for (int p = 0; p<np; ++p) {
|
|
well_state.wellRates()[well_index*np + p] = 0.0;
|
|
}
|
|
well_state.thp()[well_index] = 0.0;
|
|
return;
|
|
}
|
|
|
|
if (this->isInjector() )
|
|
{
|
|
const auto& controls = well.injectionControls(summaryState);
|
|
|
|
InjectorType injectorType = controls.injector_type;
|
|
int phasePos;
|
|
switch (injectorType) {
|
|
case InjectorType::WATER:
|
|
{
|
|
phasePos = pu.phase_pos[BlackoilPhases::Aqua];
|
|
break;
|
|
}
|
|
case InjectorType::OIL:
|
|
{
|
|
phasePos = pu.phase_pos[BlackoilPhases::Liquid];
|
|
break;
|
|
}
|
|
case InjectorType::GAS:
|
|
{
|
|
phasePos = pu.phase_pos[BlackoilPhases::Vapour];
|
|
break;
|
|
}
|
|
default:
|
|
throw("Expected WATER, OIL or GAS as type for injectors " + well.name());
|
|
}
|
|
|
|
const Opm::Well::InjectorCMode& current = well_state.currentInjectionControls()[well_index];
|
|
|
|
switch(current) {
|
|
case Well::InjectorCMode::RATE:
|
|
{
|
|
well_state.wellRates()[well_index*np + phasePos] = controls.surface_rate;
|
|
break;
|
|
}
|
|
|
|
case Well::InjectorCMode::RESV:
|
|
{
|
|
std::vector<double> convert_coeff(number_of_phases_, 1.0);
|
|
Base::rateConverter_.calcCoeff(/*fipreg*/ 0, Base::pvtRegionIdx_, convert_coeff);
|
|
const double coeff = convert_coeff[phasePos];
|
|
well_state.wellRates()[well_index*np + phasePos] = controls.reservoir_rate/coeff;
|
|
break;
|
|
}
|
|
|
|
case Well::InjectorCMode::THP:
|
|
{
|
|
std::vector<double> rates(3, 0.0);
|
|
for (int p = 0; p<np; ++p) {
|
|
rates[p] = well_state.wellRates()[well_index*np + p];
|
|
}
|
|
double bhp = calculateBhpFromThp(rates, well, summaryState, deferred_logger);
|
|
well_state.bhp()[well_index] = bhp;
|
|
break;
|
|
}
|
|
case Well::InjectorCMode::BHP:
|
|
{
|
|
well_state.bhp()[well_index] = controls.bhp_limit;
|
|
break;
|
|
}
|
|
case Well::InjectorCMode::GRUP:
|
|
{
|
|
//do nothing at the moment
|
|
break;
|
|
}
|
|
case Well::InjectorCMode::CMODE_UNDEFINED:
|
|
{
|
|
OPM_DEFLOG_THROW(std::runtime_error, "Well control must be specified for well " + name(), deferred_logger );
|
|
}
|
|
|
|
}
|
|
}
|
|
//Producer
|
|
else
|
|
{
|
|
const Well::ProducerCMode& current = well_state.currentProductionControls()[well_index];
|
|
const auto& controls = well.productionControls(summaryState);
|
|
|
|
switch (current) {
|
|
case Well::ProducerCMode::ORAT:
|
|
{
|
|
double current_rate = -well_state.wellRates()[ well_index*np + pu.phase_pos[Oil] ];
|
|
|
|
if (current_rate == 0.0)
|
|
break;
|
|
|
|
for (int p = 0; p<np; ++p) {
|
|
well_state.wellRates()[well_index*np + p] *= controls.oil_rate/current_rate;
|
|
}
|
|
break;
|
|
}
|
|
case Well::ProducerCMode::WRAT:
|
|
{
|
|
double current_rate = -well_state.wellRates()[ well_index*np + pu.phase_pos[Water] ];
|
|
|
|
if (current_rate == 0.0)
|
|
break;
|
|
|
|
for (int p = 0; p<np; ++p) {
|
|
well_state.wellRates()[well_index*np + p] *= controls.water_rate/current_rate;
|
|
}
|
|
break;
|
|
}
|
|
case Well::ProducerCMode::GRAT:
|
|
{
|
|
double current_rate = -well_state.wellRates()[ well_index*np + pu.phase_pos[Gas] ];
|
|
|
|
if (current_rate == 0.0)
|
|
break;
|
|
|
|
for (int p = 0; p<np; ++p) {
|
|
well_state.wellRates()[well_index*np + p] *= controls.gas_rate/current_rate;
|
|
}
|
|
break;
|
|
|
|
}
|
|
case Well::ProducerCMode::LRAT:
|
|
{
|
|
double current_rate = -well_state.wellRates()[ well_index*np + pu.phase_pos[Water] ]
|
|
- well_state.wellRates()[ well_index*np + pu.phase_pos[Oil] ];
|
|
|
|
if (current_rate == 0.0)
|
|
break;
|
|
|
|
for (int p = 0; p<np; ++p) {
|
|
well_state.wellRates()[well_index*np + p] *= controls.liquid_rate/current_rate;
|
|
}
|
|
break;
|
|
}
|
|
case Well::ProducerCMode::CRAT:
|
|
{
|
|
OPM_DEFLOG_THROW(std::runtime_error, "CRAT control not supported " << name(), deferred_logger);
|
|
}
|
|
case Well::ProducerCMode::RESV:
|
|
{
|
|
std::vector<double> convert_coeff(number_of_phases_, 1.0);
|
|
Base::rateConverter_.calcCoeff(/*fipreg*/ 0, Base::pvtRegionIdx_, convert_coeff);
|
|
double total_res_rate = 0.0;
|
|
for (int p = 0; p<np; ++p) {
|
|
total_res_rate -= well_state.wellRates()[well_index*np + p] * convert_coeff[p];
|
|
}
|
|
if (total_res_rate == 0.0)
|
|
break;
|
|
|
|
if (controls.prediction_mode) {
|
|
for (int p = 0; p<np; ++p) {
|
|
well_state.wellRates()[well_index*np + p] *= controls.resv_rate/total_res_rate;
|
|
}
|
|
} else {
|
|
std::vector<double> hrates(number_of_phases_,0.);
|
|
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
|
|
hrates[pu.phase_pos[Water]] = controls.water_rate;
|
|
}
|
|
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
|
|
hrates[pu.phase_pos[Oil]] = controls.oil_rate;
|
|
}
|
|
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
|
|
hrates[pu.phase_pos[Gas]] = controls.gas_rate;
|
|
}
|
|
std::vector<double> hrates_resv(number_of_phases_,0.);
|
|
Base::rateConverter_.calcReservoirVoidageRates(/*fipreg*/ 0, Base::pvtRegionIdx_, hrates, hrates_resv);
|
|
double target = std::accumulate(hrates_resv.begin(), hrates_resv.end(), 0.0);
|
|
for (int p = 0; p<np; ++p) {
|
|
well_state.wellRates()[well_index*np + p] *= target/total_res_rate;
|
|
}
|
|
|
|
}
|
|
break;
|
|
}
|
|
case Well::ProducerCMode::BHP:
|
|
{
|
|
well_state.bhp()[well_index] = controls.bhp_limit;
|
|
break;
|
|
}
|
|
case Well::ProducerCMode::THP:
|
|
{
|
|
well_state.thp()[well_index] = controls.thp_limit;
|
|
auto bhp = computeBhpAtThpLimitProd(ebos_simulator, summaryState, deferred_logger);
|
|
if (bhp) {
|
|
well_state.bhp()[well_index] = *bhp;
|
|
} else {
|
|
deferred_logger.warning("FAILURE_GETTING_CONVERGED_BHP",
|
|
"Failed to find BHP when switching to THP control for well " + name());
|
|
}
|
|
break;
|
|
}
|
|
case Well::ProducerCMode::GRUP:
|
|
{
|
|
//do nothing at the moment
|
|
break;
|
|
}
|
|
case Well::ProducerCMode::CMODE_UNDEFINED:
|
|
{
|
|
OPM_DEFLOG_THROW(std::runtime_error, "Well control must be specified for well " + name(), deferred_logger );
|
|
}
|
|
case Well::ProducerCMode::NONE:
|
|
{
|
|
OPM_DEFLOG_THROW(std::runtime_error, "Well control must be specified for well " + name() , deferred_logger);
|
|
}
|
|
|
|
break;
|
|
} // end of switch
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWell<TypeTag>::
|
|
updateIPR(const Simulator& ebos_simulator, Opm::DeferredLogger& deferred_logger) const
|
|
{
|
|
// TODO: not handling solvent related here for now
|
|
|
|
// TODO: it only handles the producers for now
|
|
// the formular for the injectors are not formulated yet
|
|
if (this->isInjector()) {
|
|
return;
|
|
}
|
|
|
|
// initialize all the values to be zero to begin with
|
|
std::fill(ipr_a_.begin(), ipr_a_.end(), 0.);
|
|
std::fill(ipr_b_.begin(), ipr_b_.end(), 0.);
|
|
|
|
for (int perf = 0; perf < number_of_perforations_; ++perf) {
|
|
std::vector<EvalWell> mob(num_components_, {numWellEq_ + numEq, 0.0});
|
|
// TODO: mabye we should store the mobility somewhere, so that we only need to calculate it one per iteration
|
|
getMobility(ebos_simulator, perf, mob, deferred_logger);
|
|
|
|
const int cell_idx = well_cells_[perf];
|
|
const auto& int_quantities = *(ebos_simulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/ 0));
|
|
const auto& fs = int_quantities.fluidState();
|
|
// the pressure of the reservoir grid block the well connection is in
|
|
Eval perf_pressure = getPerfCellPressure(fs);
|
|
double p_r = perf_pressure.value();
|
|
|
|
// calculating the b for the connection
|
|
std::vector<double> b_perf(num_components_);
|
|
for (size_t phase = 0; phase < FluidSystem::numPhases; ++phase) {
|
|
if (!FluidSystem::phaseIsActive(phase)) {
|
|
continue;
|
|
}
|
|
const unsigned comp_idx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phase));
|
|
b_perf[comp_idx] = fs.invB(phase).value();
|
|
}
|
|
|
|
// the pressure difference between the connection and BHP
|
|
const double h_perf = perf_pressure_diffs_[perf];
|
|
const double pressure_diff = p_r - h_perf;
|
|
|
|
// Let us add a check, since the pressure is calculated based on zero value BHP
|
|
// it should not be negative anyway. If it is negative, we might need to re-formulate
|
|
// to taking into consideration the crossflow here.
|
|
if (pressure_diff <= 0.) {
|
|
deferred_logger.warning("NON_POSITIVE_DRAWDOWN_IPR",
|
|
"non-positive drawdown found when updateIPR for well " + name());
|
|
}
|
|
|
|
// the well index associated with the connection
|
|
const double tw_perf = well_index_[perf]*ebos_simulator.problem().template rockCompTransMultiplier<double>(int_quantities, cell_idx);
|
|
|
|
// TODO: there might be some indices related problems here
|
|
// phases vs components
|
|
// ipr values for the perforation
|
|
std::vector<double> ipr_a_perf(ipr_a_.size());
|
|
std::vector<double> ipr_b_perf(ipr_b_.size());
|
|
for (int p = 0; p < number_of_phases_; ++p) {
|
|
const double tw_mob = tw_perf * mob[p].value() * b_perf[p];
|
|
ipr_a_perf[p] += tw_mob * pressure_diff;
|
|
ipr_b_perf[p] += tw_mob;
|
|
}
|
|
|
|
// we need to handle the rs and rv when both oil and gas are present
|
|
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
|
|
const unsigned oil_comp_idx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
|
|
const unsigned gas_comp_idx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
|
|
const double rs = (fs.Rs()).value();
|
|
const double rv = (fs.Rv()).value();
|
|
|
|
const double dis_gas_a = rs * ipr_a_perf[oil_comp_idx];
|
|
const double vap_oil_a = rv * ipr_a_perf[gas_comp_idx];
|
|
|
|
ipr_a_perf[gas_comp_idx] += dis_gas_a;
|
|
ipr_a_perf[oil_comp_idx] += vap_oil_a;
|
|
|
|
const double dis_gas_b = rs * ipr_b_perf[oil_comp_idx];
|
|
const double vap_oil_b = rv * ipr_b_perf[gas_comp_idx];
|
|
|
|
ipr_b_perf[gas_comp_idx] += dis_gas_b;
|
|
ipr_b_perf[oil_comp_idx] += vap_oil_b;
|
|
}
|
|
|
|
for (int p = 0; p < number_of_phases_; ++p) {
|
|
// TODO: double check the indices here
|
|
ipr_a_[ebosCompIdxToFlowCompIdx(p)] += ipr_a_perf[p];
|
|
ipr_b_[ebosCompIdxToFlowCompIdx(p)] += ipr_b_perf[p];
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWell<TypeTag>::
|
|
checkWellOperability(const Simulator& ebos_simulator,
|
|
const WellState& well_state,
|
|
Opm::DeferredLogger& deferred_logger)
|
|
{
|
|
|
|
const bool checkOperability = EWOMS_GET_PARAM(TypeTag, bool, EnableWellOperabilityCheck);
|
|
if (!checkOperability) {
|
|
return;
|
|
}
|
|
|
|
// focusing on PRODUCER for now
|
|
if (this->isInjector()) {
|
|
return;
|
|
}
|
|
|
|
if (!this->underPredictionMode() ) {
|
|
return;
|
|
}
|
|
|
|
if (this->wellIsStopped() && !changed_to_stopped_this_step_) {
|
|
return;
|
|
}
|
|
|
|
const bool old_well_operable = this->operability_status_.isOperable();
|
|
|
|
updateWellOperability(ebos_simulator, well_state, deferred_logger);
|
|
|
|
const bool well_operable = this->operability_status_.isOperable();
|
|
|
|
if (!well_operable && old_well_operable) {
|
|
if (well_ecl_.getAutomaticShutIn()) {
|
|
deferred_logger.info(" well " + name() + " gets SHUT during iteration ");
|
|
} else {
|
|
if (!this->wellIsStopped()) {
|
|
deferred_logger.info(" well " + name() + " gets STOPPED during iteration ");
|
|
this->stopWell();
|
|
changed_to_stopped_this_step_ = true;
|
|
}
|
|
}
|
|
} else if (well_operable && !old_well_operable) {
|
|
deferred_logger.info(" well " + name() + " gets REVIVED during iteration ");
|
|
this->openWell();
|
|
changed_to_stopped_this_step_ = false;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWell<TypeTag>::
|
|
updateWellOperability(const Simulator& ebos_simulator,
|
|
const WellState& /* well_state */,
|
|
Opm::DeferredLogger& deferred_logger)
|
|
{
|
|
this->operability_status_.reset();
|
|
|
|
updateIPR(ebos_simulator, deferred_logger);
|
|
|
|
// checking the BHP limit related
|
|
checkOperabilityUnderBHPLimitProducer(ebos_simulator, deferred_logger);
|
|
|
|
const auto& summaryState = ebos_simulator.vanguard().summaryState();
|
|
|
|
// checking whether the well can operate under the THP constraints.
