opm-simulators/opm/simulators/linalg/PressureBhpTransferPolicy.hpp
2023-08-15 09:32:10 +02:00

270 lines
12 KiB
C++

/*
Copyright 2019 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2019 Dr. Blatt - HPC-Simulation-Software & Services.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <opm/common/TimingMacros.hpp>
#include <opm/simulators/linalg/matrixblock.hh>
#include <opm/simulators/linalg/PropertyTree.hpp>
#include <opm/simulators/linalg/twolevelmethodcpr.hh>
#include <dune/istl/paamg/pinfo.hh>
#include <cstddef>
namespace Opm
{
template <class Communication>
void extendCommunicatorWithWells(const Communication& comm,
std::shared_ptr<Communication>& commRW,
const int nw)
{
OPM_TIMEBLOCK(extendCommunicatorWithWells);
// used for extending the coarse communicator pattern
using IndexSet = typename Communication::ParallelIndexSet;
using LocalIndex = typename IndexSet::LocalIndex;
const IndexSet& indset = comm.indexSet();
IndexSet& indset_rw = commRW->indexSet();
const int max_nw = comm.communicator().max(nw);
const int rank = comm.communicator().rank();
int glo_max = 0;
std::size_t loc_max = 0;
indset_rw.beginResize();
for (auto ind = indset.begin(), indend = indset.end(); ind != indend; ++ind) {
indset_rw.add(ind->global(), LocalIndex(ind->local(), ind->local().attribute(), true));
const int glo = ind->global();
const std::size_t loc = ind->local().local();
glo_max = std::max(glo_max, glo);
loc_max = std::max(loc_max, loc);
}
const int global_max = comm.communicator().max(glo_max);
// used append the welldofs at the end
assert(loc_max + 1 == indset.size());
std::size_t local_ind = loc_max + 1;
for (int i = 0; i < nw; ++i) {
// need to set unique global number
const std::size_t v = global_max + max_nw * rank + i + 1;
// set to true to not have problems with higher levels if growing of domains is used
indset_rw.add(v, LocalIndex(local_ind, Dune::OwnerOverlapCopyAttributeSet::owner, true));
++local_ind;
}
indset_rw.endResize();
assert(indset_rw.size() == indset.size() + nw);
// assume same communication pattern
commRW->remoteIndices().setNeighbours(comm.remoteIndices().getNeighbours());
commRW->remoteIndices().template rebuild<true>();
//commRW->clearInterfaces(); may need this for correct rebuild
}
namespace Details
{
using PressureMatrixType = Dune::BCRSMatrix<Opm::MatrixBlock<double, 1, 1>>;
using PressureVectorType = Dune::BlockVector<Dune::FieldVector<double, 1>>;
using SeqCoarseOperatorType = Dune::MatrixAdapter<PressureMatrixType, PressureVectorType, PressureVectorType>;
template <class Comm>
using ParCoarseOperatorType
= Dune::OverlappingSchwarzOperator<PressureMatrixType, PressureVectorType, PressureVectorType, Comm>;
template <class Comm>
using CoarseOperatorType = std::conditional_t<std::is_same<Comm, Dune::Amg::SequentialInformation>::value,
SeqCoarseOperatorType,
ParCoarseOperatorType<Comm>>;
} // namespace Details
template <class FineOperator, class Communication, bool transpose = false>
class PressureBhpTransferPolicy : public Dune::Amg::LevelTransferPolicyCpr<FineOperator, Details::CoarseOperatorType<Communication>>
{
public:
typedef typename Details::CoarseOperatorType<Communication> CoarseOperator;
typedef Dune::Amg::LevelTransferPolicyCpr<FineOperator, CoarseOperator> ParentType;
typedef Communication ParallelInformation;
typedef typename FineOperator::domain_type FineVectorType;
public:
PressureBhpTransferPolicy(const Communication& comm,
const FineVectorType& weights,
const Opm::PropertyTree& prm,
const std::size_t pressureIndex)
: communication_(&const_cast<Communication&>(comm))
, weights_(weights)
, prm_(prm)
, pressure_var_index_(pressureIndex)
{
}
virtual void createCoarseLevelSystem(const FineOperator& fineOperator) override
{
OPM_TIMEBLOCK(createCoarseLevelSystem);
using CoarseMatrix = typename CoarseOperator::matrix_type;
const auto& fineLevelMatrix = fineOperator.getmat();
const auto& nw = fineOperator.getNumberOfExtraEquations();
if (prm_.get<bool>("add_wells")) {
const std::size_t average_elements_per_row
= static_cast<std::size_t>(std::ceil(fineLevelMatrix.nonzeroes() / fineLevelMatrix.N()));
const double overflow_fraction = 1.2;
coarseLevelMatrix_.reset(new CoarseMatrix(fineLevelMatrix.N() + nw,
fineLevelMatrix.M() + nw,
average_elements_per_row,
overflow_fraction,
CoarseMatrix::implicit));
int rownum = 0;
for (const auto& row : fineLevelMatrix) {
