mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-01 12:06:54 -06:00
748 lines
26 KiB
C++
748 lines
26 KiB
C++
/*
|
|
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
|
|
Copyright 2017 Statoil ASA.
|
|
Copyright 2018 IRIS
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <config.h>
|
|
#include <opm/simulators/wells/WellInterfaceGeneric.hpp>
|
|
|
|
#include <opm/input/eclipse/Schedule/Well/WellTestState.hpp>
|
|
#include <opm/common/utility/numeric/RootFinders.hpp>
|
|
#include <opm/simulators/utils/DeferredLoggingErrorHelpers.hpp>
|
|
#include <opm/simulators/wells/PerforationData.hpp>
|
|
#include <opm/simulators/wells/ParallelWellInfo.hpp>
|
|
#include <opm/simulators/wells/VFPProperties.hpp>
|
|
#include <opm/simulators/wells/WellState.hpp>
|
|
#include <opm/simulators/wells/WellHelpers.hpp>
|
|
#include <opm/simulators/wells/VFPHelpers.hpp>
|
|
#include <cassert>
|
|
#include <cmath>
|
|
#include <cstddef>
|
|
#include <stdexcept>
|
|
|
|
namespace Opm
|
|
{
|
|
|
|
WellInterfaceGeneric::WellInterfaceGeneric(const Well& well,
|
|
const ParallelWellInfo& pw_info,
|
|
const int time_step,
|
|
const int pvtRegionIdx,
|
|
const int num_components,
|
|
const int num_phases,
|
|
const int index_of_well,
|
|
const std::vector<PerforationData>& perf_data)
|
|
: well_ecl_(well)
|
|
, parallel_well_info_(pw_info)
|
|
, current_step_(time_step)
|
|
, pvtRegionIdx_(pvtRegionIdx)
|
|
, num_components_(num_components)
|
|
, number_of_phases_(num_phases)
|
|
, index_of_well_(index_of_well)
|
|
, perf_data_(&perf_data)
|
|
, ipr_a_(number_of_phases_)
|
|
, ipr_b_(number_of_phases_)
|
|
{
|
|
assert(well.name()==pw_info.name());
|
|
assert(std::is_sorted(perf_data.begin(), perf_data.end(),
|
|
[](const auto& perf1, const auto& perf2){
|
|
return perf1.ecl_index < perf2.ecl_index;
|
|
}));
|
|
if (time_step < 0) {
|
|
OPM_THROW(std::invalid_argument, "Negtive time step is used to construct WellInterface");
|
|
}
|
|
|
|
ref_depth_ = well.getRefDepth();
|
|
|
|
// We do not want to count SHUT perforations here, so
|
|
// it would be wrong to use wells.getConnections().size().
|
|
number_of_perforations_ = perf_data.size();
|
|
|
|
// perforations related
|
|
{
|
|
well_cells_.resize(number_of_perforations_);
|
|
well_index_.resize(number_of_perforations_);
|
|
saturation_table_number_.resize(number_of_perforations_);
|
|
int perf = 0;
|
|
for (const auto& pd : perf_data) {
|
|
well_cells_[perf] = pd.cell_index;
|
|
well_index_[perf] = pd.connection_transmissibility_factor;
|
|
saturation_table_number_[perf] = pd.satnum_id;
|
|
++perf;
|
|
}
|
|
}
|
|
|
|
// initialization of the completions mapping
|
|
initCompletions();
|
|
|
|
well_efficiency_factor_ = 1.0;
|
|
|
|
this->wellStatus_ = Well::Status::OPEN;
|
|
if (well.getStatus() == Well::Status::STOP) {
|
|
this->wellStatus_ = Well::Status::STOP;
|
|
}
|
|
|
|
wsolvent_ = 0.0;
|
|
|
|
well_control_log_.clear();
|
|
}
|
|
|
|
// Currently the VFP calculations requires three-phase input data, see
|
|
// the documentation for keyword VFPPROD and its implementation in
|
|
// VFPProdProperties.cpp. However, by setting the gas flow rate to a dummy
|
|
// value in VFPPROD record 5 (GFR values) and supplying a dummy input value
|
|
// for the gas rate to the methods in VFPProdProperties.cpp, we can extend
|
|
// the VFP calculations to the two-phase oil-water case.
