mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-26 19:56:27 -06:00
301 lines
11 KiB
C++
301 lines
11 KiB
C++
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
// vi: set et ts=4 sw=4 sts=4:
|
|
/*
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Consult the COPYING file in the top-level source directory of this
|
|
module for the precise wording of the license and the list of
|
|
copyright holders.
|
|
*/
|
|
/*!
|
|
* \file
|
|
* \copydoc Opm::VtkDiscreteFractureModule
|
|
*/
|
|
#ifndef OPM_VTK_DISCRETE_FRACTURE_MODULE_HPP
|
|
#define OPM_VTK_DISCRETE_FRACTURE_MODULE_HPP
|
|
|
|
#include <dune/common/fvector.hh>
|
|
|
|
#include <opm/material/common/Valgrind.hpp>
|
|
|
|
#include <opm/models/discretization/common/fvbaseparameters.hh>
|
|
|
|
#include <opm/models/io/baseoutputmodule.hh>
|
|
#include <opm/models/io/vtkdiscretefractureparams.hpp>
|
|
#include <opm/models/io/vtkmultiwriter.hh>
|
|
|
|
#include <opm/models/utils/propertysystem.hh>
|
|
#include <opm/models/utils/parametersystem.hpp>
|
|
|
|
#include <cstdio>
|
|
|
|
namespace Opm {
|
|
|
|
/*!
|
|
* \ingroup Vtk
|
|
*
|
|
* \brief VTK output module for quantities which make sense for all
|
|
* models which deal with discrete fractures in porous media.
|
|
*
|
|
* This module deals with the following quantities:
|
|
* - Saturations of all fluid phases in the fracture
|
|
* - Mobilities of all fluid phases in the fracture
|
|
* - Relative permeabilities of all fluid phases in the fracture
|
|
* - Porosity of the medium in the fracture
|
|
* - Norm of the intrinsic permeability of the medium in the fracture
|
|
*/
|
|
template <class TypeTag>
|
|
class VtkDiscreteFractureModule : public BaseOutputModule<TypeTag>
|
|
{
|
|
using ParentType = BaseOutputModule<TypeTag>;
|
|
|
|
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
|
|
|
|
using Vanguard = GetPropType<TypeTag, Properties::Vanguard>;
|
|
using GridView = GetPropType<TypeTag, Properties::GridView>;
|
|
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
|
|
|
|
using DiscBaseOutputModule = GetPropType<TypeTag, Properties::DiscBaseOutputModule>;
|
|
|
|
static const int vtkFormat = getPropValue<TypeTag, Properties::VtkOutputFormat>();
|
|
using VtkMultiWriter = Opm::VtkMultiWriter<GridView, vtkFormat>;
|
|
|
|
enum { dim = GridView::dimension };
|
|
enum { dimWorld = GridView::dimensionworld };
|
|
enum { numPhases = getPropValue<TypeTag, Properties::NumPhases>() };
|
|
|
|
using ScalarBuffer = typename ParentType::ScalarBuffer;
|
|
using PhaseBuffer = typename ParentType::PhaseBuffer;
|
|
using PhaseVectorBuffer = typename ParentType::PhaseVectorBuffer;
|
|
|
|
public:
|
|
VtkDiscreteFractureModule(const Simulator& simulator)
|
|
: ParentType(simulator)
|
|
{
|
|
params_.read();
|
|
}
|
|
|
|
/*!
|
|
* \brief Register all run-time parameters for the multi-phase VTK output module.
|
|
*/
|
|
static void registerParameters()
|
|
{
|
|
VtkDiscreteFractureParams::registerParameters();
|
|
}
|
|
|
|
/*!
|
|
* \brief Allocate memory for the scalar fields we would like to
|
|
* write to the VTK file.
