mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-24 14:46:27 -06:00
334 lines
13 KiB
C++
334 lines
13 KiB
C++
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
// vi: set et ts=4 sw=4 sts=4:
|
|
/*
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Consult the COPYING file in the top-level source directory of this
|
|
module for the precise wording of the license and the list of
|
|
copyright holders.
|
|
*/
|
|
/*!
|
|
* \file
|
|
*
|
|
* \copydoc Opm::Tutorial1Problem
|
|
*/
|
|
#ifndef EWOMS_TUTORIAL1_PROBLEM_HH /*@\label{tutorial1:guardian1}@*/
|
|
#define EWOMS_TUTORIAL1_PROBLEM_HH /*@\label{tutorial1:guardian2}@*/
|
|
|
|
// The numerical model
|
|
#include <opm/models/immiscible/immisciblemodel.hh>
|
|
|
|
// The spatial discretization (VCFV == Vertex-Centered Finite Volumes)
|
|
#include <opm/models/discretization/vcfv/vcfvdiscretization.hh> /*@\label{tutorial1:include-discretization}@*/
|
|
|
|
// The chemical species that are used
|
|
#include <opm/material/components/SimpleH2O.hpp>
|
|
#include <opm/material/components/Lnapl.hpp>
|
|
|
|
// Headers required for the capillary pressure law
|
|
#include <opm/material/fluidmatrixinteractions/RegularizedBrooksCorey.hpp> /*@\label{tutorial1:rawLawInclude}@*/
|
|
#include <opm/material/fluidmatrixinteractions/EffToAbsLaw.hpp>
|
|
#include <opm/material/fluidmatrixinteractions/MaterialTraits.hpp>
|
|
|
|
// For the DUNE grid
|
|
#include <dune/grid/yaspgrid.hh> /*@\label{tutorial1:include-grid-manager}@*/
|
|
#include <opm/models/io/cubegridvanguard.hh> /*@\label{tutorial1:include-grid-manager}@*/
|
|
|
|
// For Dune::FieldMatrix
|
|
#include <dune/common/fmatrix.hh>
|
|
#include <dune/common/version.hh>
|
|
|
|
namespace Opm {
|
|
// forward declaration of the problem class
|
|
template <class TypeTag>
|
|
class Tutorial1Problem;
|
|
}
|
|
|
|
namespace Opm::Properties {
|
|
|
|
// Create a new type tag for the problem
|
|
// Create new type tags
|
|
namespace TTag {
|
|
struct Tutorial1Problem { using InheritsFrom = std::tuple<ImmiscibleTwoPhaseModel>; };
|
|
} // end namespace TTag
|
|
|
|
// Select the vertex centered finite volume method as spatial discretization
|
|
template<class TypeTag>
|
|
struct SpatialDiscretizationSplice<TypeTag, TTag::Tutorial1Problem>
|
|
{ using type = TTag::VcfvDiscretization; }; /*@\label{tutorial1:set-spatial-discretization}@*/
|
|
|
|
// Set the "Problem" property
|
|
template<class TypeTag>
|
|
struct Problem<TypeTag, TTag::Tutorial1Problem>
|
|
{ using type = Opm::Tutorial1Problem<TypeTag>; }; /*@\label{tutorial1:set-problem}@*/
|
|
|
|
// Set grid and the grid manager to be used
|
|
template<class TypeTag>
|
|
struct Grid<TypeTag, TTag::Tutorial1Problem> { using type = Dune::YaspGrid</*dim=*/2>; }; /*@\label{tutorial1:set-grid}@*/
|
|
template<class TypeTag>
|
|
struct Vanguard<TypeTag, TTag::Tutorial1Problem> { using type = Opm::CubeGridVanguard<TypeTag>; }; /*@\label{tutorial1:set-grid-manager}@*/
|
|
|
|
// Set the wetting phase /*@\label{tutorial1:2p-system-start}@*/
|
|
template<class TypeTag>
|
|
struct WettingPhase<TypeTag, TTag::Tutorial1Problem> /*@\label{tutorial1:wettingPhase}@*/
|
|
{
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