|
|
void WellInterfaceGeneric::adaptRatesForVFP(std::vector<double>& rates) const
|
|
{
|
|
const auto& pu = this->phaseUsage();
|
|
if (pu.num_phases == 2) {
|
|
if ( pu.phase_used[BlackoilPhases::Aqua] == 1
|
|
&& pu.phase_used[BlackoilPhases::Liquid] == 1
|
|
&& pu.phase_used[BlackoilPhases::Vapour] == 0)
|
|
{
|
|
assert(rates.size() == 2);
|
|
rates.push_back(0.0); // set gas rate to zero
|
|
}
|
|
else {
|
|
throw std::logic_error("Two-phase VFP calculation only "
|
|
"supported for oil and water");
|
|
}
|
|
}
|
|
}
|
|
|
|
const std::vector<PerforationData>& WellInterfaceGeneric::perforationData() const
|
|
{
|
|
return *perf_data_;
|
|
}
|
|
|
|
const std::string& WellInterfaceGeneric::name() const
|
|
{
|
|
return well_ecl_.name();
|
|
}
|
|
|
|
bool WellInterfaceGeneric::isInjector() const
|
|
{
|
|
return well_ecl_.isInjector();
|
|
}
|
|
|
|
bool WellInterfaceGeneric::isProducer() const
|
|
{
|
|
return well_ecl_.isProducer();
|
|
}
|
|
|
|
int WellInterfaceGeneric::indexOfWell() const
|
|
{
|
|
return index_of_well_;
|
|
}
|
|
|
|
bool WellInterfaceGeneric::getAllowCrossFlow() const
|
|
{
|
|
return well_ecl_.getAllowCrossFlow();
|
|
}
|
|
|
|
const Well& WellInterfaceGeneric::wellEcl() const
|
|
{
|
|
return well_ecl_;
|
|
}
|
|
|
|
const PhaseUsage& WellInterfaceGeneric::phaseUsage() const
|
|
{
|
|
assert(phase_usage_ != nullptr);
|
|
|
|
return *phase_usage_;
|
|
}
|
|
|
|
double WellInterfaceGeneric::wsolvent() const
|
|
{
|
|
return wsolvent_;
|
|
}
|
|
|
|
bool WellInterfaceGeneric::wellHasTHPConstraints(const SummaryState& summaryState) const
|
|
{
|
|
if (dynamic_thp_limit_) {
|
|
return true;
|
|
}
|
|
|
|
if (well_ecl_.isInjector()) {
|
|
const auto controls = well_ecl_.injectionControls(summaryState);
|
|
if (controls.hasControl(Well::InjectorCMode::THP))
|
|
return true;
|
|
}
|
|
|
|
if (well_ecl_.isProducer( )) {
|
|
const auto controls = well_ecl_.productionControls(summaryState);
|
|
if (controls.hasControl(Well::ProducerCMode::THP))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
double WellInterfaceGeneric::mostStrictBhpFromBhpLimits(const SummaryState& summaryState) const
|
|
{
|
|
if (well_ecl_.isInjector()) {
|
|
const auto& controls = well_ecl_.injectionControls(summaryState);
|
|
return controls.bhp_limit;
|
|
}
|
|
|
|
if (well_ecl_.isProducer( )) {
|
|
const auto& controls = well_ecl_.productionControls(summaryState);
|
|
return controls.bhp_limit;
|
|
}
|
|
|
|
return 0.0;
|
|
}
|
|
|
|
double WellInterfaceGeneric::getTHPConstraint(const SummaryState& summaryState) const
|
|
{
|
|
if (dynamic_thp_limit_) {
|
|
return *dynamic_thp_limit_;
|
|
}
|
|
if (well_ecl_.isInjector()) {
|
|
const auto& controls = well_ecl_.injectionControls(summaryState);
|
|
return controls.thp_limit;
|
|
}
|
|
|
|
if (well_ecl_.isProducer( )) {
|
|
const auto& controls = well_ecl_.productionControls(summaryState);
|
|
return controls.thp_limit;
|
|
}
|
|
|
|
return 0.0;
|
|
}
|
|
|
|
bool WellInterfaceGeneric::underPredictionMode() const
|
|
{
|
|
return well_ecl_.predictionMode();
|
|
}
|
|
|
|
void WellInterfaceGeneric::initCompletions()
|
|
{
|
|
assert(completions_.empty() );
|
|
|
|
const WellConnections& connections = well_ecl_.getConnections();
|
|
const std::size_t num_conns = connections.size();
|
|
|
|
int num_active_connections = 0;
|
|
auto my_next_perf = perf_data_->begin();