|
|
if (this->wellHasTHPConstraints(summaryState)) {
|
|
checkOperabilityUnderTHPLimitProducer(ebos_simulator, deferred_logger);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWell<TypeTag>::
|
|
checkOperabilityUnderBHPLimitProducer(const Simulator& ebos_simulator, Opm::DeferredLogger& deferred_logger)
|
|
{
|
|
const auto& summaryState = ebos_simulator.vanguard().summaryState();
|
|
const double bhp_limit = mostStrictBhpFromBhpLimits(summaryState);
|
|
// Crude but works: default is one atmosphere.
|
|
// TODO: a better way to detect whether the BHP is defaulted or not
|
|
const bool bhp_limit_not_defaulted = bhp_limit > 1.5 * unit::barsa;
|
|
if ( bhp_limit_not_defaulted || !this->wellHasTHPConstraints(summaryState) ) {
|
|
// if the BHP limit is not defaulted or the well does not have a THP limit
|
|
// we need to check the BHP limit
|
|
|
|
for (int p = 0; p < number_of_phases_; ++p) {
|
|
const double temp = ipr_a_[p] - ipr_b_[p] * bhp_limit;
|
|
if (temp < 0.) {
|
|
this->operability_status_.operable_under_only_bhp_limit = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// checking whether running under BHP limit will violate THP limit
|
|
if (this->operability_status_.operable_under_only_bhp_limit && this->wellHasTHPConstraints(summaryState)) {
|
|
// option 1: calculate well rates based on the BHP limit.
|
|
// option 2: stick with the above IPR curve
|
|
// we use IPR here
|
|
std::vector<double> well_rates_bhp_limit;
|
|
computeWellRatesWithBhp(ebos_simulator, bhp_limit, well_rates_bhp_limit, deferred_logger);
|
|
|
|
const double thp = calculateThpFromBhp(well_rates_bhp_limit, bhp_limit, deferred_logger);
|
|
const double thp_limit = this->getTHPConstraint(summaryState);
|
|
|
|
if (thp < thp_limit) {
|
|
this->operability_status_.obey_thp_limit_under_bhp_limit = false;
|
|
}
|
|
}
|
|
} else {
|
|
// defaulted BHP and there is a THP constraint
|
|
// default BHP limit is about 1 atm.
|
|
// when applied the hydrostatic pressure correction dp,
|
|
// most likely we get a negative value (bhp + dp)to search in the VFP table,
|
|
// which is not desirable.
|
|
// we assume we can operate under defaulted BHP limit and will violate the THP limit
|
|
// when operating under defaulted BHP limit.
|
|
this->operability_status_.operable_under_only_bhp_limit = true;
|
|
this->operability_status_.obey_thp_limit_under_bhp_limit = false;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWell<TypeTag>::
|
|
checkOperabilityUnderTHPLimitProducer(const Simulator& ebos_simulator, Opm::DeferredLogger& deferred_logger)
|
|
{
|
|
const auto& summaryState = ebos_simulator.vanguard().summaryState();
|
|
const auto obtain_bhp = computeBhpAtThpLimitProd(ebos_simulator, summaryState, deferred_logger);
|
|
|
|
if (obtain_bhp) {
|
|
this->operability_status_.can_obtain_bhp_with_thp_limit = true;
|
|
|
|
const double bhp_limit = mostStrictBhpFromBhpLimits(summaryState);
|
|
this->operability_status_.obey_bhp_limit_with_thp_limit = (*obtain_bhp >= bhp_limit);
|
|
|
|
const double thp_limit = this->getTHPConstraint(summaryState);
|
|
if (*obtain_bhp < thp_limit) {
|
|
const std::string msg = " obtained bhp " + std::to_string(unit::convert::to(*obtain_bhp, unit::barsa))
|
|
+ " bars is SMALLER than thp limit "
|
|
+ std::to_string(unit::convert::to(thp_limit, unit::barsa))
|
|
+ " bars as a producer for well " + name();
|
|
deferred_logger.debug(msg);
|
|
}
|
|
} else {
|
|
this->operability_status_.can_obtain_bhp_with_thp_limit = false;
|
|
this->operability_status_.obey_bhp_limit_with_thp_limit = false;
|
|
if (!this->wellIsStopped()) {
|
|
const double thp_limit = this->getTHPConstraint(summaryState);
|
|
deferred_logger.debug(" could not find bhp value at thp limit "
|
|
+ std::to_string(unit::convert::to(thp_limit, unit::barsa))
|
|
+ " bar for well " + name() + ", the well might need to be closed ");
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
bool
|
|
StandardWell<TypeTag>::
|
|
allDrawDownWrongDirection(const Simulator& ebos_simulator) const
|
|
{
|
|
bool all_drawdown_wrong_direction = true;
|
|
|
|
for (int perf = 0; perf < number_of_perforations_; ++perf) {
|
|
const int cell_idx = well_cells_[perf];
|
|
const auto& intQuants = *(ebos_simulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0));
|
|
const auto& fs = intQuants.fluidState();
|
|
|
|
const double pressure = (fs.pressure(FluidSystem::oilPhaseIdx)).value();
|
|
const double bhp = getBhp().value();
|
|
|
|
// Pressure drawdown (also used to determine direction of flow)
|
|
const double well_pressure = bhp + perf_pressure_diffs_[perf];
|
|
const double drawdown = pressure - well_pressure;
|
|
|
|
// for now, if there is one perforation can produce/inject in the correct
|
|
// direction, we consider this well can still produce/inject.
|
|
// TODO: it can be more complicated than this to cause wrong-signed rates
|
|
if ( (drawdown < 0. && this->isInjector()) ||
|
|
(drawdown > 0. && this->isProducer()) ) {
|
|
all_drawdown_wrong_direction = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return all_drawdown_wrong_direction;
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
bool
|
|
StandardWell<TypeTag>::
|
|
canProduceInjectWithCurrentBhp(const Simulator& ebos_simulator,
|
|
const WellState& well_state,
|
|
Opm::DeferredLogger& deferred_logger)
|
|
{
|
|
const double bhp = well_state.bhp()[index_of_well_];
|
|
std::vector<double> well_rates;
|
|
computeWellRatesWithBhp(ebos_simulator, bhp, well_rates, deferred_logger);
|
|
|
|
const double sign = (this->isProducer()) ? -1. : 1.;
|
|
const double threshold = sign * std::numeric_limits<double>::min();
|
|
|
|
bool can_produce_inject = false;
|
|
for (const auto value : well_rates) {
|
|
if (this->isProducer() && value < threshold) {
|
|
can_produce_inject = true;
|
|
break;
|
|
} else if (this->isInjector() && value > threshold) {
|
|
can_produce_inject = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!can_produce_inject) {
|
|
deferred_logger.debug(" well " + name() + " CANNOT produce or inejct ");
|
|
}
|
|
|
|
return can_produce_inject;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
bool
|
|
StandardWell<TypeTag>::
|
|
openCrossFlowAvoidSingularity(const Simulator& ebos_simulator) const
|
|
{
|
|
return !getAllowCrossFlow() && allDrawDownWrongDirection(ebos_simulator);
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWell<TypeTag>::
|
|
computePropertiesForWellConnectionPressures(const Simulator& ebosSimulator,
|
|
const WellState& well_state,
|
|
std::vector<double>& b_perf,
|
|
std::vector<double>& rsmax_perf,
|
|
std::vector<double>& rvmax_perf,
|
|
std::vector<double>& surf_dens_perf) const
|
|
{
|
|
const int nperf = number_of_perforations_;
|
|
const PhaseUsage& pu = phaseUsage();
|
|
b_perf.resize(nperf * num_components_);
|
|
surf_dens_perf.resize(nperf * num_components_);
|
|
const int w = index_of_well_;
|
|
|
|
const bool waterPresent = FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx);
|
|
const bool oilPresent = FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx);
|
|
const bool gasPresent = FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx);
|
|
|
|
//rs and rv are only used if both oil and gas is present
|
|
if (oilPresent && gasPresent) {
|
|
rsmax_perf.resize(nperf);
|
|
rvmax_perf.resize(nperf);
|
|
}
|
|
|
|
// Compute the average pressure in each well block
|
|
for (int perf = 0; perf < nperf; ++perf) {
|
|
const int cell_idx = well_cells_[perf];
|
|
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0));
|
|
const auto& fs = intQuants.fluidState();
|
|
|
|
// TODO: this is another place to show why WellState need to be a vector of WellState.
|
|
// TODO: to check why should be perf - 1
|
|
const double p_above = perf == 0 ? well_state.bhp()[w] : well_state.perfPress()[first_perf_ + perf - 1];
|
|
const double p_avg = (well_state.perfPress()[first_perf_ + perf] + p_above)/2;
|
|
const double temperature = fs.temperature(FluidSystem::oilPhaseIdx).value();
|
|
|
|
if (waterPresent) {
|
|
const unsigned waterCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx);
|
|
b_perf[ waterCompIdx + perf * num_components_] =
|
|
FluidSystem::waterPvt().inverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg);
|
|
}
|
|
|
|
if (gasPresent) {
|
|
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
|
|
const int gaspos = gasCompIdx + perf * num_components_;
|
|
const int gaspos_well = pu.phase_pos[Gas] + w * pu.num_phases;
|
|
|
|
if (oilPresent) {
|
|
const int oilpos_well = pu.phase_pos[Oil] + w * pu.num_phases;
|
|
const double oilrate = std::abs(well_state.wellRates()[oilpos_well]); //in order to handle negative rates in producers
|
|
rvmax_perf[perf] = FluidSystem::gasPvt().saturatedOilVaporizationFactor(fs.pvtRegionIndex(), temperature, p_avg);
|
|
if (oilrate > 0) {
|
|
const double gasrate = std::abs(well_state.wellRates()[gaspos_well]) - well_state.solventWellRate(w);
|
|
double rv = 0.0;
|
|
if (gasrate > 0) {
|
|
rv = oilrate / gasrate;
|
|
}
|
|
rv = std::min(rv, rvmax_perf[perf]);
|
|
|
|
b_perf[gaspos] = FluidSystem::gasPvt().inverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg, rv);
|
|
}
|
|
else {
|
|
b_perf[gaspos] = FluidSystem::gasPvt().saturatedInverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg);
|
|
}
|
|
|
|
} else {
|
|
b_perf[gaspos] = FluidSystem::gasPvt().saturatedInverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg);
|
|
}
|
|
}
|
|
|
|
if (oilPresent) {
|
|
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
|
|
const int oilpos = oilCompIdx + perf * num_components_;
|
|
const int oilpos_well = pu.phase_pos[Oil] + w * pu.num_phases;
|
|
if (gasPresent) {
|
|
rsmax_perf[perf] = FluidSystem::oilPvt().saturatedGasDissolutionFactor(fs.pvtRegionIndex(), temperature, p_avg);
|
|
const int gaspos_well = pu.phase_pos[Gas] + w * pu.num_phases;
|
|
const double gasrate = std::abs(well_state.wellRates()[gaspos_well]) - well_state.solventWellRate(w);
|
|
if (gasrate > 0) {
|
|
const double oilrate = std::abs(well_state.wellRates()[oilpos_well]);
|
|
double rs = 0.0;
|
|
if (oilrate > 0) {
|
|
rs = gasrate / oilrate;
|
|
}
|
|
rs = std::min(rs, rsmax_perf[perf]);
|
|
b_perf[oilpos] = FluidSystem::oilPvt().inverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg, rs);
|
|
} else {
|
|
b_perf[oilpos] = FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg);
|
|
}
|
|
} else {
|
|
b_perf[oilpos] = FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg);
|
|
}
|
|
}
|
|
|
|
// Surface density.