using type = Opm::LiquidPhase<Scalar, Opm::SimpleH2O<Scalar> >;
|
|
};
|
|
|
|
// Set the non-wetting phase
|
|
template<class TypeTag>
|
|
struct NonwettingPhase<TypeTag, TTag::Tutorial1Problem> /*@\label{tutorial1:nonwettingPhase}@*/
|
|
{
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
using type = Opm::LiquidPhase<Scalar, Opm::LNAPL<Scalar> >;
|
|
}; /*@\label{tutorial1:2p-system-end}@*/
|
|
|
|
// Set the material law
|
|
template<class TypeTag>
|
|
struct MaterialLaw<TypeTag, TTag::Tutorial1Problem>
|
|
{
|
|
private:
|
|
// create a class holding the necessary information for a
|
|
// two-phase capillary pressure law
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
|
|
enum { wettingPhaseIdx = FluidSystem::wettingPhaseIdx };
|
|
enum { nonWettingPhaseIdx = FluidSystem::nonWettingPhaseIdx };
|
|
using Traits = Opm::TwoPhaseMaterialTraits<Scalar, wettingPhaseIdx, nonWettingPhaseIdx>;
|
|
|
|
// define the material law which is parameterized by effective
|
|
// saturations
|
|
using RawMaterialLaw = Opm::RegularizedBrooksCorey<Traits>; /*@\label{tutorial1:rawlaw}@*/
|
|
|
|
public:
|
|
// Convert absolute saturations into effective ones before passing
|
|
// it to the base capillary pressure law
|
|
using type = Opm::EffToAbsLaw<RawMaterialLaw>; /*@\label{tutorial1:eff2abs}@*/
|
|
};
|
|
|
|
} // namespace Opm::Properties
|
|
|
|
namespace Opm {
|
|
|
|
//! Tutorial problem using the "immiscible" model.
|
|
template <class TypeTag>
|
|
class Tutorial1Problem
|
|
: public GetPropType<TypeTag, Properties::BaseProblem> /*@\label{tutorial1:def-problem}@*/
|
|
{
|
|
using ParentType = GetPropType<TypeTag, Properties::BaseProblem>;
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
using GridView = GetPropType<TypeTag, Properties::GridView>;
|
|
|
|
// Grid dimension
|
|
enum {
|
|
dim = GridView::dimension,
|
|
dimWorld = GridView::dimensionworld
|
|
};
|
|
|
|
// The type of the intrinsic permeability tensor
|
|
using DimMatrix = Dune::FieldMatrix<Scalar, dimWorld, dimWorld>;
|
|
|
|
// eWoms specific types are specified via the property system
|
|
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
|
|
using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
|
|
using RateVector = GetPropType<TypeTag, Properties::RateVector>;
|
|
using BoundaryRateVector = GetPropType<TypeTag, Properties::BoundaryRateVector>;
|
|
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
|
|
using Indices = GetPropType<TypeTag, Properties::Indices>;
|
|
using MaterialLaw = GetPropType<TypeTag, Properties::MaterialLaw>;
|
|
using MaterialLawParams = GetPropType<TypeTag, Properties::MaterialLawParams>; /*@\label{tutorial1:matLawObjectType}@*/
|
|
|
|
// phase indices
|
|
enum { numPhases = FluidSystem::numPhases };
|
|
enum { wettingPhaseIdx = FluidSystem::wettingPhaseIdx };
|
|
enum { nonWettingPhaseIdx = FluidSystem::nonWettingPhaseIdx };
|
|
|
|
// Indices of the conservation equations
|
|
enum { contiWettingEqIdx = Indices::conti0EqIdx + wettingPhaseIdx };
|
|
enum { contiNonWettingEqIdx = Indices::conti0EqIdx + nonWettingPhaseIdx };
|
|
|
|
public:
|
|
//! The constructor of the problem. This only _allocates_ the memory required by the
|
|
//! problem. The constructor is supposed to _never ever_ throw an exception.