|
|
for (std::size_t c = 0; c < num_conns; ++c) {
|
|
if (my_next_perf == perf_data_->end())
|
|
{
|
|
break;
|
|
}
|
|
if (my_next_perf->ecl_index > c)
|
|
{
|
|
continue;
|
|
}
|
|
assert(my_next_perf->ecl_index == c);
|
|
if (connections[c].state() == Connection::State::OPEN) {
|
|
completions_[connections[c].complnum()].push_back(num_active_connections++);
|
|
}
|
|
++my_next_perf;
|
|
}
|
|
assert(my_next_perf == perf_data_->end());
|
|
}
|
|
|
|
void WellInterfaceGeneric::closeCompletions(const WellTestState& wellTestState)
|
|
{
|
|
const auto& connections = well_ecl_.getConnections();
|
|
int perfIdx = 0;
|
|
for (const auto& connection : connections) {
|
|
if (connection.state() == Connection::State::OPEN) {
|
|
if (wellTestState.completion_is_closed(name(), connection.complnum())) {
|
|
this->well_index_[perfIdx] = 0.0;
|
|
}
|
|
perfIdx++;
|
|
}
|
|
}
|
|
}
|
|
|
|
void WellInterfaceGeneric::setVFPProperties(const VFPProperties* vfp_properties_arg)
|
|
{
|
|
vfp_properties_ = vfp_properties_arg;
|
|
}
|
|
|
|
void WellInterfaceGeneric::setGuideRate(const GuideRate* guide_rate_arg)
|
|
{
|
|
guide_rate_ = guide_rate_arg;
|
|
}
|
|
|
|
void WellInterfaceGeneric::setWellEfficiencyFactor(const double efficiency_factor)
|
|
{
|
|
well_efficiency_factor_ = efficiency_factor;
|
|
}
|
|
|
|
void WellInterfaceGeneric::setRepRadiusPerfLength()
|
|
{
|
|
const int nperf = number_of_perforations_;
|
|
|
|
perf_rep_radius_.clear();
|
|
perf_length_.clear();
|
|
bore_diameters_.clear();
|
|
|
|
perf_rep_radius_.reserve(nperf);
|
|
perf_length_.reserve(nperf);
|
|
bore_diameters_.reserve(nperf);
|
|
|
|
const WellConnections& connections = well_ecl_.getConnections();
|
|
const std::size_t num_conns = connections.size();
|
|
int num_active_connections = 0;
|
|
auto my_next_perf = perf_data_->begin();
|
|
for (std::size_t c = 0; c < num_conns; ++c) {
|
|
if (my_next_perf == perf_data_->end())
|
|
{
|
|
break;
|
|
}
|
|
if (my_next_perf->ecl_index > c)
|
|
{
|
|
continue;
|
|
}
|
|
assert(my_next_perf->ecl_index == c);
|
|
const auto& connection = connections[c];
|
|
if (connection.state() == Connection::State::OPEN) {
|
|
double radius = connection.rw();
|
|
double re = connection.re(); // area equivalent radius of the grid block
|
|
double perf_length = connection.connectionLength(); // the length of the well perforation
|
|
const double repR = std::sqrt(re * radius);
|
|
perf_rep_radius_.push_back(repR);
|
|
perf_length_.push_back(perf_length);
|
|
bore_diameters_.push_back(2. * radius);
|
|
num_active_connections++;
|
|
}
|
|
++my_next_perf;
|
|
}
|
|
assert(my_next_perf == perf_data_->end());
|
|
assert(num_active_connections == nperf);
|
|
}
|
|
|
|
void WellInterfaceGeneric::setWsolvent(const double wsolvent)
|
|
{
|
|
wsolvent_ = wsolvent;
|
|
}
|
|
|
|
void WellInterfaceGeneric::setDynamicThpLimit(const double thp_limit)
|
|
{
|
|
dynamic_thp_limit_ = thp_limit;
|
|
}
|
|
|
|
void WellInterfaceGeneric::updatePerforatedCell(std::vector<bool>& is_cell_perforated)
|
|
{
|
|
|
|
for (int perf_idx = 0; perf_idx<number_of_perforations_; ++perf_idx) {
|
|
is_cell_perforated[well_cells_[perf_idx]] = true;
|
|
}
|
|
}
|
|
|
|
bool WellInterfaceGeneric::isVFPActive(DeferredLogger& deferred_logger) const
|
|
{
|
|
// since the well_controls only handles the VFP number when THP constraint/target is there.
