mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-11 17:01:55 -06:00
347 lines
12 KiB
C++
347 lines
12 KiB
C++
/*
|
|
Copyright 2022-2023 SINTEF AS
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#ifndef OPM_CUVECTOR_HEADER_HPP
|
|
#define OPM_CUVECTOR_HEADER_HPP
|
|
#include <dune/common/fvector.hh>
|
|
#include <dune/istl/bvector.hh>
|
|
#include <exception>
|
|
#include <fmt/core.h>
|
|
#include <opm/common/ErrorMacros.hpp>
|
|
#include <opm/simulators/linalg/cuistl/detail/CuBlasHandle.hpp>
|
|
#include <opm/simulators/linalg/cuistl/detail/safe_conversion.hpp>
|
|
#include <vector>
|
|
|
|
|
|
namespace Opm::cuistl
|
|
{
|
|
|
|
/**
|
|
* @brief The CuVector class is a simple (arithmetic) vector class for the GPU.
|
|
*
|
|
* @note we currently only support simple raw primitives for T (double and float)
|
|
*
|
|
* @note this vector has no notion of block size. The user is responsible for allocating
|
|
* the correct number of primitives (double or floats)
|
|
* Example usage:
|
|
*
|
|
* @code{.cpp}
|
|
* #include <opm/simulators/linalg/cuistl/CuVector.hpp>
|
|
*
|
|
* void someFunction() {
|
|
* auto someDataOnCPU = std::vector<double>({1.0, 2.0, 42.0, 59.9451743, 10.7132692});
|
|
*
|
|
* auto dataOnGPU = CuVector<double>(someDataOnCPU);
|
|
*
|
|
* // Multiply by 4.0:
|
|
* dataOnGPU *= 4.0;
|
|
*
|
|
* // Get data back on CPU in another vector:
|
|
* auto stdVectorOnCPU = dataOnGPU.asStdVector();
|
|
* }
|
|
*
|
|
* @tparam T the type to store. Can be either float, double or int.
|
|
*/
|
|
template <typename T>
|
|
class CuVector
|
|
{
|
|
public:
|
|
using field_type = T;
|
|
using size_type = size_t;
|
|
|
|
|
|
/**
|
|
* @brief CuVector allocates new GPU memory of the same size as other and copies the content of the other vector to
|
|
* this newly allocated memory.
|
|
*
|
|
* @note This does synchronous transfer.
|
|
*
|
|
* @param other the vector to copy from
|
|
*/
|
|
CuVector(const CuVector<T>& other);
|
|
|
|
/**
|
|
* @brief CuVector allocates new GPU memory of the same size as data and copies the content of the data vector to
|
|
* this newly allocated memory.
|
|
*
|
|
* @note This does CPU to GPU transfer.
|
|
* @note This does synchronous transfer.
|
|
*
|
|
* @note For now data.size() needs to be within the limits of int due to restrctions of CuBlas.
|
|
*
|
|
* @param data the vector to copy from
|
|
*/
|
|
explicit CuVector(const std::vector<T>& data);
|
|
|
|
/**
|
|
* @brief operator= copies the content of the data vector to the memory of this vector.
|
|
*
|
|
* @note This requires the two vectors to be of the same size.
|
|
* @note This does synchronous transfer.
|
|
*
|
|
* @param other the vector to copy from
|
|
*/
|
|
CuVector& operator=(const CuVector<T>& other);
|
|
|
|
/**
|
|
* @brief operator= sets the whole vector equal to the scalar value.
|
|
*
|
|
* @note This does asynchronous operations
|
|
*
|
|
* @param scalar the value all elements will be set to.
|
|
*/
|
|
CuVector& operator=(T scalar);
|
|
|
|
/**
|
|
* @brief CuVector allocates new GPU memory of size numberOfElements * sizeof(T)
|
|
*
|
|
* @note For now numberOfElements needs to be within the limits of int due to restrictions in cublas
|
|
*
|
|
* @param numberOfElements number of T elements to allocate
|
|
*/
|
|
explicit CuVector(const size_t numberOfElements);
|
|
|
|
|
|
/**
|
|
* @brief CuVector allocates new GPU memory of size numberOfElements * sizeof(T) and copies numberOfElements from
|
|
* data
|
|
*
|
|
* @note This assumes the data is on the CPU.