|
|
*/
|
|
void allocBuffers()
|
|
{
|
|
if (params_.saturationOutput_) {
|
|
this->resizePhaseBuffer_(fractureSaturation_);
|
|
}
|
|
if (params_.mobilityOutput_) {
|
|
this->resizePhaseBuffer_(fractureMobility_);
|
|
}
|
|
if (params_.relativePermeabilityOutput_) {
|
|
this->resizePhaseBuffer_(fractureRelativePermeability_);
|
|
}
|
|
|
|
if (params_.porosityOutput_) {
|
|
this->resizeScalarBuffer_(fracturePorosity_);
|
|
}
|
|
if (params_.intrinsicPermeabilityOutput_) {
|
|
this->resizeScalarBuffer_(fractureIntrinsicPermeability_);
|
|
}
|
|
if (params_.volumeFractionOutput_) {
|
|
this->resizeScalarBuffer_(fractureVolumeFraction_);
|
|
}
|
|
|
|
if (params_.velocityOutput_) {
|
|
size_t nDof = this->simulator_.model().numGridDof();
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
fractureVelocity_[phaseIdx].resize(nDof);
|
|
for (unsigned dofIdx = 0; dofIdx < nDof; ++dofIdx) {
|
|
fractureVelocity_[phaseIdx][dofIdx].resize(dimWorld);
|
|
fractureVelocity_[phaseIdx][dofIdx] = 0.0;
|
|
}
|
|
}
|
|
this->resizePhaseBuffer_(fractureVelocityWeight_);
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* \brief Modify the internal buffers according to the intensive quantities relevant for
|
|
* an element
|
|
*/
|
|
void processElement(const ElementContext& elemCtx)
|
|
{
|
|
if (!Parameters::Get<Parameters::EnableVtkOutput>()) {
|
|
return;
|
|
}
|
|
|
|
const auto& fractureMapper = elemCtx.simulator().vanguard().fractureMapper();
|
|
|
|
for (unsigned i = 0; i < elemCtx.numPrimaryDof(/*timeIdx=*/0); ++i) {
|
|
unsigned I = elemCtx.globalSpaceIndex(i, /*timeIdx=*/0);
|
|
if (!fractureMapper.isFractureVertex(I)) {
|
|
continue;
|
|
}
|
|
|
|
const auto& intQuants = elemCtx.intensiveQuantities(i, /*timeIdx=*/0);
|
|
const auto& fs = intQuants.fractureFluidState();
|
|
|
|
if (params_.porosityOutput_) {
|
|
Opm::Valgrind::CheckDefined(intQuants.fracturePorosity());
|
|
fracturePorosity_[I] = intQuants.fracturePorosity();
|
|
}
|
|
if (params_.intrinsicPermeabilityOutput_) {
|
|
const auto& K = intQuants.fractureIntrinsicPermeability();
|
|
fractureIntrinsicPermeability_[I] = K[0][0];
|
|
}
|
|
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
if (params_.saturationOutput_) {
|
|
Opm::Valgrind::CheckDefined(fs.saturation(phaseIdx));
|
|
fractureSaturation_[phaseIdx][I] = fs.saturation(phaseIdx);
|
|
}
|
|
if (params_.mobilityOutput_) {
|
|
Opm::Valgrind::CheckDefined(intQuants.fractureMobility(phaseIdx));
|
|
fractureMobility_[phaseIdx][I] = intQuants.fractureMobility(phaseIdx);
|
|
}
|
|
if (params_.relativePermeabilityOutput_) {
|
|
Opm::Valgrind::CheckDefined(intQuants.fractureRelativePermeability(phaseIdx));
|
|
fractureRelativePermeability_[phaseIdx][I] =
|
|
intQuants.fractureRelativePermeability(phaseIdx);
|
|
}
|
|
if (params_.volumeFractionOutput_) {
|
|
Opm::Valgrind::CheckDefined(intQuants.fractureVolume());
|
|
fractureVolumeFraction_[I] += intQuants.fractureVolume();
|
|
}
|
|
}
|
|
}
|
|
|
|
if (params_.velocityOutput_) {
|
|
// calculate velocities if requested by the simulator
|
|
for (unsigned scvfIdx = 0; scvfIdx < elemCtx.numInteriorFaces(/*timeIdx=*/0); ++ scvfIdx) {
|
|
const auto& extQuants = elemCtx.extensiveQuantities(scvfIdx, /*timeIdx=*/0);
|
|
|
|
unsigned i = extQuants.interiorIndex();
|
|
unsigned I = elemCtx.globalSpaceIndex(i, /*timeIdx=*/0);
|
|
|
|
unsigned j = extQuants.exteriorIndex();
|
|
unsigned J = elemCtx.globalSpaceIndex(j, /*timeIdx=*/0);
|
|
|
|
if (!fractureMapper.isFractureEdge(I, J)) {
|
|
continue;
|
|
}
|
|
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
Scalar weight =
|
|
std::max<Scalar>(1e-16, std::abs(extQuants.fractureVolumeFlux(phaseIdx)));
|
|
Opm::Valgrind::CheckDefined(extQuants.extrusionFactor());
|
|
assert(extQuants.extrusionFactor() > 0);
|
|
weight *= extQuants.extrusionFactor();
|
|
|
|
Dune::FieldVector<Scalar, dim> v(extQuants.fractureFilterVelocity(phaseIdx));
|
|
v *= weight;
|
|
|
|
for (unsigned dimIdx = 0; dimIdx < dimWorld; ++dimIdx) {
|
|
fractureVelocity_[phaseIdx][I][dimIdx] += v[dimIdx];
|
|
fractureVelocity_[phaseIdx][J][dimIdx] += v[dimIdx];
|
|
}
|
|
|
|
fractureVelocityWeight_[phaseIdx][I] += weight;
|
|
fractureVelocityWeight_[phaseIdx][J] += weight;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* \brief Add all buffers to the VTK output writer.