|
|
// we need to get the table number through the parser, in case THP constraint/target is not there.
|
|
// When THP control/limit is not active, if available VFP table is provided, we will still need to
|
|
// update THP value. However, it will only used for output purpose.
|
|
if (isProducer()) { // producer
|
|
const int table_id = well_ecl_.vfp_table_number();
|
|
if (table_id <= 0) {
|
|
return false;
|
|
} else {
|
|
if (vfp_properties_->getProd()->hasTable(table_id)) {
|
|
return true;
|
|
} else {
|
|
OPM_DEFLOG_THROW(std::runtime_error, "VFPPROD table " << std::to_string(table_id) << " is specified,"
|
|
<< " for well " << name() << ", while we could not access it during simulation", deferred_logger);
|
|
}
|
|
}
|
|
|
|
} else { // injector
|
|
const int table_id = well_ecl_.vfp_table_number();
|
|
if (table_id <= 0) {
|
|
return false;
|
|
} else {
|
|
if (vfp_properties_->getInj()->hasTable(table_id)) {
|
|
return true;
|
|
} else {
|
|
OPM_DEFLOG_THROW(std::runtime_error, "VFPINJ table " << std::to_string(table_id) << " is specified,"
|
|
<< " for well " << name() << ", while we could not access it during simulation", deferred_logger);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void WellInterfaceGeneric::updateWellTestStatePhysical(const double simulation_time,
|
|
const bool write_message_to_opmlog,
|
|
WellTestState& well_test_state,
|
|
DeferredLogger& deferred_logger) const
|
|
{
|
|
if (!isOperableAndSolvable()) {
|
|
if (well_test_state.well_is_closed(name())) {
|
|
// Already closed, do nothing.
|
|
} else {
|
|
well_test_state.close_well(name(), WellTestConfig::Reason::PHYSICAL, simulation_time);
|
|
if (write_message_to_opmlog) {
|
|
const std::string action = well_ecl_.getAutomaticShutIn() ? "shut" : "stopped";
|
|
const std::string msg = "Well " + name()
|
|
+ " will be " + action + " as it can not operate under current reservoir conditions.";
|
|
deferred_logger.info(msg);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool WellInterfaceGeneric::isOperableAndSolvable() const
|
|
{
|
|
return operability_status_.isOperableAndSolvable();
|
|
}
|
|
|
|
double WellInterfaceGeneric::getALQ(const WellState& well_state) const
|
|
{
|
|
return well_state.getALQ(name());
|
|
}
|
|
|
|
void WellInterfaceGeneric::reportWellSwitching(const SingleWellState& ws, DeferredLogger& deferred_logger) const
|
|
{
|
|
if (well_control_log_.empty())
|
|
return;
|
|
|
|
std::string msg = " Well " + name()
|
|
+ " control mode changed from ";
|
|
for (const std::string& from : well_control_log_) {
|
|
msg += from + "->";
|
|
}
|
|
std::string to;
|
|
if (isInjector()) {
|
|
to = Well::InjectorCMode2String(ws.injection_cmode);
|
|
} else {
|
|
to = Well::ProducerCMode2String(ws.production_cmode);
|
|
}
|
|
msg += to;
|
|
deferred_logger.info(msg);
|
|
}
|
|
|
|
std::optional<double>
|
|
WellInterfaceGeneric::
|
|
bhpMax(const std::function<double(const double)>& fflo,
|
|
const double bhp_limit,
|
|
const double maxPerfPress,
|
|
const double vfp_flo_front,
|
|
DeferredLogger& deferred_logger) const
|
|
{
|
|
// Find the bhp-point where production becomes nonzero.
|
|
double bhp_max = 0.0;
|
|
double low = bhp_limit;
|
|
double high = maxPerfPress + 1.0 * unit::barsa;
|
|
double f_low = fflo(low);
|
|
double f_high = fflo(high);
|
|
deferred_logger.debug("computeBhpAtThpLimitProd(): well = " + this->name() +
|
|
" low = " + std::to_string(low) +
|
|
" high = " + std::to_string(high) +
|
|
" f(low) = " + std::to_string(f_low) +
|
|
" f(high) = " + std::to_string(f_high));
|
|
int adjustments = 0;
|
|
const int max_adjustments = 10;
|
|
const double adjust_amount = 5.0 * unit::barsa;
|
|
while (f_low * f_high > 0.0 && adjustments < max_adjustments) {
|
|
// Same sign, adjust high to see if we can flip it.