|
|
Tutorial1Problem(Simulator& simulator)
|
|
: ParentType(simulator)
|
|
, eps_(3e-6)
|
|
{ }
|
|
|
|
//! This method initializes the data structures allocated by the problem
|
|
//! constructor. In contrast to the constructor, exceptions thrown from within this
|
|
//! method won't lead to segmentation faults.
|
|
void finishInit()
|
|
{
|
|
ParentType::finishInit();
|
|
|
|
// Use an isotropic and homogeneous intrinsic permeability
|
|
K_ = this->toDimMatrix_(1e-7);
|
|
|
|
// Parameters of the Brooks-Corey law
|
|
materialParams_.setEntryPressure(500.0 /*Pa*/); /*@\label{tutorial1:setLawParams}@*/
|
|
materialParams_.setLambda(2); // shape parameter
|
|
|
|
// Set the residual saturations
|
|
materialParams_.setResidualSaturation(wettingPhaseIdx, 0.0);
|
|
materialParams_.setResidualSaturation(nonWettingPhaseIdx, 0.0);
|
|
|
|
// wrap up the initialization of the material law's parameters
|
|
materialParams_.finalize();
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::registerParameters
|
|
*/
|
|
static void registerParameters()
|
|
{
|
|
ParentType::registerParameters();
|
|
|
|
Parameters::SetDefault<Parameters::CellsX>(100);
|
|
Parameters::SetDefault<Parameters::CellsY>(1);
|
|
Parameters::SetDefault<Parameters::DomainSizeX<Scalar>>(300.0);
|
|
Parameters::SetDefault<Parameters::DomainSizeY<Scalar>>(60.0);
|
|
|
|
if constexpr (dim == 3) {
|
|
Parameters::SetDefault<Parameters::CellsZ>(1);
|
|
Parameters::SetDefault<Parameters::DomainSizeZ<Scalar>>(0.0);
|
|
}
|
|
|
|
Parameters::SetDefault<Parameters::EndTime<Scalar>>(100e3);
|
|
Parameters::SetDefault<Parameters::InitialTimeStepSize<Scalar>>(125.0);
|
|
}
|
|
|
|
//! Specifies the problem name. This is used for files generated by the simulation.
|
|
std::string name() const
|
|
{ return "tutorial1"; }
|
|
|
|
//! Returns the temperature at a given position.
|
|
template <class Context>
|
|
Scalar temperature(const Context& /*context*/,
|
|
unsigned /*spaceIdx*/, unsigned /*timeIdx*/) const
|
|
{ return 283.15; }
|
|
|
|
//! Returns the intrinsic permeability tensor [m^2] at a position.
|
|
template <class Context>
|
|
const DimMatrix& intrinsicPermeability(const Context& /*context*/, /*@\label{tutorial1:permeability}@*/
|
|
unsigned /*spaceIdx*/, unsigned /*timeIdx*/) const
|
|
{ return K_; }
|
|
|
|
//! Defines the porosity [-] of the medium at a given position
|
|
template <class Context>
|
|
Scalar porosity(const Context& /*context*/,
|
|
unsigned /*spaceIdx*/, unsigned /*timeIdx*/) const /*@\label{tutorial1:porosity}@*/
|
|
{ return 0.2; }
|
|
|
|
//! Returns the parameter object for the material law at a given position
|
|
template <class Context>
|
|
const MaterialLawParams& materialLawParams(const Context& /*context*/, /*@\label{tutorial1:matLawParams}@*/
|
|
unsigned /*spaceIdx*/, unsigned /*timeIdx*/) const
|
|
{ return materialParams_; }
|
|
|
|
//! Evaluates the boundary conditions.
