opm-simulators/test_block.cpp
Bård Skaflestad e15c389daf Rename typedef ADV -> ADB to reflect reality.
We're working with *Block*s here.
2013-05-02 13:57:05 +02:00

170 lines
4.5 KiB
C++

/*
Copyright 2013 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#if HAVE_DYNAMIC_BOOST_TEST
#define BOOST_TEST_DYN_LINK
#endif
#define BOOST_TEST_MODULE AutoDiffBlockTest
#include "AutoDiffBlock.hpp"
#include <boost/test/unit_test.hpp>
#include <Eigen/Eigen>
#include <Eigen/Sparse>
#include <iostream>
BOOST_AUTO_TEST_CASE(ConstantInitialisation)
{
typedef AutoDiff::ForwardBlock<double> ADB;
std::vector<int> blocksizes = { 3, 1, 2 };
ADB::V v(3);
v << 0.2, 1.2, 13.4;
ADB a = ADB::constant(v, blocksizes);
BOOST_REQUIRE(a.value().matrix() == v.matrix());
const std::vector<ADB::M>& J = a.derivative();
for (std::vector<ADB::M>::const_iterator
b = J.begin(), e = J.end(); b != e; ++b) {
BOOST_REQUIRE(b->nonZeros() == 0);
}
}
BOOST_AUTO_TEST_CASE(VariableInitialisation)
{
typedef AutoDiff::ForwardBlock<double> ADB;
std::vector<int> blocksizes = { 3, 1, 2 };
ADB::V v(3);
v << 1.0, 2.2, 3.4;
enum { FirstVar = 0, SecondVar = 1, ThirdVar = 2 };
ADB x = ADB::variable(FirstVar, v, blocksizes);
BOOST_REQUIRE(x.value().matrix() == v.matrix());
const std::vector<ADB::M>& J = x.derivative();
BOOST_REQUIRE(J[0].nonZeros() == v.size());
const Eigen::Diagonal<const ADB::M, 0>& d = J[0].diagonal();
BOOST_REQUIRE((d.array() == 1.0).all());
for (std::vector<ADB::M>::const_iterator
b = J.begin() + 1, e = J.end(); b != e; ++b) {
BOOST_REQUIRE(b->nonZeros() == 0);
}
}
BOOST_AUTO_TEST_CASE(FunctionInitialisation)
{
typedef AutoDiff::ForwardBlock<double> ADB;
std::vector<int> blocksizes = { 3, 1, 2 };
std::vector<int>::size_type num_blocks = blocksizes.size();
enum { FirstVar = 0, SecondVar = 1, ThirdVar = 2 };
ADB::V v(3);
v << 1.0, 2.2, 3.4;
std::vector<ADB::M> jacs(num_blocks);
for (std::vector<int>::size_type j = 0; j < num_blocks; ++j) {
jacs[j] = ADB::M(blocksizes[FirstVar], blocksizes[j]);
jacs[j].insert(0,0) = -1.0;
}
ADB f = ADB::function(v, jacs);
BOOST_REQUIRE(f.value().matrix() == v.matrix());
const std::vector<ADB::M>& J = f.derivative();
for (std::vector<ADB::M>::const_iterator
bf = J.begin(), ef = J.end(), bj = jacs.begin();
bf != ef; ++bf, ++bj) {
BOOST_REQUIRE(bf->nonZeros() == bj->nonZeros());
BOOST_REQUIRE(bf->outerSize() == bj->outerSize());
BOOST_REQUIRE(bf->innerSize() == bj->innerSize());
for (ADB::M::Index k = 0; k < bf->outerSize(); ++k) {
for (ADB::M::InnerIterator
ileft(*bf, k), iright(*bj, k);
ileft && iright; ++ileft, ++iright) {
BOOST_REQUIRE(ileft.row() == iright.row() );
BOOST_REQUIRE(ileft.col() == iright.col() );
BOOST_REQUIRE(ileft.index() == iright.index());
BOOST_REQUIRE(ileft.value() == iright.value());
}
}
}
}
#if 0
#include <iostream>
int main()
{
typedef AutoDiff::ForwardBlock<double> ADB;
std::vector<int> blocksizes = { 3, 1, 2 };
int num_blocks = blocksizes.size();
ADB::V v1(3);
v1 << 0.2, 1.2, 13.4;
ADB::V v2(3);
v2 << 1.0, 2.2, 3.4;
enum { FirstVar = 0, SecondVar = 1, ThirdVar = 2 };
ADB a = ADB::constant(v1, blocksizes);
ADB x = ADB::variable(FirstVar, v2, blocksizes);
std::vector<ADB::M> jacs(num_blocks);
for (int i = 0; i < num_blocks; ++i) {
jacs[i] = ADB::M(blocksizes[FirstVar], blocksizes[i]);
jacs[i].insert(0,0) = -1.0;
}
ADB f = ADB::function(v2, jacs);
ADB xpx = x + x;
std::cout << xpx;
ADB xpxpa = x + x + a;
std::cout << xpxpa;
std::cout << xpxpa - xpx;
ADB sqx = x * x;
std::cout << sqx;
ADB sqxdx = sqx / x;
std::cout << sqxdx;
ADB::M m(2,3);
m.insert(0,0) = 4;
m.insert(0,1) = 3;
m.insert(1,1) = 1;
std::cout << m*sqx;
}
#endif