opm-simulators/opm/simulators/linalg/cuistl/SolverAdapter.hpp
2023-05-31 16:39:45 +02:00

215 lines
9.8 KiB
C++

/*
Copyright 2022-2023 SINTEF AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_SOLVERADAPTER_HPP
#define OPM_SOLVERADAPTER_HPP
#include <memory>
#include <dune/istl/bcrsmatrix.hh>
#include <dune/istl/operators.hh>
#include <dune/istl/schwarz.hh>
#include <dune/istl/solver.hh>
#include <opm/common/ErrorMacros.hpp>
#include <opm/simulators/linalg/cuistl/CuBlockPreconditioner.hpp>
#include <opm/simulators/linalg/cuistl/CuOwnerOverlapCopy.hpp>
#include <opm/simulators/linalg/cuistl/CuSparseMatrix.hpp>
#include <opm/simulators/linalg/cuistl/CuVector.hpp>
#include <opm/simulators/linalg/cuistl/PreconditionerAdapter.hpp>
#include <opm/simulators/linalg/cuistl/detail/has_function.hpp>
namespace Opm::cuistl
{
//! @brief Wraps a CUDA solver to work with CPU data.
//!
//! @tparam Operator the Dune::LinearOperator to use
//! @tparam UnderlyingSolver a Dune solver like class, eg Dune::BiCGSTABSolver
//! @tparam X the outer type to use (eg. Dune::BlockVector<Dune::FieldVector<...>>)
template <class Operator, template <class> class UnderlyingSolver, class X>
class SolverAdapter : public Dune::IterativeSolver<X, X>
{
public:
using typename Dune::IterativeSolver<X, X>::domain_type;
using typename Dune::IterativeSolver<X, X>::range_type;
using typename Dune::IterativeSolver<X, X>::field_type;
using typename Dune::IterativeSolver<X, X>::real_type;
using typename Dune::IterativeSolver<X, X>::scalar_real_type;
static constexpr auto block_size = domain_type::block_type::dimension;
using XGPU = Opm::cuistl::CuVector<real_type>;
// TODO: Use a std::forward
SolverAdapter(Operator& op,
Dune::ScalarProduct<X>& sp,
std::shared_ptr<Dune::Preconditioner<X, X>> prec,
scalar_real_type reduction,
int maxit,
int verbose)
: Dune::IterativeSolver<X, X>(op, sp, *prec, reduction, maxit, verbose)
, m_opOnCPUWithMatrix(op)
, m_matrix(CuSparseMatrix<real_type>::fromMatrix(op.getmat()))
, m_underlyingSolver(constructSolver(prec, reduction, maxit, verbose))
{
}
virtual void apply(X& x, X& b, double reduction, Dune::InverseOperatorResult& res) override
{
// TODO: Can we do this without reimplementing the other function?
// TODO: [perf] Do we need to update the matrix every time? Probably yes
m_matrix.updateNonzeroValues(m_opOnCPUWithMatrix.getmat());
if (!m_inputBuffer) {
m_inputBuffer.reset(new XGPU(b.dim()));
m_outputBuffer.reset(new XGPU(x.dim()));
}
m_inputBuffer->copyFromHost(b);
// TODO: [perf] do we need to copy x here?
m_outputBuffer->copyFromHost(x);
m_underlyingSolver.apply(*m_outputBuffer, *m_inputBuffer, reduction, res);
// TODO: [perf] do we need to copy b here?
m_inputBuffer->copyToHost(b);
m_outputBuffer->copyToHost(x);
}
virtual void apply(X& x, X& b, Dune::InverseOperatorResult& res) override
{
// TODO: [perf] Do we need to update the matrix every time? Probably yes
m_matrix.updateNonzeroValues(m_opOnCPUWithMatrix.getmat());
if (!m_inputBuffer) {
m_inputBuffer.reset(new XGPU(b.dim()));
m_outputBuffer.reset(new XGPU(x.dim()));
}
m_inputBuffer->copyFromHost(b);
// TODO: [perf] do we need to copy x here?
m_outputBuffer->copyFromHost(x);
m_underlyingSolver.apply(*m_outputBuffer, *m_inputBuffer, res);
// TODO: [perf] do we need to copy b here?