|
|
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) {
|
|
if (!FluidSystem::phaseIsActive(phaseIdx)) {
|
|
continue;
|
|
}
|
|
|
|
const unsigned compIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
|
|
surf_dens_perf[num_components_ * perf + compIdx] = FluidSystem::referenceDensity( phaseIdx, fs.pvtRegionIndex() );
|
|
}
|
|
|
|
// We use cell values for solvent injector
|
|
if (has_solvent) {
|
|
b_perf[num_components_ * perf + contiSolventEqIdx] = intQuants.solventInverseFormationVolumeFactor().value();
|
|
surf_dens_perf[num_components_ * perf + contiSolventEqIdx] = intQuants.solventRefDensity();
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWell<TypeTag>::
|
|
computeConnectionDensities(const std::vector<double>& perfComponentRates,
|
|
const std::vector<double>& b_perf,
|
|
const std::vector<double>& rsmax_perf,
|
|
const std::vector<double>& rvmax_perf,
|
|
const std::vector<double>& surf_dens_perf)
|
|
{
|
|
// Verify that we have consistent input.
|
|
const int nperf = number_of_perforations_;
|
|
const int num_comp = num_components_;
|
|
|
|
// 1. Compute the flow (in surface volume units for each
|
|
// component) exiting up the wellbore from each perforation,
|
|
// taking into account flow from lower in the well, and
|
|
// in/out-flow at each perforation.
|
|
std::vector<double> q_out_perf(nperf*num_comp);
|
|
|
|
// TODO: investigate whether we should use the following techniques to calcuate the composition of flows in the wellbore
|
|
// Iterate over well perforations from bottom to top.
|
|
for (int perf = nperf - 1; perf >= 0; --perf) {
|
|
for (int component = 0; component < num_comp; ++component) {
|
|
if (perf == nperf - 1) {
|
|
// This is the bottom perforation. No flow from below.
|
|
q_out_perf[perf*num_comp+ component] = 0.0;
|
|
} else {
|
|
// Set equal to flow from below.
|
|
q_out_perf[perf*num_comp + component] = q_out_perf[(perf+1)*num_comp + component];
|
|
}
|
|
// Subtract outflow through perforation.
|
|
q_out_perf[perf*num_comp + component] -= perfComponentRates[perf*num_comp + component];
|
|
}
|
|
}
|
|
|
|
// 2. Compute the component mix at each perforation as the
|
|
// absolute values of the surface rates divided by their sum.
|
|
// Then compute volume ratios (formation factors) for each perforation.
|
|
// Finally compute densities for the segments associated with each perforation.
|
|
std::vector<double> mix(num_comp,0.0);
|
|
std::vector<double> x(num_comp);
|
|
std::vector<double> surf_dens(num_comp);
|
|
|
|
for (int perf = 0; perf < nperf; ++perf) {
|
|
// Find component mix.
|
|
const double tot_surf_rate = std::accumulate(q_out_perf.begin() + num_comp*perf,
|
|
q_out_perf.begin() + num_comp*(perf+1), 0.0);
|
|
if (tot_surf_rate != 0.0) {
|
|
for (int component = 0; component < num_comp; ++component) {
|
|
mix[component] = std::fabs(q_out_perf[perf*num_comp + component]/tot_surf_rate);
|
|
}
|
|
} else {
|
|
std::fill(mix.begin(), mix.end(), 0.0);
|
|
// No flow => use well specified fractions for mix.
|
|
if (this->isInjector()) {
|
|
switch (this->wellEcl().injectorType()) {
|
|
case InjectorType::WATER:
|
|
mix[FluidSystem::waterCompIdx] = 1.0;
|
|
break;
|
|
case InjectorType::GAS:
|
|
mix[FluidSystem::gasCompIdx] = 1.0;
|
|
break;
|
|
case InjectorType::OIL:
|
|
mix[FluidSystem::oilCompIdx] = 1.0;
|
|
break;
|
|
case InjectorType::MULTI:
|
|
// Not supported.
|
|
// deferred_logger.warning("MULTI_PHASE_INJECTOR_NOT_SUPPORTED",
|
|
// "Multi phase injectors are not supported, requested for well " + name());
|
|
break;
|
|
}
|
|
} else {
|
|
assert(this->isProducer());
|
|
// Using the preferred phase to decide the mix initialization.
|
|
switch (this->wellEcl().getPreferredPhase()) {
|
|
case Phase::OIL:
|
|
mix[FluidSystem::oilCompIdx] = 1.0;
|
|
break;
|
|
case Phase::GAS:
|
|
mix[FluidSystem::gasCompIdx] = 1.0;
|
|
break;
|
|
case Phase::WATER:
|
|
mix[FluidSystem::waterCompIdx] = 1.0;
|
|
break;
|
|
default:
|
|
// No others supported.
|
|
break;
|
|
}
|
|
|
|
}
|
|
}
|
|
// Compute volume ratio.
|
|
x = mix;
|
|
|
|
// Subtract dissolved gas from oil phase and vapporized oil from gas phase
|
|
if (FluidSystem::phaseIsActive(FluidSystem::gasCompIdx) && FluidSystem::phaseIsActive(FluidSystem::oilCompIdx)) {
|
|
const unsigned gaspos = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
|
|
const unsigned oilpos = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
|
|
double rs = 0.0;
|
|
double rv = 0.0;
|
|
if (!rsmax_perf.empty() && mix[oilpos] > 1e-12) {
|
|
rs = std::min(mix[gaspos]/mix[oilpos], rsmax_perf[perf]);
|
|
}
|
|
if (!rvmax_perf.empty() && mix[gaspos] > 1e-12) {
|
|
rv = std::min(mix[oilpos]/mix[gaspos], rvmax_perf[perf]);
|
|
}
|
|
if (rs != 0.0) {
|
|
// Subtract gas in oil from gas mixture
|
|
x[gaspos] = (mix[gaspos] - mix[oilpos]*rs)/(1.0 - rs*rv);
|
|
}
|
|
if (rv != 0.0) {
|
|
// Subtract oil in gas from oil mixture
|
|
x[oilpos] = (mix[oilpos] - mix[gaspos]*rv)/(1.0 - rs*rv);;
|
|
}
|
|
}
|
|
double volrat = 0.0;
|
|
for (int component = 0; component < num_comp; ++component) {
|
|
volrat += x[component] / b_perf[perf*num_comp+ component];
|
|
}
|
|
for (int component = 0; component < num_comp; ++component) {
|
|
surf_dens[component] = surf_dens_perf[perf*num_comp+ component];
|
|
}
|
|
|
|
// Compute segment density.
|
|
perf_densities_[perf] = std::inner_product(surf_dens.begin(), surf_dens.end(), mix.begin(), 0.0) / volrat;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWell<TypeTag>::
|
|
computeConnectionPressureDelta()
|
|
{
|
|
// Algorithm:
|
|
|
|
// We'll assume the perforations are given in order from top to
|
|
// bottom for each well. By top and bottom we do not necessarily
|
|
// mean in a geometric sense (depth), but in a topological sense:
|
|
// the 'top' perforation is nearest to the surface topologically.
|
|
// Our goal is to compute a pressure delta for each perforation.
|
|
|
|
// 1. Compute pressure differences between perforations.
|
|
// dp_perf will contain the pressure difference between a
|
|
// perforation and the one above it, except for the first
|
|
// perforation for each well, for which it will be the
|
|
// difference to the reference (bhp) depth.
|
|
|
|
const int nperf = number_of_perforations_;
|
|
perf_pressure_diffs_.resize(nperf, 0.0);
|
|
|
|
for (int perf = 0; perf < nperf; ++perf) {
|
|
const double z_above = perf == 0 ? ref_depth_ : perf_depth_[perf - 1];
|
|
const double dz = perf_depth_[perf] - z_above;
|
|
perf_pressure_diffs_[perf] = dz * perf_densities_[perf] * gravity_;
|
|
}
|
|
|
|
// 2. Compute pressure differences to the reference point (bhp) by
|
|
// accumulating the already computed adjacent pressure
|
|
// differences, storing the result in dp_perf.
|
|
// This accumulation must be done per well.
|
|
const auto beg = perf_pressure_diffs_.begin();
|
|
const auto end = perf_pressure_diffs_.end();
|
|
std::partial_sum(beg, end, beg);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
ConvergenceReport
|
|
StandardWell<TypeTag>::
|
|
getWellConvergence(const WellState& well_state,
|
|
const std::vector<double>& B_avg,
|
|
Opm::DeferredLogger& deferred_logger,
|
|
const bool /*relax_tolerance*/) const
|
|
{
|
|
// the following implementation assume that the polymer is always after the w-o-g phases
|
|
// For the polymer, energy and foam cases, there is one more mass balance equations of reservoir than wells
|
|
assert((int(B_avg.size()) == num_components_) || has_polymer || has_energy || has_foam || has_brine);
|
|
|
|
const double tol_wells = param_.tolerance_wells_;
|
|
const double maxResidualAllowed = param_.max_residual_allowed_;
|
|
|
|
std::vector<double> res(numWellEq_);
|
|
for (int eq_idx = 0; eq_idx < numWellEq_; ++eq_idx) {
|
|
// magnitude of the residual matters
|
|
res[eq_idx] = std::abs(resWell_[0][eq_idx]);
|
|
}
|
|
|
|
std::vector<double> well_flux_residual(num_components_);
|
|
|
|
// Finish computation
|
|
for ( int compIdx = 0; compIdx < num_components_; ++compIdx )
|
|
{
|
|
well_flux_residual[compIdx] = B_avg[compIdx] * res[compIdx];
|
|
}
|
|
|
|
ConvergenceReport report;
|
|
using CR = ConvergenceReport;
|
|
CR::WellFailure::Type type = CR::WellFailure::Type::MassBalance;
|
|
// checking if any NaN or too large residuals found
|
|
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) {
|
|
if (!FluidSystem::phaseIsActive(phaseIdx)) {
|
|
continue;
|
|
}
|
|
|
|
const unsigned canonicalCompIdx = FluidSystem::solventComponentIndex(phaseIdx);
|
|
const int compIdx = Indices::canonicalToActiveComponentIndex(canonicalCompIdx);
|
|
|
|
if (std::isnan(well_flux_residual[compIdx])) {
|
|
report.setWellFailed({type, CR::Severity::NotANumber, compIdx, name()});
|
|
} else if (well_flux_residual[compIdx] > maxResidualAllowed) {
|
|
report.setWellFailed({type, CR::Severity::TooLarge, compIdx, name()});
|
|
} else if (well_flux_residual[compIdx] > tol_wells) {
|
|
report.setWellFailed({type, CR::Severity::Normal, compIdx, name()});
|
|
}
|
|
}
|
|
|
|
checkConvergenceControlEq(well_state, report, deferred_logger);
|
|
|
|
checkConvergenceExtraEqs(res, report);
|
|
|
|
return report;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWell<TypeTag>::
|
|
computeWellConnectionDensitesPressures(const WellState& well_state,
|
|
const std::vector<double>& b_perf,
|
|
const std::vector<double>& rsmax_perf,
|
|
const std::vector<double>& rvmax_perf,
|
|
const std::vector<double>& surf_dens_perf)
|
|
{
|
|
// Compute densities
|
|
const int nperf = number_of_perforations_;
|
|
const int np = number_of_phases_;
|
|
std::vector<double> perfRates(b_perf.size(),0.0);
|
|
|
|
for (int perf = 0; perf < nperf; ++perf) {
|
|
for (int comp = 0; comp < np; ++comp) {
|
|
perfRates[perf * num_components_ + comp] = well_state.perfPhaseRates()[(first_perf_ + perf) * np + ebosCompIdxToFlowCompIdx(comp)];
|
|
}
|
|
if(has_solvent) {
|
|
perfRates[perf * num_components_ + contiSolventEqIdx] = well_state.perfRateSolvent()[first_perf_ + perf];
|
|
}
|
|
}
|
|
|
|
computeConnectionDensities(perfRates, b_perf, rsmax_perf, rvmax_perf, surf_dens_perf);
|
|
|
|
computeConnectionPressureDelta();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWell<TypeTag>::
|
|
computeWellConnectionPressures(const Simulator& ebosSimulator,
|
|
const WellState& well_state)
|
|
{
|
|
// 1. Compute properties required by computeConnectionPressureDelta().
|
|
// Note that some of the complexity of this part is due to the function
|
|
// taking std::vector<double> arguments, and not Eigen objects.
|
|
std::vector<double> b_perf;
|
|
std::vector<double> rsmax_perf;
|
|
std::vector<double> rvmax_perf;
|
|
std::vector<double> surf_dens_perf;
|
|
computePropertiesForWellConnectionPressures(ebosSimulator, well_state, b_perf, rsmax_perf, rvmax_perf, surf_dens_perf);
|
|
computeWellConnectionDensitesPressures(well_state, b_perf, rsmax_perf, rvmax_perf, surf_dens_perf);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWell<TypeTag>::
|
|
solveEqAndUpdateWellState(WellState& well_state, Opm::DeferredLogger& deferred_logger)
|
|
{
|
|
if (!this->isOperable() && !this->wellIsStopped()) return;
|
|
|
|
// We assemble the well equations, then we check the convergence,
|
|
// which is why we do not put the assembleWellEq here.