|
|
high += adjust_amount;
|
|
f_high = fflo(high);
|
|
++adjustments;
|
|
}
|
|
if (f_low * f_high > 0.0) {
|
|
if (f_low > 0.0) {
|
|
// Even at the BHP limit, we are injecting.
|
|
// There will be no solution here, return an
|
|
// empty optional.
|
|
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_INOPERABLE",
|
|
"Robust bhp(thp) solve failed due to inoperability for well " + this->name());
|
|
return std::nullopt;
|
|
} else {
|
|
// Still producing, even at high bhp.
|
|
assert(f_high < 0.0);
|
|
bhp_max = high;
|
|
}
|
|
} else {
|
|
// Bisect to find a bhp point where we produce, but
|
|
// not a large amount ('eps' below).
|
|
const double eps = 0.1 * std::fabs(vfp_flo_front);
|
|
const int maxit = 50;
|
|
int it = 0;
|
|
while (std::fabs(f_low) > eps && it < maxit) {
|
|
const double curr = 0.5*(low + high);
|
|
const double f_curr = fflo(curr);
|
|
if (f_curr * f_low > 0.0) {
|
|
low = curr;
|
|
f_low = f_curr;
|
|
} else {
|
|
high = curr;
|
|
f_high = f_curr;
|
|
}
|
|
++it;
|
|
}
|
|
if (it < maxit) {
|
|
bhp_max = low;
|
|
} else {
|
|
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_INOPERABLE",
|
|
"Bisect did not find the bhp-point where we produce for well " + this->name());
|
|
return std::nullopt;
|
|
}
|
|
}
|
|
deferred_logger.debug("computeBhpAtThpLimitProd(): well = " + this->name() +
|
|
" low = " + std::to_string(low) +
|
|
" high = " + std::to_string(high) +
|
|
" f(low) = " + std::to_string(f_low) +
|
|
" f(high) = " + std::to_string(f_high) +
|
|
" bhp_max = " + std::to_string(bhp_max));
|
|
return bhp_max;
|
|
}
|
|
|
|
|
|
bool
|
|
WellInterfaceGeneric::
|
|
bisectBracket(const std::function<double(const double)>& eq,
|
|
const std::array<double, 2>& range,
|
|
double& low, double& high,
|
|
std::optional<double>& approximate_solution,
|
|
DeferredLogger& deferred_logger) const
|
|
{
|
|
bool finding_bracket = false;
|
|
low = range[0];
|
|
high = range[1];
|
|
|
|
double eq_high = eq(high);
|
|
double eq_low = eq(low);
|
|
const double eq_bhplimit = eq_low;
|
|
deferred_logger.debug("computeBhpAtThpLimitProd(): well = " + this->name() +
|
|
" low = " + std::to_string(low) +
|
|
" high = " + std::to_string(high) +
|
|
" eq(low) = " + std::to_string(eq_low) +
|
|
" eq(high) = " + std::to_string(eq_high));
|
|
if (eq_low * eq_high > 0.0) {
|
|
// Failed to bracket the zero.
|
|
// If this is due to having two solutions, bisect until bracketed.
|
|
double abs_low = std::fabs(eq_low);
|
|
double abs_high = std::fabs(eq_high);
|
|
int bracket_attempts = 0;
|
|
const int max_bracket_attempts = 20;
|
|
double interval = high - low;
|
|
const double min_interval = 1.0 * unit::barsa;
|
|
while (eq_low * eq_high > 0.0 && bracket_attempts < max_bracket_attempts && interval > min_interval) {
|
|
if (abs_high < abs_low) {
|
|
low = 0.5 * (low + high);
|
|
eq_low = eq(low);
|
|
abs_low = std::fabs(eq_low);
|
|
} else {
|
|
high = 0.5 * (low + high);
|
|
eq_high = eq(high);
|
|
abs_high = std::fabs(eq_high);
|
|
}
|
|
++bracket_attempts;
|
|
}
|
|
|
|
if (eq_low * eq_high <= 0.) {
|
|
// We have a bracket!