m_inputBuffer->copyToHost(b);
m_outputBuffer->copyToHost(x);
}
private:
Operator& m_opOnCPUWithMatrix;
CuSparseMatrix<real_type> m_matrix;
UnderlyingSolver<XGPU> m_underlyingSolver;
// TODO: Use a std::forward
UnderlyingSolver<XGPU> constructSolver(std::shared_ptr<Dune::Preconditioner<X, X>> prec,
scalar_real_type reduction,
int maxit,
int verbose)
{
OPM_ERROR_IF(
detail::is_a_well_operator<Operator>::value,
"Currently we only support operators of type MatrixAdapter in the CUDA solver. "
"Use --matrix-add-well-contributions=true. "
"Using WellModelMatrixAdapter with SolverAdapter is not well-defined so it will not work well, or at all.");
if constexpr (detail::has_communication<Operator>::value) {
// TODO: See the below TODO over the definition of precHolder in the other branch
// TODO: We are currently double wrapping preconditioners in the preconditioner factory to be extra
// compatible
// with CPU. Probably a cleaner way eventually would be to do more modifications to the flexible
// solver to accomodate the pure GPU better.
auto precAsHolder = std::dynamic_pointer_cast<PreconditionerHolder<X, X>>(prec);
if (!precAsHolder) {
OPM_THROW(std::invalid_argument,
"The preconditioner needs to be a CUDA preconditioner (eg. CuILU0) wrapped in a "
"Opm::cuistl::PreconditionerAdapter wrapped in a "
"Opm::cuistl::CuBlockPreconditioner. If you are unsure what this means, set "
"preconditioner to 'CUILU0'"); // TODO: Suggest a better preconditioner
}
auto preconditionerAdapter = precAsHolder->getUnderlyingPreconditioner();
auto preconditionerAdapterAsHolder
= std::dynamic_pointer_cast<PreconditionerHolder<XGPU, XGPU>>(preconditionerAdapter);
if (!preconditionerAdapterAsHolder) {
OPM_THROW(std::invalid_argument,
"The preconditioner needs to be a CUDA preconditioner (eg. CuILU0) wrapped in a "
"Opm::cuistl::PreconditionerAdapter wrapped in a "
"Opm::cuistl::CuBlockPreconditioner. If you are unsure what this means, set "
"preconditioner to 'CUILU0'"); // TODO: Suggest a better preconditioner
}
// We need to get the underlying preconditioner:
auto preconditionerReallyOnGPU = preconditionerAdapterAsHolder->getUnderlyingPreconditioner();
const auto& communication = m_opOnCPUWithMatrix.getCommunication();
using CudaCommunication = CuOwnerOverlapCopy<real_type, block_size, typename Operator::communication_type>;
using SchwarzOperator
= Dune::OverlappingSchwarzOperator<CuSparseMatrix<real_type>, XGPU, XGPU, CudaCommunication>;
auto cudaCommunication = std::make_shared<CudaCommunication>(communication);
auto mpiPreconditioner = std::make_shared<CuBlockPreconditioner<XGPU, XGPU, CudaCommunication>>(
preconditionerReallyOnGPU, cudaCommunication);
auto scalarProduct = std::make_shared<Dune::ParallelScalarProduct<XGPU, CudaCommunication>>(
cudaCommunication, m_opOnCPUWithMatrix.category());
// NOTE: Ownsership of cudaCommunication is handled by mpiPreconditioner. However, just to make sure we
// remember
// this, we add this check. So remember that we hold one count in this scope, and one in the
// CuBlockPreconditioner instance. We accomedate for the fact that it could be passed around in
// CuBlockPreconditioner, hence we do not test for != 2
OPM_ERROR_IF(cudaCommunication.use_count() < 2, "Internal error. Shared pointer not owned properly.");
auto overlappingCudaOperator = std::make_shared<SchwarzOperator>(m_matrix, *cudaCommunication);
return UnderlyingSolver<XGPU>(
overlappingCudaOperator, scalarProduct, mpiPreconditioner, reduction, maxit, verbose);
} else {
// TODO: Fix the reliance on casting here. This is a code smell to a certain degree, and assumes
// a certain setup beforehand. The only reason we do it this way is to minimize edits to the
// flexible solver. We could design it differently, but keep this for the time being until
// we figure out how we want to GPU-ify the rest of the system.
auto precAsHolder = std::dynamic_pointer_cast<PreconditionerHolder<XGPU, XGPU>>(prec);
if (!precAsHolder) {
OPM_THROW(std::invalid_argument,
"The preconditioner needs to be a CUDA preconditioner wrapped in a "
"Opm::cuistl::PreconditionerHolder (eg. CuILU0).");
}
auto preconditionerOnGPU = precAsHolder->getUnderlyingPreconditioner();
auto matrixOperator
= std::make_shared<Dune::MatrixAdapter<CuSparseMatrix<real_type>, XGPU, XGPU>>(m_matrix);
auto scalarProduct = std::make_shared<Dune::SeqScalarProduct<XGPU>>();
return UnderlyingSolver<XGPU>(
matrixOperator, scalarProduct, preconditionerOnGPU, reduction, maxit, verbose);
}
}
std::unique_ptr<XGPU> m_inputBuffer;
std::unique_ptr<XGPU> m_outputBuffer;
};
} // namespace Opm::cuistl
#endif