mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-12-02 13:59:12 -06:00
193 lines
7.1 KiB
C++
193 lines
7.1 KiB
C++
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
// vi: set et ts=4 sw=4 sts=4:
|
|
/*
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Consult the COPYING file in the top-level source directory of this
|
|
module for the precise wording of the license and the list of
|
|
copyright holders.
|
|
*/
|
|
/*!
|
|
* \file
|
|
*
|
|
* \copydoc Opm::NcpPrimaryVariables
|
|
*/
|
|
#ifndef EWOMS_NCP_PRIMARY_VARIABLES_HH
|
|
#define EWOMS_NCP_PRIMARY_VARIABLES_HH
|
|
|
|
#include "ncpproperties.hh"
|
|
|
|
#include <opm/models/discretization/common/fvbaseprimaryvariables.hh>
|
|
#include <opm/models/common/energymodule.hh>
|
|
|
|
#include <opm/material/constraintsolvers/NcpFlash.hpp>
|
|
#include <opm/material/fluidstates/CompositionalFluidState.hpp>
|
|
#include <opm/material/densead/Math.hpp>
|
|
|
|
#include <dune/common/fvector.hh>
|
|
|
|
namespace Opm {
|
|
|
|
/*!
|
|
* \ingroup NcpModel
|
|
*
|
|
* \brief Represents the primary variables used by the compositional
|
|
* multi-phase NCP model.
|
|
*
|
|
* This class is basically a Dune::FieldVector which can retrieve its
|
|
* contents from an aribitatry fluid state.
|
|
*/
|
|
template <class TypeTag>
|
|
class NcpPrimaryVariables : public FvBasePrimaryVariables<TypeTag>
|
|
{
|
|
typedef FvBasePrimaryVariables<TypeTag> ParentType;
|
|
|
|
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
|
typedef typename GET_PROP_TYPE(TypeTag, Evaluation) Evaluation;
|
|
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
|
|
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
|
|
typedef typename GET_PROP_TYPE(TypeTag, MaterialLawParams) MaterialLawParams;
|
|
|
|
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
|
|
enum { pressure0Idx = Indices::pressure0Idx };
|
|
enum { saturation0Idx = Indices::saturation0Idx };
|
|
enum { fugacity0Idx = Indices::fugacity0Idx };
|
|
|
|
enum { numPhases = GET_PROP_VALUE(TypeTag, NumPhases) };
|
|
enum { numComponents = GET_PROP_VALUE(TypeTag, NumComponents) };
|
|
typedef Dune::FieldVector<Scalar, numComponents> ComponentVector;
|
|
|
|
enum { enableEnergy = GET_PROP_VALUE(TypeTag, EnableEnergy) };
|
|
typedef Opm::EnergyModule<TypeTag, enableEnergy> EnergyModule;
|
|
|
|
typedef Opm::NcpFlash<Scalar, FluidSystem> NcpFlash;
|
|
typedef Opm::MathToolbox<Evaluation> Toolbox;
|
|
|
|
public:
|
|
NcpPrimaryVariables() : ParentType()
|
|
{}
|
|
|
|
/*!
|
|
* \copydoc ImmisciblePrimaryVariables::ImmisciblePrimaryVariables(Scalar)
|
|
*/
|
|
NcpPrimaryVariables(Scalar value) : ParentType(value)
|
|
{}
|
|
|
|
/*!
|
|
* \copydoc ImmisciblePrimaryVariables::ImmisciblePrimaryVariables(const
|
|
* ImmisciblePrimaryVariables& )
|
|
*/
|
|
NcpPrimaryVariables(const NcpPrimaryVariables& value) = default;
|
|
NcpPrimaryVariables& operator=(const NcpPrimaryVariables& value) = default;
|
|
|
|
/*!