|
|
BVectorWell dx_well(1);
|
|
dx_well[0].resize(numWellEq_);
|
|
invDuneD_.mv(resWell_, dx_well);
|
|
|
|
updateWellState(dx_well, well_state, deferred_logger);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWell<TypeTag>::
|
|
calculateExplicitQuantities(const Simulator& ebosSimulator,
|
|
const WellState& well_state,
|
|
Opm::DeferredLogger& deferred_logger)
|
|
{
|
|
updatePrimaryVariables(well_state, deferred_logger);
|
|
initPrimaryVariablesEvaluation();
|
|
computeWellConnectionPressures(ebosSimulator, well_state);
|
|
computeAccumWell();
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWell<TypeTag>::
|
|
computeAccumWell()
|
|
{
|
|
for (int eq_idx = 0; eq_idx < numWellConservationEq; ++eq_idx) {
|
|
F0_[eq_idx] = wellSurfaceVolumeFraction(eq_idx).value();
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWell<TypeTag>::
|
|
apply(const BVector& x, BVector& Ax) const
|
|
{
|
|
if (!this->isOperable() && !this->wellIsStopped()) return;
|
|
|
|
if ( param_.matrix_add_well_contributions_ )
|
|
{
|
|
// Contributions are already in the matrix itself
|
|
return;
|
|
}
|
|
assert( Bx_.size() == duneB_.N() );
|
|
assert( invDrw_.size() == invDuneD_.N() );
|
|
|
|
// Bx_ = duneB_ * x
|
|
duneB_.mv(x, Bx_);
|
|
// invDBx = invDuneD_ * Bx_
|
|
// TODO: with this, we modified the content of the invDrw_.
|
|
// Is it necessary to do this to save some memory?
|
|
BVectorWell& invDBx = invDrw_;
|
|
invDuneD_.mv(Bx_, invDBx);
|
|
|
|
// Ax = Ax - duneC_^T * invDBx
|
|
duneC_.mmtv(invDBx,Ax);
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWell<TypeTag>::
|
|
apply(BVector& r) const
|
|
{
|
|
if (!this->isOperable() && !this->wellIsStopped()) return;
|
|
|
|
assert( invDrw_.size() == invDuneD_.N() );
|
|
|
|
// invDrw_ = invDuneD_ * resWell_
|
|
invDuneD_.mv(resWell_, invDrw_);
|
|
// r = r - duneC_^T * invDrw_
|
|
duneC_.mmtv(invDrw_, r);
|
|
}
|
|
|
|
#if HAVE_CUDA
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWell<TypeTag>::
|
|
addWellContribution(WellContributions& wellContribs) const
|
|
{
|
|
std::vector<int> colIndices;
|
|
std::vector<double> nnzValues;
|
|
colIndices.reserve(duneB_.nonzeroes());
|
|
nnzValues.reserve(duneB_.nonzeroes()*numStaticWellEq * numEq);
|
|
|
|
// duneC
|
|
for ( auto colC = duneC_[0].begin(), endC = duneC_[0].end(); colC != endC; ++colC )
|
|
{
|
|
colIndices.emplace_back(colC.index());
|
|
for (int i = 0; i < numStaticWellEq; ++i) {
|
|
for (int j = 0; j < numEq; ++j) {
|
|
nnzValues.emplace_back((*colC)[i][j]);
|
|
}
|
|
}
|
|
}
|
|
wellContribs.addMatrix(WellContributions::MatrixType::C, colIndices.data(), nnzValues.data(), duneC_.nonzeroes());
|
|
|
|
// invDuneD
|
|
colIndices.clear();
|
|
nnzValues.clear();
|
|
colIndices.emplace_back(0);
|
|
for (int i = 0; i < numStaticWellEq; ++i)
|
|
{
|
|
for (int j = 0; j < numStaticWellEq; ++j) {
|
|
nnzValues.emplace_back(invDuneD_[0][0][i][j]);
|
|
}
|
|
}
|
|
wellContribs.addMatrix(WellContributions::MatrixType::D, colIndices.data(), nnzValues.data(), 1);
|
|
|
|
// duneB
|
|
colIndices.clear();
|
|
nnzValues.clear();
|
|
for ( auto colB = duneB_[0].begin(), endB = duneB_[0].end(); colB != endB; ++colB )
|
|
{
|
|
colIndices.emplace_back(colB.index());
|
|
for (int i = 0; i < numStaticWellEq; ++i) {
|
|
for (int j = 0; j < numEq; ++j) {
|
|
nnzValues.emplace_back((*colB)[i][j]);
|
|
}
|
|
}
|
|
}
|
|
wellContribs.addMatrix(WellContributions::MatrixType::B, colIndices.data(), nnzValues.data(), duneB_.nonzeroes());
|
|
}
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWell<TypeTag>::
|
|
getNumBlocks(unsigned int& numBlocks) const
|
|
{
|
|
numBlocks = duneB_.nonzeroes();
|
|
}
|
|
#endif
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWell<TypeTag>::
|
|
recoverSolutionWell(const BVector& x, BVectorWell& xw) const
|
|
{
|
|
if (!this->isOperable() && !this->wellIsStopped()) return;
|
|
|
|
BVectorWell resWell = resWell_;
|
|
// resWell = resWell - B * x
|
|
duneB_.mmv(x, resWell);
|
|
// xw = D^-1 * resWell
|
|
invDuneD_.mv(resWell, xw);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWell<TypeTag>::
|
|
recoverWellSolutionAndUpdateWellState(const BVector& x,
|
|
WellState& well_state,
|
|
Opm::DeferredLogger& deferred_logger) const
|
|
{
|
|
if (!this->isOperable() && !this->wellIsStopped()) return;
|
|
|
|
BVectorWell xw(1);
|
|
xw[0].resize(numWellEq_);
|
|
|
|
recoverSolutionWell(x, xw);
|
|
updateWellState(xw, well_state, deferred_logger);
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWell<TypeTag>::
|
|
computeWellRatesWithBhp(const Simulator& ebosSimulator,
|
|
const double& bhp,
|
|
std::vector<double>& well_flux,
|
|
Opm::DeferredLogger& deferred_logger) const
|
|
{
|
|
|
|
const int np = number_of_phases_;
|
|
well_flux.resize(np, 0.0);
|
|
|
|
const bool allow_cf = getAllowCrossFlow();
|
|
|
|
for (int perf = 0; perf < number_of_perforations_; ++perf) {
|
|
const int cell_idx = well_cells_[perf];
|
|
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/ 0));
|
|
// flux for each perforation
|
|
std::vector<EvalWell> mob(num_components_, {numWellEq_ + numEq, 0.});
|
|
getMobility(ebosSimulator, perf, mob, deferred_logger);
|
|
double trans_mult = ebosSimulator.problem().template rockCompTransMultiplier<double>(intQuants, cell_idx);
|
|
const double Tw = well_index_[perf] * trans_mult;
|
|
|
|
std::vector<EvalWell> cq_s(num_components_, {numWellEq_ + numEq, 0.});
|
|
double perf_dis_gas_rate = 0.;
|
|
double perf_vap_oil_rate = 0.;
|
|
computePerfRate(intQuants, mob, EvalWell(numWellEq_ + numEq, bhp), Tw, perf, allow_cf,
|
|
cq_s, perf_dis_gas_rate, perf_vap_oil_rate, deferred_logger);
|
|
|
|
for(int p = 0; p < np; ++p) {
|
|
well_flux[ebosCompIdxToFlowCompIdx(p)] += cq_s[p].value();
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWell<TypeTag>::
|
|
computeWellRatesWithBhpPotential(const Simulator& ebosSimulator,
|
|
const std::vector<Scalar>& B_avg,
|
|
const double& bhp,
|
|
std::vector<double>& well_flux,
|
|
Opm::DeferredLogger& deferred_logger)
|
|
{
|
|
|
|
// iterate to get a more accurate well density
|
|
// create a copy of the well_state to use. If the operability checking is sucessful, we use this one
|
|
// to replace the original one
|
|
WellState well_state_copy = ebosSimulator.problem().wellModel().wellState();
|
|
|
|
// Set current control to bhp, and bhp value in state, modify bhp limit in control object.
|
|
if (well_ecl_.isInjector()) {
|
|
well_state_copy.currentInjectionControls()[index_of_well_] = Well::InjectorCMode::BHP;
|
|
} else {
|
|
well_state_copy.currentProductionControls()[index_of_well_] = Well::ProducerCMode::BHP;
|
|
}
|
|
well_state_copy.bhp()[index_of_well_] = bhp;
|
|
|
|
bool converged = this->solveWellEqUntilConverged(ebosSimulator, B_avg, well_state_copy, deferred_logger);
|
|
|
|
if (!converged) {
|
|
const std::string msg = " well " + name() + " did not get converged during well potential calculations "
|
|
"returning zero values for the potential";
|
|
deferred_logger.debug(msg);
|
|
return;
|
|
}
|
|
updatePrimaryVariables(well_state_copy, deferred_logger);
|
|
computeWellConnectionPressures(ebosSimulator, well_state_copy);
|
|
initPrimaryVariablesEvaluation();
|
|
|
|
|
|
computeWellRatesWithBhp(ebosSimulator, bhp, well_flux, deferred_logger);
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
std::vector<double>
|
|
StandardWell<TypeTag>::
|
|
computeWellPotentialWithTHP(const Simulator& ebos_simulator,
|
|
Opm::DeferredLogger& deferred_logger) const
|
|
{
|
|
std::vector<double> potentials(number_of_phases_, 0.0);
|
|
const auto& summary_state = ebos_simulator.vanguard().summaryState();
|
|
|
|
const auto& well = well_ecl_;
|
|
if (well.isInjector()){
|
|
auto bhp_at_thp_limit = computeBhpAtThpLimitInj(ebos_simulator, summary_state, deferred_logger);
|
|
if (bhp_at_thp_limit) {
|
|
const auto& controls = well_ecl_.injectionControls(summary_state);
|
|
const double bhp = std::min(*bhp_at_thp_limit, controls.bhp_limit);
|
|
computeWellRatesWithBhp(ebos_simulator, bhp, potentials, deferred_logger);
|
|
} else {
|
|
deferred_logger.warning("FAILURE_GETTING_CONVERGED_POTENTIAL",
|
|
"Failed in getting converged thp based potential calculation for well "
|
|
+ name() + ". Instead the bhp based value is used");
|
|
const auto& controls = well_ecl_.injectionControls(summary_state);
|
|
const double bhp = controls.bhp_limit;
|
|
computeWellRatesWithBhp(ebos_simulator, bhp, potentials, deferred_logger);
|
|
}
|
|
} else {
|
|
auto bhp_at_thp_limit = computeBhpAtThpLimitProd(ebos_simulator, summary_state, deferred_logger);
|
|
if (bhp_at_thp_limit) {
|
|
const auto& controls = well_ecl_.productionControls(summary_state);
|
|
const double bhp = std::max(*bhp_at_thp_limit, controls.bhp_limit);
|
|
computeWellRatesWithBhp(ebos_simulator, bhp, potentials, deferred_logger);
|
|
} else {
|
|
deferred_logger.warning("FAILURE_GETTING_CONVERGED_POTENTIAL",
|
|
"Failed in getting converged thp based potential calculation for well "
|
|
+ name() + ". Instead the bhp based value is used");
|
|
const auto& controls = well_ecl_.productionControls(summary_state);
|
|
const double bhp = controls.bhp_limit;
|
|
computeWellRatesWithBhp(ebos_simulator, bhp, potentials, deferred_logger);
|
|
}
|
|
}
|
|
|
|
return potentials;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWell<TypeTag>::
|
|
computeWellPotentials(const Simulator& ebosSimulator,
|
|
const std::vector<Scalar>& B_avg,
|
|
const WellState& well_state,
|
|
std::vector<double>& well_potentials,
|
|
Opm::DeferredLogger& deferred_logger) // const
|
|
{
|
|
const int np = number_of_phases_;
|
|
well_potentials.resize(np, 0.0);
|
|
|
|
if (this->wellIsStopped()) {
|
|
return;
|
|
}
|
|
|
|
// creating a copy of the well itself, to avoid messing up the explicit informations
|
|
// during this copy, the only information not copied properly is the well controls
|
|
StandardWell<TypeTag> well(*this);
|
|
well.calculateExplicitQuantities(ebosSimulator, well_state, deferred_logger);
|
|
|
|
// does the well have a THP related constraint?
|
|
const auto& summaryState = ebosSimulator.vanguard().summaryState();
|
|
const Well::ProducerCMode& current_control = well_state.currentProductionControls()[this->index_of_well_];
|
|
if ( !well.Base::wellHasTHPConstraints(summaryState) || current_control == Well::ProducerCMode::BHP ) {
|
|
// get the bhp value based on the bhp constraints
|
|
const double bhp = well.mostStrictBhpFromBhpLimits(summaryState);
|
|
assert(std::abs(bhp) != std::numeric_limits<double>::max());
|
|
well.computeWellRatesWithBhpPotential(ebosSimulator, B_avg, bhp, well_potentials, deferred_logger);
|
|
} else {
|
|
// the well has a THP related constraint
|
|
well_potentials = well.computeWellPotentialWithTHP(ebosSimulator, deferred_logger);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWell<TypeTag>::
|
|
updatePrimaryVariables(const WellState& well_state, Opm::DeferredLogger& deferred_logger) const
|
|
{
|
|
if (!this->isOperable() && !this->wellIsStopped()) return;
|
|
|
|
const int well_index = index_of_well_;
|
|
const int np = number_of_phases_;
|
|
const auto& pu = phaseUsage();
|
|
|
|
// the weighted total well rate
|
|
double total_well_rate = 0.0;
|
|
for (int p = 0; p < np; ++p) {
|
|
total_well_rate += scalingFactor(p) * well_state.wellRates()[np * well_index + p];
|
|
}
|
|
|
|
// Not: for the moment, the first primary variable for the injectors is not G_total. The injection rate
|
|
// under surface condition is used here
|
|
if (this->isInjector()) {
|
|
switch (this->wellEcl().injectorType()) {
|
|
case InjectorType::WATER:
|
|
primary_variables_[WQTotal] = well_state.wellRates()[np * well_index + pu.phase_pos[Water]];
|
|
break;
|
|
case InjectorType::GAS:
|
|
primary_variables_[WQTotal] = well_state.wellRates()[np * well_index + pu.phase_pos[Gas]];
|
|
break;
|
|
case InjectorType::OIL:
|
|
primary_variables_[WQTotal] = well_state.wellRates()[np * well_index + pu.phase_pos[Oil]];
|
|
break;
|
|
case InjectorType::MULTI:
|
|
// Not supported.