for (auto col = row.begin(), cend = row.end(); col != cend; ++col) {
coarseLevelMatrix_->entry(rownum, col.index()) = 0.0;
}
++rownum;
}
} else {
coarseLevelMatrix_.reset(
new CoarseMatrix(fineLevelMatrix.N(), fineLevelMatrix.M(), CoarseMatrix::row_wise));
auto createIter = coarseLevelMatrix_->createbegin();
for (const auto& row : fineLevelMatrix) {
for (auto col = row.begin(), cend = row.end(); col != cend; ++col) {
createIter.insert(col.index());
}
++createIter;
}
}
if constexpr (std::is_same_v<Communication, Dune::Amg::SequentialInformation>) {
coarseLevelCommunication_ = std::make_shared<Communication>();
} else {
coarseLevelCommunication_ = std::make_shared<Communication>(
communication_->communicator(), communication_->category(), false);
}
if (prm_.get<bool>("add_wells")) {
fineOperator.addWellPressureEquationsStruct(*coarseLevelMatrix_);
coarseLevelMatrix_->compress(); // all elemenst should be set
if constexpr (!std::is_same_v<Communication, Dune::Amg::SequentialInformation>) {
extendCommunicatorWithWells(*communication_, coarseLevelCommunication_, nw);
}
}
calculateCoarseEntries(fineOperator);
this->lhs_.resize(this->coarseLevelMatrix_->M());
this->rhs_.resize(this->coarseLevelMatrix_->N());
using OperatorArgs = typename Dune::Amg::ConstructionTraits<CoarseOperator>::Arguments;
OperatorArgs oargs(coarseLevelMatrix_, *coarseLevelCommunication_);
this->operator_ = Dune::Amg::ConstructionTraits<CoarseOperator>::construct(oargs);
}
virtual void calculateCoarseEntries(const FineOperator& fineOperator) override
{
OPM_TIMEBLOCK(calculateCoarseEntries);
const auto& fineMatrix = fineOperator.getmat();
*coarseLevelMatrix_ = 0;
auto rowCoarse = coarseLevelMatrix_->begin();
for (auto row = fineMatrix.begin(), rowEnd = fineMatrix.end(); row != rowEnd; ++row, ++rowCoarse) {
assert(row.index() == rowCoarse.index());
auto entryCoarse = rowCoarse->begin();
for (auto entry = row->begin(), entryEnd = row->end(); entry != entryEnd; ++entry, ++entryCoarse) {
assert(entry.index() == entryCoarse.index());
double matrix_el = 0;
if (transpose) {
const auto& bw = weights_[entry.index()];
for (std::size_t i = 0; i < bw.size(); ++i) {
matrix_el += (*entry)[pressure_var_index_][i] * bw[i];
}
} else {
const auto& bw = weights_[row.index()];
for (std::size_t i = 0; i < bw.size(); ++i) {
matrix_el += (*entry)[i][pressure_var_index_] * bw[i];
}
}
(*entryCoarse) = matrix_el;
}
}
if (prm_.get<bool>("add_wells")) {
OPM_TIMEBLOCK(cprwAddWellEquation);
assert(transpose == false); // not implemented
bool use_well_weights = prm_.get<bool>("use_well_weights");
fineOperator.addWellPressureEquations(*coarseLevelMatrix_, weights_, use_well_weights);
#ifndef NDEBUG
std::advance(rowCoarse, fineOperator.getNumberOfExtraEquations());
assert(rowCoarse == coarseLevelMatrix_->end());
#endif
}
}
virtual void moveToCoarseLevel(const typename ParentType::FineRangeType& fine) override
{
OPM_TIMEBLOCK(moveToCoarseLevel);
//NB we iterate over fine assumming welldofs is at the end
// Set coarse vector to zero
this->rhs_ = 0;
auto end = fine.end(), begin = fine.begin();
for (auto block = begin; block != end; ++block) {
const auto& bw = weights_[block.index()];
double rhs_el = 0.0;
if (transpose) {
rhs_el = (*block)[pressure_var_index_];
} else {
for (std::size_t i = 0; i < block->size(); ++i) {
rhs_el += (*block)[i] * bw[i];
}
}
this->rhs_[block - begin] = rhs_el;
}
this->lhs_ = 0;
}
virtual void moveToFineLevel(typename ParentType::FineDomainType& fine) override
{
OPM_TIMEBLOCK(moveToFineLevel);
//NB we iterate over fine assumming welldofs is at the end
auto end = fine.end(), begin = fine.begin();
for (auto block = begin; block != end; ++block) {
if (transpose) {
const auto& bw = weights_[block.index()];
for (std::size_t i = 0; i < block->size(); ++i) {
(*block)[i] = this->lhs_[block - begin] * bw[i];
}
} else {
(*block)[pressure_var_index_] = this->lhs_[block - begin];
}
}
}
virtual PressureBhpTransferPolicy* clone() const override
{
return new PressureBhpTransferPolicy(*this);
}
const Communication& getCoarseLevelCommunication() const
{
return *coarseLevelCommunication_;
}
private:
Communication* communication_;
const FineVectorType& weights_;
PropertyTree prm_;
const int pressure_var_index_;
std::shared_ptr<Communication> coarseLevelCommunication_;
std::shared_ptr<typename CoarseOperator::matrix_type> coarseLevelMatrix_;
};
} // namespace Opm