|
|
*
|
|
* @param numberOfElements number of T elements to allocate
|
|
* @param dataOnHost data on host/CPU
|
|
*
|
|
* @note For now numberOfElements needs to be within the limits of int due to restrictions in cublas
|
|
*/
|
|
CuVector(const T* dataOnHost, const size_t numberOfElements);
|
|
|
|
/**
|
|
* @brief ~CuVector calls cudaFree
|
|
*/
|
|
virtual ~CuVector();
|
|
|
|
/**
|
|
* @return the raw pointer to the GPU data
|
|
*/
|
|
T* data();
|
|
|
|
/**
|
|
* @return the raw pointer to the GPU data
|
|
*/
|
|
const T* data() const;
|
|
|
|
/**
|
|
* @brief copyFromHost copies data from a Dune::BlockVector
|
|
* @param vector the vector to copy from
|
|
*
|
|
* @note This does synchronous transfer.
|
|
* @note This assumes that the size of this vector is equal to the dim of the input vector.
|
|
*/
|
|
template <int BlockDimension>
|
|
void copyFromHost(const Dune::BlockVector<Dune::FieldVector<T, BlockDimension>>& vector)
|
|
{
|
|
if (detail::to_size_t(m_numberOfElements) != vector.dim()) {
|
|
OPM_THROW(std::runtime_error,
|
|
fmt::format("Given incompatible vector size. CuVector has size {}, \n"
|
|
"however, BlockVector has N() = {}, and dim = {}.",
|
|
m_numberOfElements,
|
|
vector.N(),
|
|
vector.dim()));
|
|
}
|
|
const auto dataPointer = static_cast<const T*>(&(vector[0][0]));
|
|
copyFromHost(dataPointer, m_numberOfElements);
|
|
}
|
|
|
|
/**
|
|
* @brief copyToHost copies data to a Dune::BlockVector
|
|
* @param vector the vector to copy to
|
|
*
|
|
* @note This does synchronous transfer.
|
|
* @note This assumes that the size of this vector is equal to the dim of the input vector.
|
|
*/
|
|
template <int BlockDimension>
|
|
void copyToHost(Dune::BlockVector<Dune::FieldVector<T, BlockDimension>>& vector) const
|
|
{
|
|
if (detail::to_size_t(m_numberOfElements) != vector.dim()) {
|
|
OPM_THROW(std::runtime_error,
|
|
fmt::format("Given incompatible vector size. CuVector has size {},\n however, the BlockVector "
|
|
"has has N() = {}, and dim() = {}.",
|
|
m_numberOfElements,
|
|
vector.N(),
|
|
vector.dim()));
|
|
}
|
|
const auto dataPointer = static_cast<T*>(&(vector[0][0]));
|
|
copyToHost(dataPointer, m_numberOfElements);
|
|
}
|
|
|
|
/**
|
|
* @brief copyFromHost copies numberOfElements from the CPU memory dataPointer
|
|
* @param dataPointer raw pointer to CPU memory
|
|
* @param numberOfElements number of elements to copy
|
|
* @note This does synchronous transfer.
|
|
* @note assumes that this vector has numberOfElements elements
|
|
*/
|
|
void copyFromHost(const T* dataPointer, size_t numberOfElements);
|
|
|
|
/**
|
|
* @brief copyFromHost copies numberOfElements to the CPU memory dataPointer
|
|
* @param dataPointer raw pointer to CPU memory
|
|
* @param numberOfElements number of elements to copy
|
|
* @note This does synchronous transfer.
|
|
* @note assumes that this vector has numberOfElements elements
|
|
*/
|
|
void copyToHost(T* dataPointer, size_t numberOfElements) const;
|
|
|
|
/**
|
|
* @brief copyToHost copies data from an std::vector
|
|
* @param data the vector to copy from
|
|
*
|
|
* @note This does synchronous transfer.
|
|
* @note This assumes that the size of this vector is equal to the size of the input vector.
|
|
*/
|
|
void copyFromHost(const std::vector<T>& data);
|
|
|
|
/**
|
|
* @brief copyToHost copies data to an std::vector
|
|
* @param data the vector to copy to
|
|
*
|
|
* @note This does synchronous transfer.
|
|
* @note This assumes that the size of this vector is equal to the size of the input vector.
|
|
*/
|
|
void copyToHost(std::vector<T>& data) const;
|
|
|
|
/**
|
|
* @brief operator *= multiplies every element by scalar
|
|
* @param scalar the scalar to with which to multiply every element
|
|
*
|
|
* @note This operation is asynchronous.