|
|
deferred_logger.warning("MULTI_PHASE_INJECTOR_NOT_SUPPORTED",
|
|
"Multi phase injectors are not supported, requested for well " + name());
|
|
break;
|
|
}
|
|
} else {
|
|
for (int p = 0; p < np; ++p) {
|
|
primary_variables_[WQTotal] = total_well_rate;
|
|
}
|
|
}
|
|
|
|
if (std::abs(total_well_rate) > 0.) {
|
|
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
|
|
primary_variables_[WFrac] = scalingFactor(pu.phase_pos[Water]) * well_state.wellRates()[np*well_index + pu.phase_pos[Water]] / total_well_rate;
|
|
}
|
|
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
|
|
primary_variables_[GFrac] = scalingFactor(pu.phase_pos[Gas]) * (well_state.wellRates()[np*well_index + pu.phase_pos[Gas]] - well_state.solventWellRate(well_index)) / total_well_rate ;
|
|
}
|
|
if (has_solvent) {
|
|
primary_variables_[SFrac] = scalingFactor(pu.phase_pos[Gas]) * well_state.solventWellRate(well_index) / total_well_rate ;
|
|
}
|
|
} else { // total_well_rate == 0
|
|
if (this->isInjector()) {
|
|
auto phase = well_ecl_.getInjectionProperties().injectorType;
|
|
// only single phase injection handled
|
|
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
|
|
if (phase == InjectorType::WATER) {
|
|
primary_variables_[WFrac] = 1.0;
|
|
} else {
|
|
primary_variables_[WFrac] = 0.0;
|
|
}
|
|
}
|
|
|
|
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
|
|
if (phase == InjectorType::GAS) {
|
|
primary_variables_[GFrac] = 1.0 - wsolvent();
|
|
if (has_solvent) {
|
|
primary_variables_[SFrac] = wsolvent();
|
|
}
|
|
} else {
|
|
primary_variables_[GFrac] = 0.0;
|
|
}
|
|
}
|
|
|
|
// TODO: it is possible to leave injector as a oil well,
|
|
// when F_w and F_g both equals to zero, not sure under what kind of circumstance
|
|
// this will happen.
|
|
} else if (this->isProducer()) { // producers
|
|
// TODO: the following are not addressed for the solvent case yet
|
|
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
|
|
primary_variables_[WFrac] = 1.0 / np;
|
|
}
|
|
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
|
|
primary_variables_[GFrac] = 1.0 / np;
|
|
}
|
|
} else {
|
|
OPM_DEFLOG_THROW(std::logic_error, "Expected PRODUCER or INJECTOR type of well", deferred_logger);
|
|
}
|
|
}
|
|
|
|
|
|
// BHP
|
|
primary_variables_[Bhp] = well_state.bhp()[index_of_well_];
|
|
|
|
// other primary variables related to polymer injection
|
|
if (this->has_polymermw && this->isInjector()) {
|
|
for (int perf = 0; perf < number_of_perforations_; ++perf) {
|
|
primary_variables_[Bhp + 1 + perf] = well_state.perfWaterVelocity()[first_perf_ + perf];
|
|
primary_variables_[Bhp + 1 + number_of_perforations_ + perf] = well_state.perfSkinPressure()[first_perf_ + perf];
|
|
}
|
|
}
|
|
#ifndef NDEBUG
|
|
for (double v : primary_variables_) {
|
|
assert(Opm::isfinite(v));
|
|
}
|
|
#endif
|
|
}
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
template<class ValueType>
|
|
ValueType
|
|
StandardWell<TypeTag>::
|
|
calculateBhpFromThp(const std::vector<ValueType>& rates,
|
|
const Well& well,
|
|
const SummaryState& summaryState,
|
|
Opm::DeferredLogger& deferred_logger) const
|
|
{
|
|
// TODO: when well is under THP control, the BHP is dependent on the rates,
|
|
// the well rates is also dependent on the BHP, so it might need to do some iteration.
|
|
// However, when group control is involved, change of the rates might impacts other wells
|
|
// so iterations on a higher level will be required. Some investigation might be needed when
|
|
// we face problems under THP control.
|
|
|
|
assert(int(rates.size()) == 3); // the vfp related only supports three phases now.
|
|
|
|
const ValueType aqua = rates[Water];
|
|
const ValueType liquid = rates[Oil];
|
|
const ValueType vapour = rates[Gas];
|
|
|
|
// pick the density in the top layer
|
|
// TODO: it is possible it should be a Evaluation
|
|
const double rho = perf_densities_[0];
|
|
|
|
if (this->isInjector() )
|
|
{
|
|
const auto& controls = well.injectionControls(summaryState);
|
|
const double vfp_ref_depth = vfp_properties_->getInj()->getTable(controls.vfp_table_number)->getDatumDepth();
|
|
const double dp = wellhelpers::computeHydrostaticCorrection(ref_depth_, vfp_ref_depth, rho, gravity_);
|
|
return vfp_properties_->getInj()->bhp(controls.vfp_table_number, aqua, liquid, vapour, controls.thp_limit) - dp;
|
|
}
|
|
else if (this->isProducer()) {
|
|
const auto& controls = well.productionControls(summaryState);
|
|
const double vfp_ref_depth = vfp_properties_->getProd()->getTable(controls.vfp_table_number)->getDatumDepth();
|
|
const double dp = wellhelpers::computeHydrostaticCorrection(ref_depth_, vfp_ref_depth, rho, gravity_);
|
|
return vfp_properties_->getProd()->bhp(controls.vfp_table_number, aqua, liquid, vapour, controls.thp_limit, controls.alq_value) - dp;
|
|
}
|
|
else {
|
|
OPM_DEFLOG_THROW(std::logic_error, "Expected INJECTOR or PRODUCER well", deferred_logger);
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
double
|
|
StandardWell<TypeTag>::
|
|
calculateThpFromBhp(const std::vector<double>& rates,
|
|
const double bhp,
|
|
Opm::DeferredLogger& deferred_logger) const
|
|
{
|
|
assert(int(rates.size()) == 3); // the vfp related only supports three phases now.
|
|
|
|
const double aqua = rates[Water];
|
|
const double liquid = rates[Oil];
|
|
const double vapour = rates[Gas];
|
|
|
|
// pick the density in the top layer
|
|
const double rho = perf_densities_[0];
|
|
|
|
double thp = 0.0;
|
|
if (this->isInjector()) {
|
|
const int table_id = well_ecl_.vfp_table_number();
|
|
const double vfp_ref_depth = vfp_properties_->getInj()->getTable(table_id)->getDatumDepth();
|
|
const double dp = wellhelpers::computeHydrostaticCorrection(ref_depth_, vfp_ref_depth, rho, gravity_);
|
|
|
|
thp = vfp_properties_->getInj()->thp(table_id, aqua, liquid, vapour, bhp + dp);
|
|
}
|
|
else if (this->isProducer()) {
|
|
const int table_id = well_ecl_.vfp_table_number();
|
|
const double alq = well_ecl_.alq_value();
|
|
const double vfp_ref_depth = vfp_properties_->getProd()->getTable(table_id)->getDatumDepth();
|
|
const double dp = wellhelpers::computeHydrostaticCorrection(ref_depth_, vfp_ref_depth, rho, gravity_);
|
|
|
|
thp = vfp_properties_->getProd()->thp(table_id, aqua, liquid, vapour, bhp + dp, alq);
|
|
}
|
|
else {
|
|
OPM_DEFLOG_THROW(std::logic_error, "Expected INJECTOR or PRODUCER well", deferred_logger);
|
|
}
|
|
|
|
return thp;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWell<TypeTag>::
|
|
updateWaterMobilityWithPolymer(const Simulator& ebos_simulator,
|
|
const int perf,
|
|
std::vector<EvalWell>& mob,
|
|
Opm::DeferredLogger& deferred_logger) const
|
|
{
|
|
// for the cases related to polymer molecular weight, we assume fully mixing
|
|
// as a result, the polymer and water share the same viscosity
|
|
if (this->has_polymermw) {
|
|
return;
|
|
}
|
|
const int cell_idx = well_cells_[perf];
|
|
const auto& int_quant = *(ebos_simulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/ 0));
|
|
const EvalWell polymer_concentration = extendEval(int_quant.polymerConcentration());
|
|
|
|
// TODO: not sure should based on the well type or injecting/producing peforations
|
|
// it can be different for crossflow
|
|
if (this->isInjector()) {
|
|
// assume fully mixing within injecting wellbore
|
|
const auto& visc_mult_table = PolymerModule::plyviscViscosityMultiplierTable(int_quant.pvtRegionIndex());
|
|
const unsigned waterCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx);
|
|
mob[waterCompIdx] /= (extendEval(int_quant.waterViscosityCorrection()) * visc_mult_table.eval(polymer_concentration, /*extrapolate=*/true) );
|
|
}
|
|
|
|
if (PolymerModule::hasPlyshlog()) {
|
|
// we do not calculate the shear effects for injection wells when they do not
|
|
// inject polymer.
|
|
if (this->isInjector() && wpolymer() == 0.) {
|
|
return;
|
|
}
|
|
// compute the well water velocity with out shear effects.
|
|
// TODO: do we need to turn on crossflow here?
|
|
const bool allow_cf = getAllowCrossFlow() || openCrossFlowAvoidSingularity(ebos_simulator);
|
|
const EvalWell& bhp = getBhp();
|
|
|
|
std::vector<EvalWell> cq_s(num_components_, {numWellEq_ + numEq, 0.});
|
|
double perf_dis_gas_rate = 0.;
|
|
double perf_vap_oil_rate = 0.;
|
|
double trans_mult = ebos_simulator.problem().template rockCompTransMultiplier<double>(int_quant, cell_idx);
|
|
const double Tw = well_index_[perf] * trans_mult;
|
|
computePerfRate(int_quant, mob, bhp, Tw, perf, allow_cf,
|
|
cq_s, perf_dis_gas_rate, perf_vap_oil_rate, deferred_logger);
|
|
// TODO: make area a member
|
|
const double area = 2 * M_PI * perf_rep_radius_[perf] * perf_length_[perf];
|
|
const auto& material_law_manager = ebos_simulator.problem().materialLawManager();
|
|
const auto& scaled_drainage_info =
|
|
material_law_manager->oilWaterScaledEpsInfoDrainage(cell_idx);
|
|
const double swcr = scaled_drainage_info.Swcr;
|
|
const EvalWell poro = extendEval(int_quant.porosity());
|
|
const EvalWell sw = extendEval(int_quant.fluidState().saturation(FluidSystem::waterPhaseIdx));
|
|
// guard against zero porosity and no water
|
|
const EvalWell denom = Opm::max( (area * poro * (sw - swcr)), 1e-12);
|
|
const unsigned waterCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx);
|
|
EvalWell water_velocity = cq_s[waterCompIdx] / denom * extendEval(int_quant.fluidState().invB(FluidSystem::waterPhaseIdx));
|
|
|
|
if (PolymerModule::hasShrate()) {
|
|
// the equation for the water velocity conversion for the wells and reservoir are from different version
|
|
// of implementation. It can be changed to be more consistent when possible.
|
|
water_velocity *= PolymerModule::shrate( int_quant.pvtRegionIndex() ) / bore_diameters_[perf];
|
|
}
|
|
const EvalWell shear_factor = PolymerModule::computeShearFactor(polymer_concentration,
|
|
int_quant.pvtRegionIndex(),
|
|
water_velocity);
|
|
// modify the mobility with the shear factor.
|
|
mob[waterCompIdx] /= shear_factor;
|
|
}
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWell<TypeTag>::addWellContributions(SparseMatrixAdapter& jacobian) const
|
|
{
|
|
// We need to change matrx A as follows
|
|
// A -= C^T D^-1 B
|
|
// D is diagonal
|
|
// B and C have 1 row, nc colums and nonzero
|
|
// at (0,j) only if this well has a perforation at cell j.
