opm-simulators/opm/models/io/vtkdiscretefracturemodule.hpp

301 lines
11 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
* \copydoc Opm::VtkDiscreteFractureModule
*/
#ifndef OPM_VTK_DISCRETE_FRACTURE_MODULE_HPP
#define OPM_VTK_DISCRETE_FRACTURE_MODULE_HPP
#include <dune/common/fvector.hh>
#include <opm/material/common/Valgrind.hpp>
#include <opm/models/discretization/common/fvbaseparameters.hh>
#include <opm/models/io/baseoutputmodule.hh>
#include <opm/models/io/vtkdiscretefractureparams.hpp>
#include <opm/models/io/vtkmultiwriter.hh>
#include <opm/models/utils/propertysystem.hh>
#include <opm/models/utils/parametersystem.hpp>
#include <cstdio>
namespace Opm {
/*!
* \ingroup Vtk
*
* \brief VTK output module for quantities which make sense for all
* models which deal with discrete fractures in porous media.
*
* This module deals with the following quantities:
* - Saturations of all fluid phases in the fracture
* - Mobilities of all fluid phases in the fracture
* - Relative permeabilities of all fluid phases in the fracture
* - Porosity of the medium in the fracture
* - Norm of the intrinsic permeability of the medium in the fracture
*/
template <class TypeTag>
class VtkDiscreteFractureModule : public BaseOutputModule<TypeTag>
{
using ParentType = BaseOutputModule<TypeTag>;
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
using Vanguard = GetPropType<TypeTag, Properties::Vanguard>;
using GridView = GetPropType<TypeTag, Properties::GridView>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using DiscBaseOutputModule = GetPropType<TypeTag, Properties::DiscBaseOutputModule>;
static const int vtkFormat = getPropValue<TypeTag, Properties::VtkOutputFormat>();
using VtkMultiWriter = Opm::VtkMultiWriter<GridView, vtkFormat>;
enum { dim = GridView::dimension };
enum { dimWorld = GridView::dimensionworld };
enum { numPhases = getPropValue<TypeTag, Properties::NumPhases>() };
using ScalarBuffer = typename ParentType::ScalarBuffer;
using PhaseBuffer = typename ParentType::PhaseBuffer;
using PhaseVectorBuffer = typename ParentType::PhaseVectorBuffer;
public:
VtkDiscreteFractureModule(const Simulator& simulator)
: ParentType(simulator)
{
params_.read();
}
/*!
* \brief Register all run-time parameters for the multi-phase VTK output module.
*/
static void registerParameters()
{
VtkDiscreteFractureParams::registerParameters();
}
/*!
* \brief Allocate memory for the scalar fields we would like to
* write to the VTK file.
*/
void allocBuffers()
{
if (params_.saturationOutput_) {
this->resizePhaseBuffer_(fractureSaturation_);
}
if (params_.mobilityOutput_) {
this->resizePhaseBuffer_(fractureMobility_);
}
if (params_.relativePermeabilityOutput_) {
this->resizePhaseBuffer_(fractureRelativePermeability_);
}
if (params_.porosityOutput_) {
this->resizeScalarBuffer_(fracturePorosity_);
}
if (params_.intrinsicPermeabilityOutput_) {
this->resizeScalarBuffer_(fractureIntrinsicPermeability_);
}
if (params_.volumeFractionOutput_) {
this->resizeScalarBuffer_(fractureVolumeFraction_);
}
if (params_.velocityOutput_) {
size_t nDof = this->simulator_.model().numGridDof();
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
fractureVelocity_[phaseIdx].resize(nDof);
for (unsigned dofIdx = 0; dofIdx < nDof; ++dofIdx) {
fractureVelocity_[phaseIdx][dofIdx].resize(dimWorld);
fractureVelocity_[phaseIdx][dofIdx] = 0.0;
}
}
this->resizePhaseBuffer_(fractureVelocityWeight_);
}
}
/*!