|
|
template <class Context>
|
|
void boundary(BoundaryRateVector& values, const Context& context,
|
|
unsigned spaceIdx, unsigned timeIdx) const
|
|
{
|
|
const auto& pos = context.pos(spaceIdx, timeIdx);
|
|
if (pos[0] < eps_) {
|
|
// Free-flow conditions on left boundary
|
|
const auto& materialParams = this->materialLawParams(context, spaceIdx, timeIdx);
|
|
|
|
Opm::ImmiscibleFluidState<Scalar, FluidSystem> fs;
|
|
Scalar Sw = 1.0;
|
|
fs.setSaturation(wettingPhaseIdx, Sw);
|
|
fs.setSaturation(nonWettingPhaseIdx, 1.0 - Sw);
|
|
fs.setTemperature(temperature(context, spaceIdx, timeIdx));
|
|
|
|
Scalar pC[numPhases];
|
|
MaterialLaw::capillaryPressures(pC, materialParams, fs);
|
|
fs.setPressure(wettingPhaseIdx, 200e3);
|
|
fs.setPressure(nonWettingPhaseIdx, 200e3 + pC[nonWettingPhaseIdx] - pC[nonWettingPhaseIdx]);
|
|
|
|
typename FluidSystem::template ParameterCache<Scalar> paramCache;
|
|
paramCache.updateAll(fs);
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
|
|
fs.setDensity(phaseIdx, FluidSystem::density(fs, paramCache, phaseIdx));
|
|
fs.setViscosity(phaseIdx, FluidSystem::viscosity(fs, paramCache, phaseIdx));
|
|
}
|
|
|
|
values.setFreeFlow(context, spaceIdx, timeIdx, fs);
|
|
}
|
|
else if (pos[0] > this->boundingBoxMax()[0] - eps_) {
|
|
// forced outflow at the right boundary
|
|
RateVector massRate(0.0);
|
|
|
|
massRate[contiWettingEqIdx] = 0.0; // [kg / (s m^2)]
|
|
massRate[contiNonWettingEqIdx] = 3e-2; // [kg / (s m^2)]
|
|
|
|
values.setMassRate(massRate);
|
|
}
|
|
else // no flow at the remaining boundaries
|
|
values.setNoFlow();
|
|
}
|
|
|
|
//! Evaluates the source term for all conserved quantities at a given
|
|
//! position of the domain [kg/(m^3 * s)]. Positive values mean that
|
|
//! mass is created.
|
|
template <class Context>
|
|
void source(RateVector& sourceRate, const Context& /*context*/,
|
|
unsigned /*spaceIdx*/, unsigned /*timeIdx*/) const
|
|
{
|
|
sourceRate[contiWettingEqIdx] = 0.0;
|
|
sourceRate[contiNonWettingEqIdx] = 0.0;
|
|
}
|
|
|
|
//! Evaluates the initial value at a given position in the domain.
|
|
template <class Context>
|
|
void initial(PrimaryVariables& values, const Context& context,
|
|
unsigned spaceIdx, unsigned timeIdx) const
|
|
{
|
|
Opm::ImmiscibleFluidState<Scalar, FluidSystem> fs;
|
|
|
|
// the domain is initially fully saturated by LNAPL
|
|
Scalar Sw = 0.0;
|
|
fs.setSaturation(wettingPhaseIdx, Sw);
|
|
fs.setSaturation(nonWettingPhaseIdx, 1.0 - Sw);
|
|
|
|
// the temperature is given by the temperature() method
|
|
fs.setTemperature(temperature(context, spaceIdx, timeIdx));
|
|
|
|
// set pressure of the wetting phase to 200 kPa = 2 bar
|
|
Scalar pC[numPhases];
|
|
MaterialLaw::capillaryPressures(pC, materialLawParams(context, spaceIdx, timeIdx),
|
|
fs);
|
|
fs.setPressure(wettingPhaseIdx, 200e3);
|
|
fs.setPressure(nonWettingPhaseIdx, 200e3 + pC[nonWettingPhaseIdx] - pC[nonWettingPhaseIdx]);
|
|
|
|
values.assignNaive(fs);
|
|
}
|
|
|
|
private:
|
|
DimMatrix K_;
|
|
// Object that holds the parameters of required by the capillary pressure law.
|
|
MaterialLawParams materialParams_; /*@\label{tutorial1:matParamsObject}@*/
|
|
|
|
// small epsilon value
|
|
Scalar eps_;
|
|
};
|
|
} // namespace Opm
|
|
|
|
#endif
|
|
|