|
|
typename SparseMatrixAdapter::MatrixBlock tmpMat;
|
|
Dune::DynamicMatrix<Scalar> tmp;
|
|
for ( auto colC = duneC_[0].begin(), endC = duneC_[0].end(); colC != endC; ++colC )
|
|
{
|
|
const auto row_index = colC.index();
|
|
|
|
for ( auto colB = duneB_[0].begin(), endB = duneB_[0].end(); colB != endB; ++colB )
|
|
{
|
|
Detail::multMatrix(invDuneD_[0][0], (*colB), tmp);
|
|
Detail::negativeMultMatrixTransposed((*colC), tmp, tmpMat);
|
|
jacobian.addToBlock( row_index, colB.index(), tmpMat );
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
double
|
|
StandardWell<TypeTag>::
|
|
relaxationFactorFraction(const double old_value,
|
|
const double dx)
|
|
{
|
|
assert(old_value >= 0. && old_value <= 1.0);
|
|
|
|
double relaxation_factor = 1.;
|
|
|
|
// updated values without relaxation factor
|
|
const double possible_updated_value = old_value - dx;
|
|
|
|
// 0.95 is an experimental value remains to be optimized
|
|
if (possible_updated_value < 0.0) {
|
|
relaxation_factor = std::abs(old_value / dx) * 0.95;
|
|
} else if (possible_updated_value > 1.0) {
|
|
relaxation_factor = std::abs((1. - old_value) / dx) * 0.95;
|
|
}
|
|
// if possible_updated_value is between 0. and 1.0, then relaxation_factor
|
|
// remains to be one
|
|
|
|
assert(relaxation_factor >= 0. && relaxation_factor <= 1.);
|
|
|
|
return relaxation_factor;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
double
|
|
StandardWell<TypeTag>::
|
|
relaxationFactorFractionsProducer(const std::vector<double>& primary_variables,
|
|
const BVectorWell& dwells)
|
|
{
|
|
// TODO: not considering solvent yet
|
|
// 0.95 is a experimental value, which remains to be optimized
|
|
double relaxation_factor = 1.0;
|
|
|
|
if (FluidSystem::numActivePhases() > 1) {
|
|
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
|
|
const double relaxation_factor_w = relaxationFactorFraction(primary_variables[WFrac], dwells[0][WFrac]);
|
|
relaxation_factor = std::min(relaxation_factor, relaxation_factor_w);
|
|
}
|
|
|
|
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
|
|
const double relaxation_factor_g = relaxationFactorFraction(primary_variables[GFrac], dwells[0][GFrac]);
|
|
relaxation_factor = std::min(relaxation_factor, relaxation_factor_g);
|
|
}
|
|
|
|
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
|
|
// We need to make sure the even with the relaxation_factor, the sum of F_w and F_g is below one, so there will
|
|
// not be negative oil fraction later
|
|
const double original_sum = primary_variables[WFrac] + primary_variables[GFrac];
|
|
const double relaxed_update = (dwells[0][WFrac] + dwells[0][GFrac]) * relaxation_factor;
|
|
const double possible_updated_sum = original_sum - relaxed_update;
|
|
|
|
if (possible_updated_sum > 1.0) {
|
|
assert(relaxed_update != 0.);
|
|
|
|
const double further_relaxation_factor = std::abs((1. - original_sum) / relaxed_update) * 0.95;
|
|
relaxation_factor *= further_relaxation_factor;
|
|
}
|
|
}
|
|
|
|
assert(relaxation_factor >= 0.0 && relaxation_factor <= 1.0);
|
|
}
|
|
return relaxation_factor;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
double
|
|
StandardWell<TypeTag>::
|
|
relaxationFactorRate(const std::vector<double>& primary_variables,
|
|
const BVectorWell& dwells)
|
|
{
|
|
double relaxation_factor = 1.0;
|
|
|
|
// For injector, we only check the total rates to avoid sign change of rates
|
|
const double original_total_rate = primary_variables[WQTotal];
|
|
const double newton_update = dwells[0][WQTotal];
|
|
const double possible_update_total_rate = primary_variables[WQTotal] - newton_update;
|
|
|
|
// 0.8 here is a experimental value, which remains to be optimized
|
|
// if the original rate is zero or possible_update_total_rate is zero, relaxation_factor will
|
|
// always be 1.0, more thoughts might be needed.
|
|
if (original_total_rate * possible_update_total_rate < 0.) { // sign changed
|
|
relaxation_factor = std::abs(original_total_rate / newton_update) * 0.8;
|
|
}
|
|
|
|
assert(relaxation_factor >= 0.0 && relaxation_factor <= 1.0);
|
|
|
|
return relaxation_factor;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWell<TypeTag>::
|
|
wellTestingPhysical(const Simulator& ebos_simulator, const std::vector<double>& B_avg,
|
|
const double /* simulation_time */, const int /* report_step */,
|
|
WellState& well_state, WellTestState& welltest_state,
|
|
Opm::DeferredLogger& deferred_logger)
|
|
{
|
|
deferred_logger.info(" well " + name() + " is being tested for physical limits");
|
|
|
|
// some most difficult things are the explicit quantities, since there is no information
|
|
// in the WellState to do a decent initialization
|
|
|
|
// TODO: Let us assume that the simulator is updated
|
|
|
|
// Let us try to do a normal simualtion running, to keep checking the operability status
|
|
// If the well is not operable during any of the time. It means it does not pass the physical
|
|
// limit test.
|
|
|
|
// create a copy of the well_state to use. If the operability checking is sucessful, we use this one
|
|
// to replace the original one
|
|
WellState well_state_copy = well_state;
|
|
|
|
// TODO: well state for this well is kind of all zero status
|
|
// we should be able to provide a better initialization
|
|
calculateExplicitQuantities(ebos_simulator, well_state_copy, deferred_logger);
|
|
|
|
updateWellOperability(ebos_simulator, well_state_copy, deferred_logger);
|
|
|
|
if ( !this->isOperable() ) {
|
|
const std::string msg = " well " + name() + " is not operable during well testing for physical reason";
|
|
deferred_logger.debug(msg);
|
|
return;
|
|
}
|
|
|
|
updateWellStateWithTarget(ebos_simulator, well_state_copy, deferred_logger);
|
|
|
|
calculateExplicitQuantities(ebos_simulator, well_state_copy, deferred_logger);
|
|
|
|
const bool converged = this->solveWellEqUntilConverged(ebos_simulator, B_avg, well_state_copy, deferred_logger);
|
|
|
|
if (!converged) {
|
|
const std::string msg = " well " + name() + " did not get converged during well testing for physical reason";
|
|
deferred_logger.debug(msg);
|
|
return;
|
|
}
|
|
|
|
if (this->isOperable() ) {
|
|
welltest_state.openWell(name(), WellTestConfig::PHYSICAL );
|
|
const std::string msg = " well " + name() + " is re-opened through well testing for physical reason";
|
|
deferred_logger.info(msg);
|
|
well_state = well_state_copy;
|
|
} else {
|
|
const std::string msg = " well " + name() + " is not operable during well testing for physical reason";
|
|
deferred_logger.debug(msg);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
typename StandardWell<TypeTag>::EvalWell
|
|
StandardWell<TypeTag>::
|
|
pskinwater(const double throughput,
|
|
const EvalWell& water_velocity,
|
|
Opm::DeferredLogger& deferred_logger) const
|
|
{
|
|
if (!this->has_polymermw) {
|
|
OPM_DEFLOG_THROW(std::runtime_error, "Polymermw is not activated, "
|
|
"while injecting skin pressure is requested for well " << name(), deferred_logger);
|
|
}
|
|
const int water_table_id = well_ecl_.getPolymerProperties().m_skprwattable;
|
|
if (water_table_id <= 0) {
|
|
OPM_DEFLOG_THROW(std::runtime_error, "Unused SKPRWAT table id used for well " << name(), deferred_logger);
|
|
}
|
|
const auto& water_table_func = PolymerModule::getSkprwatTable(water_table_id);
|
|
const EvalWell throughput_eval(numWellEq_ + numEq, throughput);
|
|
// the skin pressure when injecting water, which also means the polymer concentration is zero
|
|
EvalWell pskin_water(numWellEq_ + numEq, 0.0);
|
|
pskin_water = water_table_func.eval(throughput_eval, water_velocity);
|
|
return pskin_water;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
typename StandardWell<TypeTag>::EvalWell
|
|
StandardWell<TypeTag>::
|
|
pskin(const double throughput,
|
|
const EvalWell& water_velocity,
|
|
const EvalWell& poly_inj_conc,
|
|
Opm::DeferredLogger& deferred_logger) const
|
|
{
|
|
if (!this->has_polymermw) {
|
|
OPM_DEFLOG_THROW(std::runtime_error, "Polymermw is not activated, "
|
|
"while injecting skin pressure is requested for well " << name(), deferred_logger);
|
|
}
|
|
const double sign = water_velocity >= 0. ? 1.0 : -1.0;
|
|
const EvalWell water_velocity_abs = Opm::abs(water_velocity);
|
|
if (poly_inj_conc == 0.) {
|
|
return sign * pskinwater(throughput, water_velocity_abs, deferred_logger);
|
|
}
|
|
const int polymer_table_id = well_ecl_.getPolymerProperties().m_skprpolytable;
|
|
if (polymer_table_id <= 0) {
|
|
OPM_DEFLOG_THROW(std::runtime_error, "Unavailable SKPRPOLY table id used for well " << name(), deferred_logger);
|
|
}
|
|
const auto& skprpolytable = PolymerModule::getSkprpolyTable(polymer_table_id);
|
|
const double reference_concentration = skprpolytable.refConcentration;
|
|
const EvalWell throughput_eval(numWellEq_ + numEq, throughput);
|
|
// the skin pressure when injecting water, which also means the polymer concentration is zero
|
|
EvalWell pskin_poly(numWellEq_ + numEq, 0.0);
|
|
pskin_poly = skprpolytable.table_func.eval(throughput_eval, water_velocity_abs);
|
|
if (poly_inj_conc == reference_concentration) {
|
|
return sign * pskin_poly;
|
|
}
|
|
// poly_inj_conc != reference concentration of the table, then some interpolation will be required
|
|
const EvalWell pskin_water = pskinwater(throughput, water_velocity_abs, deferred_logger);
|
|
const EvalWell pskin = pskin_water + (pskin_poly - pskin_water) / reference_concentration * poly_inj_conc;
|
|
return sign * pskin;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
typename StandardWell<TypeTag>::EvalWell
|
|
StandardWell<TypeTag>::
|
|
wpolymermw(const double throughput,
|
|
const EvalWell& water_velocity,
|
|
Opm::DeferredLogger& deferred_logger) const
|
|
{
|
|
if (!this->has_polymermw) {
|
|
OPM_DEFLOG_THROW(std::runtime_error, "Polymermw is not activated, "
|
|
"while injecting polymer molecular weight is requested for well " << name(), deferred_logger);
|
|
}
|
|
const int table_id = well_ecl_.getPolymerProperties().m_plymwinjtable;
|
|
const auto& table_func = PolymerModule::getPlymwinjTable(table_id);
|
|
const EvalWell throughput_eval(numWellEq_ + numEq, throughput);
|
|
EvalWell molecular_weight(numWellEq_ + numEq, 0.);
|
|
if (wpolymer() == 0.) { // not injecting polymer
|
|
return molecular_weight;
|
|
}
|
|
molecular_weight = table_func.eval(throughput_eval, Opm::abs(water_velocity));
|
|
return molecular_weight;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWell<TypeTag>::
|
|
updateWaterThroughput(const double dt, WellState &well_state) const
|
|
{
|
|
if (this->has_polymermw && this->isInjector()) {
|
|
for (int perf = 0; perf < number_of_perforations_; ++perf) {
|
|
const double perf_water_vel = primary_variables_[Bhp + 1 + perf];
|
|
// we do not consider the formation damage due to water flowing from reservoir into wellbore
|
|
if (perf_water_vel > 0.) {
|
|
well_state.perfThroughput()[first_perf_ + perf] += perf_water_vel * dt;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWell<TypeTag>::
|
|
handleInjectivityRateAndEquations(const IntensiveQuantities& int_quants,
|
|
const WellState& well_state,
|
|
const int perf,
|
|
std::vector<EvalWell>& cq_s,
|
|
Opm::DeferredLogger& deferred_logger)
|
|
{
|
|
const unsigned water_comp_idx = Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx);
|
|
const EvalWell& water_flux_s = cq_s[water_comp_idx];
|
|
const auto& fs = int_quants.fluidState();
|
|
const EvalWell b_w = extendEval(fs.invB(FluidSystem::waterPhaseIdx));
|
|
const EvalWell water_flux_r = water_flux_s / b_w;
|
|
const double area = M_PI * bore_diameters_[perf] * perf_length_[perf];
|
|
const EvalWell water_velocity = water_flux_r / area;
|
|
const int wat_vel_index = Bhp + 1 + perf;
|
|
|
|
// equation for the water velocity
|
|
const EvalWell eq_wat_vel = primary_variables_evaluation_[wat_vel_index] - water_velocity;
|
|
resWell_[0][wat_vel_index] = eq_wat_vel.value();
|
|
|
|
const double throughput = well_state.perfThroughput()[first_perf_ + perf];
|
|
const int pskin_index = Bhp + 1 + number_of_perforations_ + perf;
|
|
|
|
EvalWell poly_conc(numWellEq_ + numEq, 0.0);
|
|
poly_conc.setValue(wpolymer());
|
|
|
|
// equation for the skin pressure
|
|
const EvalWell eq_pskin = primary_variables_evaluation_[pskin_index]
|
|
- pskin(throughput, primary_variables_evaluation_[wat_vel_index], poly_conc, deferred_logger);
|
|
|
|
resWell_[0][pskin_index] = eq_pskin.value();
|
|
for (int pvIdx = 0; pvIdx < numWellEq_; ++pvIdx) {
|
|
invDuneD_[0][0][wat_vel_index][pvIdx] = eq_wat_vel.derivative(pvIdx+numEq);
|
|
invDuneD_[0][0][pskin_index][pvIdx] = eq_pskin.derivative(pvIdx+numEq);
|
|
}
|
|
|
|
// water rate is update to use the form from water velocity, since water velocity is
|
|
// a primary variable now
|
|
cq_s[water_comp_idx] = area * primary_variables_evaluation_[wat_vel_index] * b_w;
|
|
|
|
// the water velocity is impacted by the reservoir primary varaibles. It needs to enter matrix B
|
|
const int cell_idx = well_cells_[perf];
|
|
for (int pvIdx = 0; pvIdx < numEq; ++pvIdx) {
|
|
duneB_[0][cell_idx][wat_vel_index][pvIdx] = eq_wat_vel.derivative(pvIdx);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWell<TypeTag>::
|
|
checkConvergenceControlEq(const WellState& well_state,
|
|
ConvergenceReport& report,
|
|
DeferredLogger& deferred_logger) const
|
|
{
|
|
double control_tolerance = 0.;
|
|
using CR = ConvergenceReport;
|
|
CR::WellFailure::Type ctrltype = CR::WellFailure::Type::Invalid;
|
|
|
|
const int well_index = index_of_well_;
|
|
if (wellIsStopped_) {
|
|
ctrltype = CR::WellFailure::Type::ControlRate;
|
|
control_tolerance = 1.e-6; // use smaller tolerance for zero control?