* \brief Modify the internal buffers according to the intensive quantities relevant for
* an element
*/
void processElement(const ElementContext& elemCtx)
{
if (!Parameters::Get<Parameters::EnableVtkOutput>()) {
return;
}
const auto& fractureMapper = elemCtx.simulator().vanguard().fractureMapper();
for (unsigned i = 0; i < elemCtx.numPrimaryDof(/*timeIdx=*/0); ++i) {
unsigned I = elemCtx.globalSpaceIndex(i, /*timeIdx=*/0);
if (!fractureMapper.isFractureVertex(I)) {
continue;
}
const auto& intQuants = elemCtx.intensiveQuantities(i, /*timeIdx=*/0);
const auto& fs = intQuants.fractureFluidState();
if (params_.porosityOutput_) {
Opm::Valgrind::CheckDefined(intQuants.fracturePorosity());
fracturePorosity_[I] = intQuants.fracturePorosity();
}
if (params_.intrinsicPermeabilityOutput_) {
const auto& K = intQuants.fractureIntrinsicPermeability();
fractureIntrinsicPermeability_[I] = K[0][0];
}
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (params_.saturationOutput_) {
Opm::Valgrind::CheckDefined(fs.saturation(phaseIdx));
fractureSaturation_[phaseIdx][I] = fs.saturation(phaseIdx);
}
if (params_.mobilityOutput_) {
Opm::Valgrind::CheckDefined(intQuants.fractureMobility(phaseIdx));
fractureMobility_[phaseIdx][I] = intQuants.fractureMobility(phaseIdx);
}
if (params_.relativePermeabilityOutput_) {
Opm::Valgrind::CheckDefined(intQuants.fractureRelativePermeability(phaseIdx));
fractureRelativePermeability_[phaseIdx][I] =
intQuants.fractureRelativePermeability(phaseIdx);
}
if (params_.volumeFractionOutput_) {
Opm::Valgrind::CheckDefined(intQuants.fractureVolume());
fractureVolumeFraction_[I] += intQuants.fractureVolume();
}
}
}
if (params_.velocityOutput_) {
// calculate velocities if requested by the simulator
for (unsigned scvfIdx = 0; scvfIdx < elemCtx.numInteriorFaces(/*timeIdx=*/0); ++ scvfIdx) {
const auto& extQuants = elemCtx.extensiveQuantities(scvfIdx, /*timeIdx=*/0);
unsigned i = extQuants.interiorIndex();
unsigned I = elemCtx.globalSpaceIndex(i, /*timeIdx=*/0);
unsigned j = extQuants.exteriorIndex();
unsigned J = elemCtx.globalSpaceIndex(j, /*timeIdx=*/0);
if (!fractureMapper.isFractureEdge(I, J)) {
continue;
}
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
Scalar weight =
std::max<Scalar>(1e-16, std::abs(extQuants.fractureVolumeFlux(phaseIdx)));
Opm::Valgrind::CheckDefined(extQuants.extrusionFactor());
assert(extQuants.extrusionFactor() > 0);
weight *= extQuants.extrusionFactor();
Dune::FieldVector<Scalar, dim> v(extQuants.fractureFilterVelocity(phaseIdx));
v *= weight;
for (unsigned dimIdx = 0; dimIdx < dimWorld; ++dimIdx) {
fractureVelocity_[phaseIdx][I][dimIdx] += v[dimIdx];
fractureVelocity_[phaseIdx][J][dimIdx] += v[dimIdx];
}
fractureVelocityWeight_[phaseIdx][I] += weight;
fractureVelocityWeight_[phaseIdx][J] += weight;
}
}
}
}
/*!
* \brief Add all buffers to the VTK output writer.
*/
void commitBuffers(BaseOutputWriter& baseWriter)
{
VtkMultiWriter* vtkWriter = dynamic_cast<VtkMultiWriter*>(&baseWriter);
if (!vtkWriter) {
return;
}
if (params_.saturationOutput_) {
this->commitPhaseBuffer_(baseWriter, "fractureSaturation_%s", fractureSaturation_);
}
if (params_.mobilityOutput_) {
this->commitPhaseBuffer_(baseWriter, "fractureMobility_%s", fractureMobility_);
}
if (params_.relativePermeabilityOutput_) {
this->commitPhaseBuffer_(baseWriter, "fractureRelativePerm_%s", fractureRelativePermeability_);
}
if (params_.porosityOutput_) {
this->commitScalarBuffer_(baseWriter, "fracturePorosity", fracturePorosity_);
}
if (params_.intrinsicPermeabilityOutput_) {
this->commitScalarBuffer_(baseWriter, "fractureIntrinsicPerm", fractureIntrinsicPermeability_);
}
if (params_.volumeFractionOutput_) {
// divide the fracture volume by the total volume of the finite volumes
for (unsigned I = 0; I < fractureVolumeFraction_.size(); ++I) {
fractureVolumeFraction_[I] /= this->simulator_.model().dofTotalVolume(I);
}
this->commitScalarBuffer_(baseWriter, "fractureVolumeFraction", fractureVolumeFraction_);
}
if (params_.velocityOutput_) {
size_t nDof = this->simulator_.model().numGridDof();
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
// first, divide the velocity field by the
// respective finite volume's surface area
for (unsigned dofIdx = 0; dofIdx < nDof; ++dofIdx) {
fractureVelocity_[phaseIdx][dofIdx] /=
std::max<Scalar>(1e-20, fractureVelocityWeight_[phaseIdx][dofIdx]);
}
// commit the phase velocity
char name[512];
snprintf(name, 512, "fractureFilterVelocity_%s", FluidSystem::phaseName(phaseIdx).data());
DiscBaseOutputModule::attachVectorDofData_(baseWriter, fractureVelocity_[phaseIdx], name);
}
}
}
private:
VtkDiscreteFractureParams params_{};
PhaseBuffer fractureSaturation_{};
PhaseBuffer fractureMobility_{};
PhaseBuffer fractureRelativePermeability_{};
ScalarBuffer fracturePorosity_{};
ScalarBuffer fractureVolumeFraction_{};
ScalarBuffer fractureIntrinsicPermeability_{};
PhaseVectorBuffer fractureVelocity_{};
PhaseBuffer fractureVelocityWeight_{};
PhaseVectorBuffer potentialGradient_{};
PhaseBuffer potentialWeight_{};
};
} // namespace Opm
#endif // OPM_VTK_DISCRETE_FRACTURE_MODULE_HPP