|
|
finding_bracket = true;
|
|
// Now, see if (bhplimit, low) is a bracket in addition to (low, high).
|
|
// If so, that is the bracket we shall use, choosing the solution with the
|
|
// highest flow.
|
|
if (eq_low * eq_bhplimit <= 0.0) {
|
|
high = low;
|
|
low = range[0];
|
|
}
|
|
} else { // eq_low * eq_high > 0.0
|
|
// Still failed bracketing!
|
|
const double limit = 0.1 * unit::barsa;
|
|
if (std::min(abs_low, abs_high) < limit) {
|
|
// Return the least bad solution if less off than 0.1 bar.
|
|
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_BRACKETING_FAILURE",
|
|
"Robust bhp(thp) not solved precisely for well " + this->name());
|
|
approximate_solution = abs_low < abs_high ? low : high;
|
|
} else {
|
|
// Return failure.
|
|
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_BRACKETING_FAILURE",
|
|
"Robust bhp(thp) solve failed due to bracketing failure for well " +
|
|
this->name());
|
|
}
|
|
}
|
|
} else {
|
|
finding_bracket = true;
|
|
}
|
|
return finding_bracket;
|
|
}
|
|
|
|
bool
|
|
WellInterfaceGeneric::
|
|
bruteForceBracket(const std::function<double(const double)>& eq,
|
|
const std::array<double, 2>& range,
|
|
double& low, double& high,
|
|
DeferredLogger& deferred_logger) const
|
|
{
|
|
bool finding_bracket = false;
|
|
low = range[0];
|
|
high = range[1];
|
|
const int sample_number = 100;
|
|
const double interval = (high - low) / sample_number;
|
|
double eq_low = eq(low);
|
|
double eq_high;
|
|
for (int i = 0; i < sample_number + 1; ++i) {
|
|
high = range[0] + interval * i;
|
|
eq_high = eq(high);
|
|
if (eq_high * eq_low <= 0.) {
|
|
finding_bracket = true;
|
|
break;
|
|
}
|
|
low = high;
|
|
eq_low = eq_high;
|
|
}
|
|
if (finding_bracket) {
|
|
deferred_logger.debug(
|
|
" brute force solve found low " + std::to_string(low) + " with eq_low " + std::to_string(eq_low) +
|
|
" high " + std::to_string(high) + " with eq_high " + std::to_string(eq_high));
|
|
}
|
|
return finding_bracket;
|
|
}
|
|
|
|
std::optional<double>
|
|
WellInterfaceGeneric::
|
|
computeBhpAtThpLimitProdCommon(const std::function<std::vector<double>(const double)>& frates,
|
|
const SummaryState& summary_state,
|
|
const double maxPerfPress,
|
|
const double rho,
|
|
const double alq_value,
|
|
DeferredLogger& deferred_logger) const
|
|
{
|
|
// Given a VFP function returning bhp as a function of phase
|
|
// rates and thp:
|
|
// fbhp(rates, thp),
|
|
// a function extracting the particular flow rate used for VFP
|
|
// lookups:
|
|
// flo(rates)
|
|
// and the inflow function (assuming the reservoir is fixed):
|
|
// frates(bhp)
|
|
// we want to solve the equation:
|
|
// fbhp(frates(bhp, thplimit)) - bhp = 0
|
|
// for bhp.
|
|
//
|
|
// This may result in 0, 1 or 2 solutions. If two solutions,
|
|
// the one corresponding to the lowest bhp (and therefore
|
|
// highest rate) should be returned.
|
|
|
|
static constexpr int Water = BlackoilPhases::Aqua;
|
|
static constexpr int Oil = BlackoilPhases::Liquid;
|
|
static constexpr int Gas = BlackoilPhases::Vapour;
|
|
|
|
// Make the fbhp() function.
|
|
const auto& controls = this->wellEcl().productionControls(summary_state);
|
|
const auto& table = this->vfpProperties()->getProd()->getTable(controls.vfp_table_number);
|
|
const double vfp_ref_depth = table.getDatumDepth();
|
|
const double thp_limit = this->getTHPConstraint(summary_state);
|
|
const double dp = wellhelpers::computeHydrostaticCorrection(this->refDepth(), vfp_ref_depth, rho, this->gravity());
|
|
auto fbhp = [this, &controls, thp_limit, dp, alq_value](const std::vector<double>& rates) {
|
|
assert(rates.size() == 3);
|
|
return this->vfpProperties()->getProd()
|
|
->bhp(controls.vfp_table_number, rates[Water], rates[Oil], rates[Gas], thp_limit, alq_value) - dp;
|
|
};
|
|
|
|
// Make the flo() function.