|
|
*/
|
|
CuVector<T>& operator*=(const T& scalar);
|
|
|
|
/**
|
|
* @brief axpy sets this vector equal to this + alha * y
|
|
* @param alpha the scalar with which to multiply y
|
|
* @param y input vector of same size as this
|
|
*
|
|
* @note this will call CuBlas in the background
|
|
* @note int is not supported
|
|
*/
|
|
CuVector<T>& axpy(T alpha, const CuVector<T>& y);
|
|
|
|
/**
|
|
* @brief operator+= adds the other vector to this vector
|
|
*
|
|
* @note this will call CuBlas in the background
|
|
* @note int is not supported
|
|
*/
|
|
CuVector<T>& operator+=(const CuVector<T>& other);
|
|
|
|
/**
|
|
* @brief operator-= subtracts the other vector from this vector
|
|
*
|
|
* @note this will call CuBlas in the background
|
|
* @note int is not supported
|
|
*/
|
|
CuVector<T>& operator-=(const CuVector<T>& other);
|
|
|
|
/**
|
|
* @brief dot computes the dot product (standard inner product) against the other vector
|
|
* @param other vector of same size as this
|
|
* @note this will call CuBlas in the background
|
|
* @note int is not supported
|
|
*
|
|
* @return the result on the inner product
|
|
*/
|
|
T dot(const CuVector<T>& other) const;
|
|
|
|
/**
|
|
* @brief returns the l2 norm of the vector
|
|
* @note this will call CuBlas in the background
|
|
* @note int is not supported
|
|
*
|
|
* @return the l2 norm
|
|
*/
|
|
T two_norm() const;
|
|
|
|
//! Computes the dot product sum_i this[indexSet[i]] * other[indexSet[i]]
|
|
T dot(const CuVector<T>& other, const CuVector<int>& indexSet, CuVector<T>& buffer) const;
|
|
//! Computes the norm sqrt(sum_i this[indexSet[i]] * this[indexSet[i]])
|
|
T two_norm(const CuVector<int>& indexSet, CuVector<T>& buffer) const;
|
|
//! Computes the dot product sum_i this[indexSet[i]] * other[indexSet[i]]
|
|
T dot(const CuVector<T>& other, const CuVector<int>& indexSet) const;
|
|
//! Computes the norm sqrt(sum_i this[indexSet[i]] * this[indexSet[i]])
|
|
T two_norm(const CuVector<int>& indexSet) const;
|
|
|
|
|
|
/**
|
|
* @brief dim returns the dimension (number of T elements) in the vector
|
|
* @return number of elements
|
|
*/
|
|
size_type dim() const;
|
|
|
|
|
|
/**
|
|
* @brief creates an std::vector of the same size and copies the GPU data to this std::vector
|
|
* @return an std::vector containing the elements copied from the GPU.
|
|
*/
|
|
std::vector<T> asStdVector() const;
|
|
|
|
/**
|
|
* @brief creates an std::vector of the same size and copies the GPU data to this std::vector
|
|
* @return an std::vector containing the elements copied from the GPU.
|
|
*/
|
|
template <int blockSize>
|
|
Dune::BlockVector<Dune::FieldVector<T, blockSize>> asDuneBlockVector() const
|
|
{
|
|
OPM_ERROR_IF(dim() % blockSize != 0,
|
|
fmt::format("blockSize is not a multiple of dim(). Given blockSize = {}, and dim() = {}",
|
|
blockSize,
|
|
dim()));
|
|
|
|
Dune::BlockVector<Dune::FieldVector<T, blockSize>> returnValue(dim() / blockSize);
|
|
copyToHost(returnValue);
|
|
return returnValue;
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief setZeroAtIndexSet for each element in indexSet, sets the index of this vector to be zero
|
|
* @param indexSet the set of indices to set to zero
|
|
*
|
|
* @note Assumes all indices are within range
|
|
*
|
|
* This is supposed to do the same as the following code on the CPU:
|
|
* @code{.cpp}
|
|
* for (int index : indexSet) {
|
|
* this->data[index] = T(0.0);
|
|
* }
|
|
* @endcode
|
|
*/
|
|
void setZeroAtIndexSet(const CuVector<int>& indexSet);
|
|
|
|
private:
|
|
T* m_dataOnDevice = nullptr;
|
|
|
|
// Note that we store this as int to make sure we are always cublas compatible.
|
|
// This gives the added benifit that a size_t to int conversion error occurs during construction.
|
|
const int m_numberOfElements;
|
|
detail::CuBlasHandle& m_cuBlasHandle;
|
|
};
|
|
} // namespace Opm::cuistl
|
|
#endif
|