|
|
}
|
|
else if (this->isInjector() )
|
|
{
|
|
const Opm::Well::InjectorCMode& current = well_state.currentInjectionControls()[well_index];
|
|
switch(current) {
|
|
case Well::InjectorCMode::THP:
|
|
ctrltype = CR::WellFailure::Type::ControlTHP;
|
|
control_tolerance = 1.e4; // 0.1 bar
|
|
break;
|
|
case Well::InjectorCMode::BHP:
|
|
ctrltype = CR::WellFailure::Type::ControlBHP;
|
|
control_tolerance = 1.e3; // 0.01 bar
|
|
break;
|
|
case Well::InjectorCMode::RATE:
|
|
case Well::InjectorCMode::RESV:
|
|
ctrltype = CR::WellFailure::Type::ControlRate;
|
|
control_tolerance = 1.e-4; //
|
|
break;
|
|
case Well::InjectorCMode::GRUP:
|
|
ctrltype = CR::WellFailure::Type::ControlRate;
|
|
control_tolerance = 1.e-6; //
|
|
break;
|
|
default:
|
|
OPM_DEFLOG_THROW(std::runtime_error, "Unknown well control control types for well " << name(), deferred_logger);
|
|
}
|
|
}
|
|
else if (this->isProducer() )
|
|
{
|
|
const Well::ProducerCMode& current = well_state.currentProductionControls()[well_index];
|
|
switch(current) {
|
|
case Well::ProducerCMode::THP:
|
|
ctrltype = CR::WellFailure::Type::ControlTHP;
|
|
control_tolerance = 1.e4; // 0.1 bar
|
|
break;
|
|
case Well::ProducerCMode::BHP:
|
|
ctrltype = CR::WellFailure::Type::ControlBHP;
|
|
control_tolerance = 1.e3; // 0.01 bar
|
|
break;
|
|
case Well::ProducerCMode::ORAT:
|
|
case Well::ProducerCMode::WRAT:
|
|
case Well::ProducerCMode::GRAT:
|
|
case Well::ProducerCMode::LRAT:
|
|
case Well::ProducerCMode::RESV:
|
|
case Well::ProducerCMode::CRAT:
|
|
ctrltype = CR::WellFailure::Type::ControlRate;
|
|
control_tolerance = 1.e-4; // smaller tolerance for rate control
|
|
break;
|
|
case Well::ProducerCMode::GRUP:
|
|
ctrltype = CR::WellFailure::Type::ControlRate;
|
|
control_tolerance = 1.e-6; // smaller tolerance for rate control
|
|
break;
|
|
default:
|
|
OPM_DEFLOG_THROW(std::runtime_error, "Unknown well control control types for well " << name(), deferred_logger);
|
|
}
|
|
}
|
|
|
|
const double well_control_residual = std::abs(resWell_[0][Bhp]);
|
|
const int dummy_component = -1;
|
|
const double max_residual_allowed = param_.max_residual_allowed_;
|
|
if (std::isnan(well_control_residual)) {
|
|
report.setWellFailed({ctrltype, CR::Severity::NotANumber, dummy_component, name()});
|
|
} else if (well_control_residual > max_residual_allowed * 10.) {
|
|
report.setWellFailed({ctrltype, CR::Severity::TooLarge, dummy_component, name()});
|
|
} else if ( well_control_residual > control_tolerance) {
|
|
report.setWellFailed({ctrltype, CR::Severity::Normal, dummy_component, name()});
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWell<TypeTag>::
|
|
checkConvergenceExtraEqs(const std::vector<double>& res,
|
|
ConvergenceReport& report) const
|
|
{
|
|
// if different types of extra equations are involved, this function needs to be refactored further
|
|
|
|
// checking the convergence of the extra equations related to polymer injectivity
|
|
if (this->has_polymermw && this->isInjector()) {
|
|
// checking the convergence of the perforation rates
|
|
const double wat_vel_tol = 1.e-8;
|
|
const int dummy_component = -1;
|
|
const double maxResidualAllowed = param_.max_residual_allowed_;
|
|
using CR = ConvergenceReport;
|
|
const auto wat_vel_failure_type = CR::WellFailure::Type::MassBalance;
|
|
for (int perf = 0; perf < number_of_perforations_; ++perf) {
|
|
const double wat_vel_residual = res[Bhp + 1 + perf];
|
|
if (std::isnan(wat_vel_residual)) {
|
|
report.setWellFailed({wat_vel_failure_type, CR::Severity::NotANumber, dummy_component, name()});
|
|
} else if (wat_vel_residual > maxResidualAllowed * 10.) {
|
|
report.setWellFailed({wat_vel_failure_type, CR::Severity::TooLarge, dummy_component, name()});
|
|
} else if (wat_vel_residual > wat_vel_tol) {
|
|
report.setWellFailed({wat_vel_failure_type, CR::Severity::Normal, dummy_component, name()});
|
|
}
|
|
}
|
|
|
|
// checking the convergence of the skin pressure
|
|
const double pskin_tol = 1000.; // 1000 pascal
|
|
const auto pskin_failure_type = CR::WellFailure::Type::Pressure;
|
|
for (int perf = 0; perf < number_of_perforations_; ++perf) {
|
|
const double pskin_residual = res[Bhp + 1 + perf + number_of_perforations_];
|
|
if (std::isnan(pskin_residual)) {
|
|
report.setWellFailed({pskin_failure_type, CR::Severity::NotANumber, dummy_component, name()});
|
|
} else if (pskin_residual > maxResidualAllowed * 10.) {
|
|
report.setWellFailed({pskin_failure_type, CR::Severity::TooLarge, dummy_component, name()});
|
|
} else if (pskin_residual > pskin_tol) {
|
|
report.setWellFailed({pskin_failure_type, CR::Severity::Normal, dummy_component, name()});
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWell<TypeTag>::
|
|
updateConnectionRatePolyMW(const EvalWell& cq_s_poly,
|
|
const IntensiveQuantities& int_quants,
|
|
const WellState& well_state,
|
|
const int perf,
|
|
DeferredLogger& deferred_logger)
|
|
{
|
|
// the source term related to transport of molecular weight
|
|
EvalWell cq_s_polymw = cq_s_poly;
|
|
if (this->isInjector()) {
|
|
const int wat_vel_index = Bhp + 1 + perf;
|
|
const EvalWell water_velocity = primary_variables_evaluation_[wat_vel_index];
|
|
if (water_velocity > 0.) { // injecting
|
|
const double throughput = well_state.perfThroughput()[first_perf_ + perf];
|
|
const EvalWell molecular_weight = wpolymermw(throughput, water_velocity, deferred_logger);
|
|
cq_s_polymw *= molecular_weight;
|
|
} else {
|
|
// we do not consider the molecular weight from the polymer
|
|
// going-back to the wellbore through injector
|
|
cq_s_polymw *= 0.;
|
|
}
|
|
} else if (this->isProducer()) {
|
|
if (cq_s_polymw < 0.) {
|
|
cq_s_polymw *= extendEval(int_quants.polymerMoleWeight() );
|
|
} else {
|
|
// we do not consider the molecular weight from the polymer
|
|
// re-injecting back through producer
|
|
cq_s_polymw *= 0.;
|
|
}
|
|
}
|
|
connectionRates_[perf][this->contiPolymerMWEqIdx] = Base::restrictEval(cq_s_polymw);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
std::optional<double>
|
|
StandardWell<TypeTag>::
|
|
computeBhpAtThpLimitProd(const Simulator& ebos_simulator,
|
|
const SummaryState& summary_state,
|
|
DeferredLogger& deferred_logger) const
|
|
{
|
|
// Given a VFP function returning bhp as a function of phase
|
|
// rates and thp:
|
|
// fbhp(rates, thp),
|
|
// a function extracting the particular flow rate used for VFP
|
|
// lookups:
|
|
// flo(rates)
|
|
// and the inflow function (assuming the reservoir is fixed):
|
|
// frates(bhp)
|
|
// we want to solve the equation:
|
|
// fbhp(frates(bhp, thplimit)) - bhp = 0
|
|
// for bhp.
|
|
//
|
|
// This may result in 0, 1 or 2 solutions. If two solutions,
|
|
// the one corresponding to the lowest bhp (and therefore
|
|
// highest rate) is returned.
|
|
//
|
|
// In order to detect these situations, we will find piecewise
|
|
// linear approximations both to the inverse of the frates
|
|
// function and to the fbhp function.
|
|
//
|
|
// We first take the FLO sample points of the VFP curve, and
|
|
// find the corresponding bhp values by solving the equation:
|
|
// flo(frates(bhp)) - flo_sample = 0
|
|
// for bhp, for each flo_sample. The resulting (flo_sample,
|
|
// bhp_sample) values give a piecewise linear approximation to
|
|
// the true inverse inflow function, at the same flo values as
|
|
// the VFP data.
|
|
//
|
|
// Then we extract a piecewise linear approximation from the
|
|
// multilinear fbhp() by evaluating it at the flo_sample
|
|
// points, with fractions given by the frates(bhp_sample)
|
|
// values.
|
|
//
|
|
// When we have both piecewise linear curves defined on the
|
|
// same flo_sample points, it is easy to distinguish between
|
|
// the 0, 1 or 2 solution cases, and obtain the right interval
|
|
// in which to solve for the solution we want (with highest
|
|
// flow in case of 2 solutions).
|
|
|
|
// Make the fbhp() function.
|
|
const auto& controls = well_ecl_.productionControls(summary_state);
|
|
const auto& table = *(vfp_properties_->getProd()->getTable(controls.vfp_table_number));
|
|
const double vfp_ref_depth = table.getDatumDepth();
|
|
const double rho = perf_densities_[0]; // Use the density at the top perforation.
|
|
const double dp = wellhelpers::computeHydrostaticCorrection(ref_depth_, vfp_ref_depth, rho, gravity_);
|
|
auto fbhp = [this, &controls, dp](const std::vector<double>& rates) {
|
|
assert(rates.size() == 3);
|
|
return this->vfp_properties_->getProd()
|
|
->bhp(controls.vfp_table_number, rates[Water], rates[Oil], rates[Gas], controls.thp_limit, controls.alq_value) - dp;
|
|
};
|
|
|
|
// Make the flo() function.
|
|
auto flo_type = table.getFloType();
|
|
auto flo = [flo_type](const std::vector<double>& rates) {
|
|
return detail::getFlo(rates[Water], rates[Oil], rates[Gas], flo_type);
|
|
};
|
|
|
|
// Make the frates() function.
|
|
auto frates = [this, &ebos_simulator, &deferred_logger](const double bhp) {
|
|
// Not solving the well equations here, which means we are
|
|
// calculating at the current Fg/Fw values of the
|
|
// well. This does not matter unless the well is
|
|
// crossflowing, and then it is likely still a good
|
|
// approximation.
|
|
std::vector<double> rates(3);
|
|
computeWellRatesWithBhp(ebos_simulator, bhp, rates, deferred_logger);
|
|
return rates;
|
|
};
|
|
|
|
// Get the flo samples, add extra samples at low rates and bhp
|
|
// limit point if necessary. Then the sign must be flipped
|
|
// since the VFP code expects that production flo values are
|
|
// negative.
|
|
std::vector<double> flo_samples = table.getFloAxis();
|
|
if (flo_samples[0] > 0.0) {
|
|
const double f0 = flo_samples[0];
|
|
flo_samples.insert(flo_samples.begin(), { f0/20.0, f0/10.0, f0/5.0, f0/2.0 });
|
|
}
|
|
const double flo_bhp_limit = -flo(frates(controls.bhp_limit));
|
|
if (flo_samples.back() < flo_bhp_limit) {
|
|
flo_samples.push_back(flo_bhp_limit);
|
|
}
|
|
for (double& x : flo_samples) {
|
|
x = -x;
|
|
}
|
|
|
|
// Find bhp values for inflow relation corresponding to flo samples.
|
|
std::vector<double> bhp_samples;
|
|
for (double flo_sample : flo_samples) {
|
|
if (flo_sample < -flo_bhp_limit) {
|
|
// We would have to go under the bhp limit to obtain a
|
|
// flow of this magnitude. We associate all such flows
|
|
// with simply the bhp limit. The first one
|
|
// encountered is considered valid, the rest not. They
|
|
// are therefore skipped.
|
|
bhp_samples.push_back(controls.bhp_limit);
|
|
break;
|
|
}
|
|
auto eq = [&flo, &frates, flo_sample](double bhp) {
|
|
return flo(frates(bhp)) - flo_sample;
|
|
};
|
|
// TODO: replace hardcoded low/high limits.
|
|
const double low = 10.0 * unit::barsa;
|
|
const double high = 600.0 * unit::barsa;
|
|
const int max_iteration = 50;
|
|
const double flo_tolerance = 1e-6 * std::fabs(flo_samples.back());
|
|
int iteration = 0;
|
|
try {
|
|
const double solved_bhp = RegulaFalsiBisection<>::
|
|
solve(eq, low, high, max_iteration, flo_tolerance, iteration);
|
|
bhp_samples.push_back(solved_bhp);
|
|
}
|
|
catch (...) {
|
|
// Use previous value (or max value if at start) if we failed.