|
|
auto flo = [&table](const std::vector<double>& rates) {
|
|
return detail::getFlo(table, rates[Water], rates[Oil], rates[Gas]);
|
|
};
|
|
|
|
// Find the bhp-point where production becomes nonzero.
|
|
auto fflo = [&flo, &frates](double bhp) { return flo(frates(bhp)); };
|
|
auto bhp_max = this->bhpMax(fflo, controls.bhp_limit, maxPerfPress, table.getFloAxis().front(), deferred_logger);
|
|
|
|
// could not solve for the bhp-point, we could not continue to find the bhp
|
|
if (!bhp_max.has_value()) {
|
|
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_INOPERABLE",
|
|
"Robust bhp(thp) solve failed due to not being able to "
|
|
"find bhp-point where production becomes non-zero for well " + this->name());
|
|
return std::nullopt;
|
|
}
|
|
const std::array<double, 2> range {controls.bhp_limit, *bhp_max};
|
|
return computeBhpAtThpLimitCommon(frates, fbhp, range, deferred_logger);
|
|
}
|
|
|
|
std::optional<double>
|
|
WellInterfaceGeneric::
|
|
computeBhpAtThpLimitCommon(const std::function<std::vector<double>(const double)>& frates,
|
|
const std::function<double(const std::vector<double>)>& fbhp,
|
|
const std::array<double, 2>& range,
|
|
DeferredLogger& deferred_logger) const
|
|
{
|
|
// Given a VFP function returning bhp as a function of phase
|
|
// rates and thp:
|
|
// fbhp(rates, thp),
|
|
// a function extracting the particular flow rate used for VFP
|
|
// lookups:
|
|
// flo(rates)
|
|
// and the inflow function (assuming the reservoir is fixed):
|
|
// frates(bhp)
|
|
// we want to solve the equation:
|
|
// fbhp(frates(bhp, thplimit)) - bhp = 0
|
|
// for bhp.
|
|
//
|
|
// This may result in 0, 1 or 2 solutions. If two solutions,
|
|
// the one corresponding to the lowest bhp (and therefore
|
|
// highest rate) should be returned.
|
|
|
|
// Define the equation we want to solve.
|
|
auto eq = [&fbhp, &frates](double bhp) {
|
|
return fbhp(frates(bhp)) - bhp;
|
|
};
|
|
|
|
// Find appropriate brackets for the solution.
|
|
std::optional<double> approximate_solution;
|
|
double low, high;
|
|
// trying to use bisect way to locate a bracket
|
|
bool finding_bracket = this->bisectBracket(eq, range, low, high, approximate_solution, deferred_logger);
|
|
|
|
// based on the origional design, if an approximate solution is suggested, we use this value directly
|
|
// in the long run, we might change it
|
|
if (approximate_solution.has_value()) {
|
|
return *approximate_solution;
|
|
}
|
|
|
|
if (!finding_bracket) {
|
|
deferred_logger.debug(" Trying the brute force search to bracket the bhp for last attempt ");
|
|
finding_bracket = this->bruteForceBracket(eq, range, low, high, deferred_logger);
|
|
}
|
|
|
|
if (!finding_bracket) {
|
|
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_INOPERABLE",
|
|
"Robust bhp(thp) solve failed due to not being able to "
|
|
"bracket the bhp solution with the brute force search for " + this->name());
|
|
return std::nullopt;
|
|
}
|
|
|
|
// Solve for the proper solution in the given interval.
|
|
const int max_iteration = 100;
|
|
const double bhp_tolerance = 0.01 * unit::barsa;
|
|
int iteration = 0;
|
|
try {
|
|
const double solved_bhp = RegulaFalsiBisection<ThrowOnError>::
|
|
solve(eq, low, high, max_iteration, bhp_tolerance, iteration);
|
|
return solved_bhp;
|
|
}
|
|
catch (...) {
|
|
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE",
|
|
"Robust bhp(thp) solve failed for well " + this->name());
|
|
return std::nullopt;
|
|
}
|
|
}
|
|
} // namespace Opm
|