|
|
*/
|
|
void commitBuffers(BaseOutputWriter& baseWriter)
|
|
{
|
|
VtkMultiWriter* vtkWriter = dynamic_cast<VtkMultiWriter*>(&baseWriter);
|
|
if (!vtkWriter) {
|
|
return;
|
|
}
|
|
|
|
if (params_.saturationOutput_) {
|
|
this->commitPhaseBuffer_(baseWriter, "fractureSaturation_%s", fractureSaturation_);
|
|
}
|
|
if (params_.mobilityOutput_) {
|
|
this->commitPhaseBuffer_(baseWriter, "fractureMobility_%s", fractureMobility_);
|
|
}
|
|
if (params_.relativePermeabilityOutput_) {
|
|
this->commitPhaseBuffer_(baseWriter, "fractureRelativePerm_%s", fractureRelativePermeability_);
|
|
}
|
|
|
|
if (params_.porosityOutput_) {
|
|
this->commitScalarBuffer_(baseWriter, "fracturePorosity", fracturePorosity_);
|
|
}
|
|
if (params_.intrinsicPermeabilityOutput_) {
|
|
this->commitScalarBuffer_(baseWriter, "fractureIntrinsicPerm", fractureIntrinsicPermeability_);
|
|
}
|
|
if (params_.volumeFractionOutput_) {
|
|
// divide the fracture volume by the total volume of the finite volumes
|
|
for (unsigned I = 0; I < fractureVolumeFraction_.size(); ++I) {
|
|
fractureVolumeFraction_[I] /= this->simulator_.model().dofTotalVolume(I);
|
|
}
|
|
this->commitScalarBuffer_(baseWriter, "fractureVolumeFraction", fractureVolumeFraction_);
|
|
}
|
|
|
|
if (params_.velocityOutput_) {
|
|
size_t nDof = this->simulator_.model().numGridDof();
|
|
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
// first, divide the velocity field by the
|
|
// respective finite volume's surface area
|
|
for (unsigned dofIdx = 0; dofIdx < nDof; ++dofIdx) {
|
|
fractureVelocity_[phaseIdx][dofIdx] /=
|
|
std::max<Scalar>(1e-20, fractureVelocityWeight_[phaseIdx][dofIdx]);
|
|
}
|
|
// commit the phase velocity
|
|
char name[512];
|
|
snprintf(name, 512, "fractureFilterVelocity_%s", FluidSystem::phaseName(phaseIdx).data());
|
|
|
|
DiscBaseOutputModule::attachVectorDofData_(baseWriter, fractureVelocity_[phaseIdx], name);
|
|
}
|
|
}
|
|
}
|
|
|
|
private:
|
|
VtkDiscreteFractureParams params_{};
|
|
PhaseBuffer fractureSaturation_{};
|
|
PhaseBuffer fractureMobility_{};
|
|
PhaseBuffer fractureRelativePermeability_{};
|
|
|
|
ScalarBuffer fracturePorosity_{};
|
|
ScalarBuffer fractureVolumeFraction_{};
|
|
ScalarBuffer fractureIntrinsicPermeability_{};
|
|
|
|
PhaseVectorBuffer fractureVelocity_{};
|
|
PhaseBuffer fractureVelocityWeight_{};
|
|
|
|
PhaseVectorBuffer potentialGradient_{};
|
|
PhaseBuffer potentialWeight_{};
|
|
};
|
|
|
|
} // namespace Opm
|
|
|
|
#endif // OPM_VTK_DISCRETE_FRACTURE_MODULE_HPP
|