|
|
bhp_samples.push_back(bhp_samples.empty() ? high : bhp_samples.back());
|
|
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_EXTRACT_SAMPLES",
|
|
"Robust bhp(thp) solve failed extracting bhp values at flo samples for well " + name());
|
|
}
|
|
}
|
|
|
|
// Find bhp values for VFP relation corresponding to flo samples.
|
|
const int num_samples = bhp_samples.size(); // Note that this can be smaller than flo_samples.size()
|
|
std::vector<double> fbhp_samples(num_samples);
|
|
for (int ii = 0; ii < num_samples; ++ii) {
|
|
fbhp_samples[ii] = fbhp(frates(bhp_samples[ii]));
|
|
}
|
|
// #define EXTRA_THP_DEBUGGING
|
|
#ifdef EXTRA_THP_DEBUGGING
|
|
std::string dbgmsg;
|
|
dbgmsg += "flo: ";
|
|
for (int ii = 0; ii < num_samples; ++ii) {
|
|
dbgmsg += " " + std::to_string(flo_samples[ii]);
|
|
}
|
|
dbgmsg += "\nbhp: ";
|
|
for (int ii = 0; ii < num_samples; ++ii) {
|
|
dbgmsg += " " + std::to_string(bhp_samples[ii]);
|
|
}
|
|
dbgmsg += "\nfbhp: ";
|
|
for (int ii = 0; ii < num_samples; ++ii) {
|
|
dbgmsg += " " + std::to_string(fbhp_samples[ii]);
|
|
}
|
|
OpmLog::debug(dbgmsg);
|
|
#endif // EXTRA_THP_DEBUGGING
|
|
|
|
// Look for sign changes for the (fbhp_samples - bhp_samples) piecewise linear curve.
|
|
// We only look at the valid
|
|
int sign_change_index = -1;
|
|
for (int ii = 0; ii < num_samples - 1; ++ii) {
|
|
const double curr = fbhp_samples[ii] - bhp_samples[ii];
|
|
const double next = fbhp_samples[ii + 1] - bhp_samples[ii + 1];
|
|
if (curr * next < 0.0) {
|
|
// Sign change in the [ii, ii + 1] interval.
|
|
sign_change_index = ii; // May overwrite, thereby choosing the highest-flo solution.
|
|
}
|
|
}
|
|
|
|
// Handle the no solution case.
|
|
if (sign_change_index == -1) {
|
|
return std::optional<double>();
|
|
}
|
|
|
|
// Solve for the proper solution in the given interval.
|
|
auto eq = [&fbhp, &frates](double bhp) {
|
|
return fbhp(frates(bhp)) - bhp;
|
|
};
|
|
// TODO: replace hardcoded low/high limits.
|
|
const double low = bhp_samples[sign_change_index + 1];
|
|
const double high = bhp_samples[sign_change_index];
|
|
const int max_iteration = 50;
|
|
const double bhp_tolerance = 0.01 * unit::barsa;
|
|
int iteration = 0;
|
|
if (low == high) {
|
|
// We are in the high flow regime where the bhp_samples
|
|
// are all equal to the bhp_limit.
|
|
assert(low == controls.bhp_limit);
|
|
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE",
|
|
"Robust bhp(thp) solve failed for well " + name());
|
|
return std::optional<double>();
|
|
}
|
|
try {
|
|
const double solved_bhp = RegulaFalsiBisection<>::
|
|
solve(eq, low, high, max_iteration, bhp_tolerance, iteration);
|
|
#ifdef EXTRA_THP_DEBUGGING
|
|
OpmLog::debug("***** " + name() + " solved_bhp = " + std::to_string(solved_bhp)
|
|
+ " flo_bhp_limit = " + std::to_string(flo_bhp_limit));
|
|
#endif // EXTRA_THP_DEBUGGING
|
|
return solved_bhp;
|
|
}
|
|
catch (...) {
|
|
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE",
|
|
"Robust bhp(thp) solve failed for well " + name());
|
|
return std::optional<double>();
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
std::optional<double>
|
|
StandardWell<TypeTag>::
|
|
computeBhpAtThpLimitInj(const Simulator& ebos_simulator,
|
|
const SummaryState& summary_state,
|
|
DeferredLogger& deferred_logger) const
|
|
{
|
|
// Given a VFP function returning bhp as a function of phase
|
|
// rates and thp:
|
|
// fbhp(rates, thp),
|
|
// a function extracting the particular flow rate used for VFP
|
|
// lookups:
|
|
// flo(rates)
|
|
// and the inflow function (assuming the reservoir is fixed):
|
|
// frates(bhp)
|
|
// we want to solve the equation:
|
|
// fbhp(frates(bhp, thplimit)) - bhp = 0
|
|
// for bhp.
|
|
//
|
|
// This may result in 0, 1 or 2 solutions. If two solutions,
|
|
// the one corresponding to the lowest bhp (and therefore
|
|
// highest rate) is returned.
|
|
//
|
|
// In order to detect these situations, we will find piecewise
|
|
// linear approximations both to the inverse of the frates
|
|
// function and to the fbhp function.
|
|
//
|
|
// We first take the FLO sample points of the VFP curve, and
|
|
// find the corresponding bhp values by solving the equation:
|
|
// flo(frates(bhp)) - flo_sample = 0
|
|
// for bhp, for each flo_sample. The resulting (flo_sample,
|
|
// bhp_sample) values give a piecewise linear approximation to
|
|
// the true inverse inflow function, at the same flo values as
|
|
// the VFP data.
|
|
//
|
|
// Then we extract a piecewise linear approximation from the
|
|
// multilinear fbhp() by evaluating it at the flo_sample
|
|
// points, with fractions given by the frates(bhp_sample)
|
|
// values.
|
|
//
|
|
// When we have both piecewise linear curves defined on the
|
|
// same flo_sample points, it is easy to distinguish between
|
|
// the 0, 1 or 2 solution cases, and obtain the right interval
|
|
// in which to solve for the solution we want (with highest
|
|
// flow in case of 2 solutions).
|
|
|
|
// Make the fbhp() function.
|
|
const auto& controls = well_ecl_.injectionControls(summary_state);
|
|
const auto& table = *(vfp_properties_->getInj()->getTable(controls.vfp_table_number));
|
|
const double vfp_ref_depth = table.getDatumDepth();
|
|
const double rho = perf_densities_[0]; // Use the density at the top perforation.
|
|
const double dp = wellhelpers::computeHydrostaticCorrection(ref_depth_, vfp_ref_depth, rho, gravity_);
|
|
auto fbhp = [this, &controls, dp](const std::vector<double>& rates) {
|
|
assert(rates.size() == 3);
|
|
return this->vfp_properties_->getInj()
|
|
->bhp(controls.vfp_table_number, rates[Water], rates[Oil], rates[Gas], controls.thp_limit) - dp;
|
|
};
|
|
|
|
// Make the flo() function.
|
|
auto flo_type = table.getFloType();
|
|
auto flo = [flo_type](const std::vector<double>& rates) {
|
|
return detail::getFlo(rates[Water], rates[Oil], rates[Gas], flo_type);
|
|
};
|
|
|
|
// Make the frates() function.
|
|
auto frates = [this, &ebos_simulator, &deferred_logger](const double bhp) {
|
|
// Not solving the well equations here, which means we are
|
|
// calculating at the current Fg/Fw values of the
|
|
// well. This does not matter unless the well is
|
|
// crossflowing, and then it is likely still a good
|
|
// approximation.
|
|
std::vector<double> rates(3);
|
|
computeWellRatesWithBhp(ebos_simulator, bhp, rates, deferred_logger);
|
|
return rates;
|
|
};
|
|
|
|
// Get the flo samples, add extra samples at low rates and bhp
|
|
// limit point if necessary.
|
|
std::vector<double> flo_samples = table.getFloAxis();
|
|
if (flo_samples[0] > 0.0) {
|
|
const double f0 = flo_samples[0];
|
|
flo_samples.insert(flo_samples.begin(), { f0/20.0, f0/10.0, f0/5.0, f0/2.0 });
|
|
}
|
|
const double flo_bhp_limit = flo(frates(controls.bhp_limit));
|
|
if (flo_samples.back() < flo_bhp_limit) {
|
|
flo_samples.push_back(flo_bhp_limit);
|
|
}
|
|
|
|
// Find bhp values for inflow relation corresponding to flo samples.
|
|
std::vector<double> bhp_samples;
|
|
for (double flo_sample : flo_samples) {
|
|
if (flo_sample > flo_bhp_limit) {
|
|
// We would have to go over the bhp limit to obtain a
|
|
// flow of this magnitude. We associate all such flows
|
|
// with simply the bhp limit. The first one
|
|
// encountered is considered valid, the rest not. They
|
|
// are therefore skipped.
|
|
bhp_samples.push_back(controls.bhp_limit);
|
|
break;
|
|
}
|
|
auto eq = [&flo, &frates, flo_sample](double bhp) {
|
|
return flo(frates(bhp)) - flo_sample;
|
|
};
|
|
// TODO: replace hardcoded low/high limits.
|
|
const double low = 10.0 * unit::barsa;
|
|
const double high = 800.0 * unit::barsa;
|
|
const int max_iteration = 50;
|
|
const double flo_tolerance = 1e-6 * std::fabs(flo_samples.back());
|
|
int iteration = 0;
|
|
try {
|
|
const double solved_bhp = RegulaFalsiBisection<>::
|
|
solve(eq, low, high, max_iteration, flo_tolerance, iteration);
|
|
bhp_samples.push_back(solved_bhp);
|
|
}
|
|
catch (...) {
|
|
// Use previous value (or max value if at start) if we failed.
|
|
bhp_samples.push_back(bhp_samples.empty() ? low : bhp_samples.back());
|
|
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_EXTRACT_SAMPLES",
|
|
"Robust bhp(thp) solve failed extracting bhp values at flo samples for well " + name());
|
|
}
|
|
}
|
|
|
|
// Find bhp values for VFP relation corresponding to flo samples.
|
|
const int num_samples = bhp_samples.size(); // Note that this can be smaller than flo_samples.size()
|
|
std::vector<double> fbhp_samples(num_samples);
|
|
for (int ii = 0; ii < num_samples; ++ii) {
|
|
fbhp_samples[ii] = fbhp(frates(bhp_samples[ii]));
|
|
}
|
|
// #define EXTRA_THP_DEBUGGING
|
|
#ifdef EXTRA_THP_DEBUGGING
|
|
std::string dbgmsg;
|
|
dbgmsg += "flo: ";
|
|
for (int ii = 0; ii < num_samples; ++ii) {
|
|
dbgmsg += " " + std::to_string(flo_samples[ii]);
|
|
}
|
|
dbgmsg += "\nbhp: ";
|
|
for (int ii = 0; ii < num_samples; ++ii) {
|
|
dbgmsg += " " + std::to_string(bhp_samples[ii]);
|
|
}
|
|
dbgmsg += "\nfbhp: ";
|
|
for (int ii = 0; ii < num_samples; ++ii) {
|
|
dbgmsg += " " + std::to_string(fbhp_samples[ii]);
|
|
}
|
|
OpmLog::debug(dbgmsg);
|
|
#endif // EXTRA_THP_DEBUGGING
|
|
|
|
// Look for sign changes for the (fbhp_samples - bhp_samples) piecewise linear curve.
|
|
// We only look at the valid
|
|
int sign_change_index = -1;
|
|
for (int ii = 0; ii < num_samples - 1; ++ii) {
|
|
const double curr = fbhp_samples[ii] - bhp_samples[ii];
|
|
const double next = fbhp_samples[ii + 1] - bhp_samples[ii + 1];
|
|
if (curr * next < 0.0) {
|
|
// Sign change in the [ii, ii + 1] interval.
|
|
sign_change_index = ii; // May overwrite, thereby choosing the highest-flo solution.
|
|
}
|
|
}
|
|
|
|
// Handle the no solution case.
|
|
if (sign_change_index == -1) {
|
|
return std::optional<double>();
|
|
}
|
|
|
|
// Solve for the proper solution in the given interval.
|
|
auto eq = [&fbhp, &frates](double bhp) {
|
|
return fbhp(frates(bhp)) - bhp;
|
|
};
|
|
// TODO: replace hardcoded low/high limits.
|
|
const double low = bhp_samples[sign_change_index + 1];
|
|
const double high = bhp_samples[sign_change_index];
|
|
const int max_iteration = 50;
|
|
const double bhp_tolerance = 0.01 * unit::barsa;
|
|
int iteration = 0;
|
|
if (low == high) {
|
|
// We are in the high flow regime where the bhp_samples
|
|
// are all equal to the bhp_limit.
|
|
assert(low == controls.bhp_limit);
|
|
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE",
|
|
"Robust bhp(thp) solve failed for well " + name());
|
|
return std::optional<double>();
|
|
}
|
|
try {
|
|
const double solved_bhp = RegulaFalsiBisection<>::
|
|
solve(eq, low, high, max_iteration, bhp_tolerance, iteration);
|
|
#ifdef EXTRA_THP_DEBUGGING
|
|
OpmLog::debug("***** " + name() + " solved_bhp = " + std::to_string(solved_bhp)
|
|
+ " flo_bhp_limit = " + std::to_string(flo_bhp_limit));
|
|
#endif // EXTRA_THP_DEBUGGING
|
|
return solved_bhp;
|
|
}
|
|
catch (...) {
|
|
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE",
|
|
"Robust bhp(thp) solve failed for well " + name());
|
|
return std::optional<double>();
|
|
}
|
|
|
|
}
|
|
|
|
|
|
} // namespace Opm
|