|
|
* \copydoc ImmisciblePrimaryVariables::assignMassConservative
|
|
*/
|
|
template <class FluidState>
|
|
void assignMassConservative(const FluidState& fluidState,
|
|
const MaterialLawParams& matParams,
|
|
bool isInEquilibrium = false)
|
|
{
|
|
typedef Opm::MathToolbox<typename FluidState::Scalar> FsToolbox;
|
|
|
|
#ifndef NDEBUG
|
|
// make sure the temperature is the same in all fluid phases
|
|
for (unsigned phaseIdx = 1; phaseIdx < numPhases; ++phaseIdx) {
|
|
assert(fluidState.temperature(0) == fluidState.temperature(phaseIdx));
|
|
}
|
|
#endif // NDEBUG
|
|
|
|
// for the equilibrium case, we don't need complicated
|
|
// computations.
|
|
if (isInEquilibrium) {
|
|
assignNaive(fluidState);
|
|
return;
|
|
}
|
|
|
|
// use a flash calculation to calculate a fluid state in
|
|
// thermodynamic equilibrium
|
|
typename FluidSystem::template ParameterCache<Scalar> paramCache;
|
|
Opm::CompositionalFluidState<Scalar, FluidSystem> fsFlash;
|
|
|
|
// use the externally given fluid state as initial value for
|
|
// the flash calculation
|
|
fsFlash.assign(fluidState);
|
|
|
|
// calculate the phase densities
|
|
paramCache.updateAll(fsFlash);
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
Scalar rho = FluidSystem::density(fsFlash, paramCache, phaseIdx);
|
|
fsFlash.setDensity(phaseIdx, rho);
|
|
}
|
|
|
|
// calculate the "global molarities"
|
|
ComponentVector globalMolarities(0.0);
|
|
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
globalMolarities[compIdx] +=
|
|
FsToolbox::value(fsFlash.saturation(phaseIdx))
|
|
* FsToolbox::value(fsFlash.molarity(phaseIdx, compIdx));
|
|
}
|
|
}
|
|
|
|
// run the flash calculation
|
|
NcpFlash::template solve<MaterialLaw>(fsFlash, matParams, paramCache, globalMolarities);
|
|
|
|
// use the result to assign the primary variables
|
|
assignNaive(fsFlash);
|
|
}
|
|
|
|
/*!
|
|
* \copydoc ImmisciblePrimaryVariables::assignNaive
|
|
*/
|
|
template <class FluidState>
|
|
void assignNaive(const FluidState& fluidState, unsigned refPhaseIdx = 0)
|
|
{
|
|
typedef Opm::MathToolbox<typename FluidState::Scalar> FsToolbox;
|
|
|
|
// assign the phase temperatures. this is out-sourced to
|
|
// the energy module
|
|
EnergyModule::setPriVarTemperatures(*this, fluidState);
|
|
|
|
// assign fugacities.
|
|
typename FluidSystem::template ParameterCache<Scalar> paramCache;
|
|
paramCache.updatePhase(fluidState, refPhaseIdx);
|
|
Scalar pRef = FsToolbox::value(fluidState.pressure(refPhaseIdx));
|
|
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
|
|
// we always compute the fugacities because they are quite exotic quantities
|
|
// and this easily forgotten to be specified
|
|
Scalar fugCoeff =
|
|
FluidSystem::template fugacityCoefficient<FluidState, Scalar>(fluidState,
|
|
paramCache,
|
|
refPhaseIdx,
|
|
compIdx);
|
|
(*this)[fugacity0Idx + compIdx] =
|
|
fugCoeff*fluidState.moleFraction(refPhaseIdx, compIdx)*pRef;
|
|
}
|
|
|
|
// assign pressure of first phase
|
|
(*this)[pressure0Idx] = FsToolbox::value(fluidState.pressure(/*phaseIdx=*/0));
|
|
|
|
// assign first M - 1 saturations
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases - 1; ++phaseIdx)
|
|
(*this)[saturation0Idx + phaseIdx] = FsToolbox::value(fluidState.saturation(phaseIdx));
|
|
}
|
|
};
|
|
|
|
} // namespace Opm
|
|
|
|
#endif
|